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Abstract: Compared with the previous generation of High Efficiency Video Coding (HEVC), Versatile
Video Coding (VVC) introduces a quadtree and multi-type tree (QTMT) partition structure with
nested multi-class trees so that the coding unit (CU) partition can better match the video texture
features. This partition structure makes the compression efficiency of VVC significantly improved,
but the computational complexity is also significantly increased, resulting in an increase in encoding
time. Therefore, we propose a fast CU partition decision algorithm based on DenseNet network and
decision tree (DT) classifier to reduce the coding complexity of VVC and save more coding time. We
extract spatial feature vectors based on the DenseNet network model. Spatial feature vectors are
constructed by predicting the boundary probabilities of 4 × 4 blocks in 64 × 64 coding units. Then,
using the spatial features as the input of the DT classifier, through the classification function of the DT
classifier model, the top N division modes with higher prediction probability are selected, and other
division modes are skipped to reduce the computational complexity. Finally, the optimal partition
mode is selected by comparing the RD cost. Our proposed algorithm achieves 47.6% encoding time
savings on VTM10.0, while BDBR only increases by 0.91%.

Keywords: versatile video coding; decision trees; QTMT; DenseNet

1. Introduction

With the widespread use of 5G technology and increased network bandwidth, high
resolution video has emerged, with video resolutions ranging from Standard Definition (SD)
to High Definition (HD), Full High Definition (FHD) and even Ultra-High Definition (UHD).
High resolution video is giving people a better viewing experience, but it poses a huge
challenge to network transmission and network bandwidth. The current HEVC standard is
inadequate to fulfill people’s evolving expectations. So, JVET developed VVC [1] in July
2020 as a successor to HEVC.

VVC has higher compression efficiency, higher video quality, and more advanced
encoding technology, but VVC has much higher encoding complexity than HEVC. Struc-
turally, VVC is the successor of HEVC, and the encoding techniques used are similar. In
terms of functionality, VVC can adapt to various video scenarios with higher specifications.
VVC not only inherits HEVC’s hybrid video coding structure, but also incorporates many
advanced coding technologies. For example, the QTMT block division structure and the
number of intra-frame prediction modes are increased to 67, which not only improves the
coding efficiency, but also increases the computational complexity of the coding process.
As described in [2], the coding complexity of VVC is about 18 times higher than that of
HEVC when intra coding. The official team named VVC’s reference software Versatile
Video Coding Test Model (VTM). VTM is the only software used for all VVC video coding
complexity evaluation. With full intra (AI) and random access (RA) configurations, com-
pared to HEVC, VVC significantly increases the coding complexity from 859% to 2630%
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while reducing the bit rate from 36.95% to 25.32% [3]. Therefore, it is necessary to reduce
the complexity in video coding.

VVC adopts the QTMT block partitioning structure, which not only includes the
Quadtree (QT) partitioning structure of HEVC but also introduces a new Multi-Type Tree
(MTT) partitioning structure. The partitioning modes of MTT include Horizontal Binary
Tree (HBT), Vertical Binary Tree (VBT), Horizontal Ternary Tree (HTT), and Vertical Ternary
Tree (VTT). The splitting modes in the QTMT partitioning structure in VVC are shown in
Figure 1a. Due to the adoption of the QTMT block partitioning structure in VVC, the CUs
generated are not only square but also rectangular. The partitioning structure is illustrated
as shown in Figure 1b. The partitioning method of QT in VVC is the same as that in HEVC.
It divides the CU into four sub-CUs of equal area. When using the BT division structure,
the CU is divided into two sub-CUs of equal size. It is worth noting that when using the
TT division structure, the division of the CUs into 3 sub-CUs has an area ratio of 1:2:1 [4].
Among the many partition methods, only the partition mode with the smallest RD cost is
optimal. The calculation formula of RD cost is as follows:

RD cost = SSE + λ× Bitmode (1)
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Figure 1. QTMT partition structure. (a) Combined division of coding units. (b) Six division patterns.
(c) Impermissible divisions.

Among these, SSE refers to the distortion of brightness and chrominance, Bitmode
represents the cost of intra-frame prediction, and λ is the Lagrange multiplier. There are
also different combinations of splitting methods in the VVC splitting method, but there are
also combinations of splitting methods that are not allowed, as in Figure 1c. VVC prohibits
BT splitting in the same direction in the middle section after TT splitting [5]. It is precisely
because of the QTMT block division structure adopted by VVC that the CU division process
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is more in line with the texture characteristics of the video, making the video picture look
more delicate.

In order to determine the optimal partition result of CU, VVC uses brute force to calculate
the RD cost of all CUs from top to bottom, then compares all RD costs from bottom to top, and
selects the combination with the smallest RD cost as the optimal partition. In VVC, when a
Coding Tree Unit (CTU) is partitioned into CUs of different sizes, it requires 5781 calculations
of RD(Rate-Distortion) cost, which is significantly higher than the 85 calculations in HEVC [6].
Compared to HEVC, VVC is significantly more computationally intensive when calculating
the RD cost. The main reason for the significant increase in coding time is the introduction
of the MTT partition structure. Therefore, the current main research direction of VVC video
coding is to increase the coding speed and save more coding time without causing a large
increase in the Bjøntegaard Delta bit rate (BDBR).

With the development of deep learning, new methods are provided for video coding.
Compared with traditional methods, neural network-based methods have the advantages
of faster processing speed and higher accuracy when dealing with large amounts of data.
Inspired by the neural network approach, in this study, we employ a DenseNet-based CNN
model and a DT classifier for fast CU partitioning decisions.

In order to reduce the complexity of the encoding process, we increase the speed of
the video encoding process. In this paper, we use a DenseNet-based CNN model and a
DT classifier model to implement an early end of CU partitioning to speed up the coding
process. The method we use can reduce the complexity of MTT segmentation to a large
extent. First, a pixel luminance CU of size 64 × 64 is passed through the CNN model to
output a vector of predicted probabilities that contains the probabilities of each boundary
for all coding units of size 4 × 4. Subsequently, the probability vector is used as input and
fed into the DT classifier model. The DT classifier predicts the most probable N partitioning
modes based on the input, thereby providing the most likely partitioning options. Finally,
the optimal division model is derived by comparing the RD cost. The division of the size
64 × 64 CU into a minimum of 4 × 4 CU has 16 different sizes of CUs that can continue
down the division. Therefore, we designed and trained these 16 classifiers. A balance
between reduced coding complexity and RD performance is achieved by tuning N. By
controlling the size of N, a compromise between coding complexity and video performance
is achieved. Although good video performance is guaranteed with N = 3, the coding
complexity is reduced by 47.6%.; video coding speed is improved with N = 1, but BD-BR
is lost by 2.53%. Our contributions are summarized as follows: (1) We use an improved
DenseNet model, which can make full use of the global features of CU and further improve
the accuracy of extracting spatial feature vectors. (2) We utilize the state-of-the-art LGBM
classifier for classifier selection. LGBM demonstrates exceptional capability in processing
large-scale data. We design specific LGBM classifiers for different CU sizes, enabling
improved classifier accuracy. Instead of developing a single classifier to handle all CU sizes,
our approach ensures effective classification accuracy. (3) We combine the DenseNet model
and the LGBM classifier. This not only fully extracts the spatial features of CU but also
ensures the accuracy of the classifier. Our combined model not only has high accuracy, but
also has a shorter running time than traditional neural network models.

Section 2 reviews previous work using both traditional and neural network approaches
to reduce the complexity of HEVC and VVC coding. Section 3 counts and analyzes the
proportion of each division when different sizes of CU are divided in intra-frame coding.
Section 4 gives a detailed explanation of our proposed algorithm. Section 5 analyzes and
summarizes the experimental results.

2. Related Works

This section will be divided into two parts to introduce algorithms related to the latest
video coding technology. We first introduce the use of traditional methods to predict CU
partition patterns, and then introduce the use of deep learning methods to predict CU
partition patterns.
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In [7], pruning of the coding unit was achieved by SATD-based pattern decision and
rate-distortion optimization in order to reduce the complexity of the coding process. In [8],
more coding time was saved by checking the gradient of the CU and skipping unnecessary
division methods in advance to achieve less complexity in the coding process. In [9], the
gradient features were first extracted to determine whether QT division was performed,
and then the specific division was selected by the variance of the CU. In [10], a balance
between efficiency in the encoding process and complexity in the encoding process was
achieved by modelling the difference between the predicted and true pixel values. In [11],
the partitioning characteristics of the blocks were first analyzed, then a cascaded QT and
MTT partitioning decision was developed, and finally, a gradient descent method was used
to select the most appropriate pattern. In [12], the gradient features were first extracted by
the Sobel operator to determine whether Q partitioning was performed. The most likely
partition structure was then selected based on the variance early MTT. In [13], a reduction
in computational complexity was achieved by first determining whether the code-current
unit had a horizontal or vertical partition structure by using directional gradients to skip
impossible partition structures in advance. In [14], multiple transformation selection was
introduced to solve the optimal matrix by a sparse non-linear optimizer, with the ultimate
goal of reducing computational effort. In [15], a new algorithm combining the Bayesian
algorithm and deblocking filter was proposed. First, the cost of the decision evaluation
model for the current CU was roughly determined, and then the most appropriate partition
model was selected according to the texture complexity. In [16], the intra-frame CU division
involved a two-step process. Firstly, the decision of whether to divide the CU based on
the complexity of the texture was made. Subsequently, the optimal division mode was
selected considering the texture orientation. In [17], the coding units were divided, and
patterns were predicted based on random forests for fast classification by texture features
for fast partitioning.

In [18], a CNN model that limits the height and width of the coding unit was pro-
posed, and then the model was trained so that the RD cost was minimized to achieve a
reduction in coding time. In [19], a completely new architecture was used, which consists
mainly of four cascaded residual-dense blocks, improving the coding speed. In [20], a
convolutional neural network approach was used to deal with video post-compression.
In [21], a multi-scale convolutional neural network model was constructed, which contains
multiple attention modules and multiple residual blocks. The model can fuse both lumi-
nance and chrominance components and use the residual blocks to improve the accuracy
of the model prediction and achieve the final picture quality improvement. In [22], the
spectral relationship with the image data was found in the convolutional neural network
model, and this relationship was used to achieve an optimization of the model. In [23],
a neural network with early termination of layering was utilized to achieve a reduction
in coding complexity by ending unnecessary partitions early. In [24], a multi-information
fusion neural network model was proposed, which skipped some time-consuming patterns
by analyzing the residual information and then predicting the global information. In [25], a
symmetric convolution and an asymmetric convolution were added to extract the corpora
of CU blocks to achieve better predictive classification based on improvements to the
residual network. In [26], a database was first created, and then a multi-stage exit neural
network model was applied, discarding unnecessary pattern judgments and achieving
savings in coding time. In [27], a neural network model plus a long short-term memory
model were used to improve the probability of predicting CU partitioning by generating
and predicting CU partition mapping maps.

Table 1 provides an overview of current state-of-the-art video coding algorithms,
focusing on three main pieces of information: software version, TS, and BDBR. The first
two articles listed in Table 1 follow the traditional approach of manual feature extraction
followed by CU partitioning. On the other hand, the last three articles all improve the
existing neural network models and reduce the complexity of neural network models
by utilizing lightweight networks. Although these methods eliminate the process of
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manual feature extraction, they still achieve remarkable results in terms of video quality
and performance metrics such as TS, BDBR, and TS/BDBR. Compared with state-of-the-
art video coding techniques, our algorithm introduces an optimization of the DenseNet
network model. Compared with other network models, the DenseNet network model
stands out due to its small number of parameters. This results in smaller model sizes; it
occupies less bandwidth and exhibits relatively low computational complexity. While most
current state-of-the-art algorithms rely on threshold selection to determine the best mode,
our proposed algorithm stands out by utilizing an LGBM classifier. This classifier can
accurately and efficiently identify the most suitable N partition patterns, which is different
from traditional threshold selection methods.

Table 1. Key information about the five advanced algorithms.

Solution Handcrafted Neural
Network Platform Learning Rate Frame Software TS (%) BDBR (%)

Yang [10]
√

× Intel i5-8500 CPU
@3.00 GHz - - VTM 2.0 62.46 1.93

Zhang [15]
√

× Intel Core i5-
4900 CPU @ 3.30 GHz - - VTM 11.0 56.08 1.30

Pan [24] ×
√

Intel i7-8700 K processor
@3.70 GHz and

32 GB RAM
and GeForce GTX

1080Ti GPU

10−4 PyTorch VTM 6.0 30.63 3.18

Li [26] ×
√

Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30 GHz,

128 GB
RAM and the Ubuntu

18.04 64-bit and GeForce
GTX 2080 Ti GPU

10−4 PyTorch VTM 7.0 1.32 66.88

Saldanha [4] ×
√

- 10−4 TensorFlow VTM 10.0 1.42 54.20

3. Statistical Analysis

In this section, we compute the proportion of partition modes for CUs of different
sizes in the dataset. Based on the analysis of partition mode ratios, we propose a DenseNet
neural network model and an LGBM classifier model.

The selected video sequences include “Campfire,” “FourPeople”, “Cactus”, “CatRobot”,
“BasketballPass”, and “RaceHorses”. Detailed information about these six video sequences
can be found in Table 2. “Campfire” and “CatRobot” share the same resolution but differ in
terms of video content. While the “Campfire” video clip features a large and static back-
ground, the “CatRobot” video clip includes intense object movement scenes. The remaining
four video sequences were chosen from various resolutions to ensure unbiased analysis
and statistics. We use VTM 10.0 with AI configuration and quantization parameter (QP) set
to 22, 27, 32, and 37 for experiments. A total of 6,699,233 CUs were counted, ranging in size
from 64 × 64 to 4 × 4. Table 3 provides the count for the 16 different CU sizes that can be
further split, while Figure 2 illustrates the distribution of different splitting methods.

Table 2. Resolution information for six video sequences.

Class Sequences Resolution

A1 Campfire 3840 × 2160
A2 CatRobot 3840 × 2160
B Cactus 1920 × 1080
C RaceHorses 832 × 480
D BasssketballPasss 410 × 240
E FourPeople 1280 × 720
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Table 3. Different CU division patterns.

Height
Width

64 32 16 8 4

64 QT -

32

-

All BT, TT
BT, HTT HBT

HTT16 BT, TT All

8 BT, VTT BT HBT

4 VBT, VTT VBT -
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(1) From Table 3, it is evident that there are a total of 16 different CU sizes that can be
further subdivided, and each CU size has a unique partitioning mode. For instance,
the division methods for 4× 8 and 8× 4 CUs are VBT and HBT, respectively. Although
both VBT and HBT fall under the category of BT (Binary Tree), they are completely
distinct in the DT classifier. Through texture feature analysis, it becomes apparent
that 4 × 8 and 8 × 4 CUs exhibit horizontal and vertical texture features, respectively,
which are fundamentally different. Hence, it is crucial for us to separately consider
4 × 8 and 8 × 4 CUs. To enhance prediction accuracy, a deliberate design approach
was employed to create 16 DT classifiers specifically tailored to the 16 distinct types
of CUs.

(2) Figure 2 shows the partition mode ratios for 16 differently sized CUs. As can be seen
from the figure, the partition pattern among the 16 different CUs is highly unbalanced.
For example, CUs of different sizes have non-split modes, but the ratio of non-split
modes varies greatly. The highest proportion of 8 × 4 CU is 73%, and the lowest
proportion of 32 × 32 CU is 17%, with a difference of 56%. Similarly, 16 × 16 CU
and 32 × 32 CU also have six partition modes, but their mode ratios are completely
different. To address this issue, we design specific classifiers for these 16 different CU
sizes. To provide more accurate features to the classifier, we leverage the DenseNet
neural network model.

4. Proposed Method

VVC adopts the quadtree division structure of nested multi-class trees, which greatly
improves the compression efficiency, but the price is the increase of calculation and the
increase of encoding time in the encoding process. Our algorithm actively selects segmen-
tation patterns with low termination probability in advance, based on the segmentation
pattern probability, to reduce the complexity of the coding process. Our algorithm consists
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of two main parts: feature extraction and the selection of segmentation patterns. The spatial
feature extraction we use is a modified DenseNet network model. For the selection of the
segmentation model, we use the LGBM classifier model. First, each frame is divided into a
number of CTUs of size 128 × 128. In the encoder, the CTUs can only be QT-divided into
four 64 × 64 CUs. Therefore, we pass the pixel luminance CU of size 64 × 64 through the
CNN model of the modified DenseNet, which is processed by the CNN to produce the
prediction probability vector P′, which contains the probability P for each boundary of all
4 × 4 blocks. The predicted probability vector P′ is then processed through the decision
tree LightGBM, and the probability C′ of all division patterns is generated after passing
the DT classifier. The top N division patterns with high probability are taken. Finally,
by calculating the RD cost, we select the smallest RD cost combination to determine the
optimal partitioning scheme. Figure 3 is a flow chart of our proposed algorithm.
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4.1. Feature Extraction Based on DenseNet Model

During the coding process of VVC, the algorithm based on neural networks is primarily
divided into two directions. The first direction involves designing a CNN network for a
specific size of coding unit. However, this approach has a significant drawback: it requires
designing multiple CNN network models, leading to increased computational complexity
as the number of CNN models increases. Additionally, CU segmentation is a continuous
process. In the CTU segmentation stage, different network models need to be continuously
called for prediction, resulting in substantial time overhead. The second direction aims
to design adaptive partitions for CUs of varying sizes. While this adaptive partitioning
scheme is convenient, the model’s accuracy is not very high. Consequently, we employ a
DenseNet-based CNN model to predict the probability of all 4 × 4 block boundaries within
a 64 × 64 CU being partitioned. This approach enables us to achieve one-shot prediction
for all partitioning methods within a 64 × 64 CU.

For spatial feature extraction, we use a CNN model based on DenseNet. In VVC, each
frame is divided into a number of sizes 128 × 128 CTUs, and in the encoder’s encoding
rules, a size 128× 128 CTU can only be divided into four size 64× 64 CUs by QT. Therefore,
we passed the four batches of size 64 × 64 CUs through the CNN model in batches, and
the predicted boundary probabilities P of all 4 × 4 blocks formed the predicted probability
vector P′. The length of the predicted probability vector P′ is calculated as follows:

Np =
Nb
2

(
Nb
4
− 1

)
(2)

where Nb is Nb in size Nb × Nb CU. Np is the length of the predicted probability vector
P′. For example: size 64 × 64 CU, Nb is 64, and the length of Np is 480. The predicted
probability vector P′ contains the boundary probabilities P for all 4 × 4 blocks, as shown
in Figure 4, where the boundary probabilities P in the predicted probability vector P′ are
ordered. P1 is denoted as the lower boundary of the 4 × 4 blocks in the first column of the
first row, P2 is denoted as the lower boundary of the 4 × 4 blocks in the first column of the
second row, P241 is denoted as the right boundary of the 4 × 4 blocks in the first column of
the first row, P242 is denoted as the right boundary of the 4 × 4 blocks in the first column
of the second row, and P480 is denoted as the right boundary of the 4 × 4 blocks in the
16th row of the right border of the 4 × 4 block in the 15th column of the 16th row. For a
deterministic division, the boundary probability value for each 4 × 4 block that lies on the
division boundary is close to 1. After CNN, all 4 × 4 CU boundary probabilities form a
spatial feature vector, which is input into the DT classifier.



Electronics 2023, 12, 3053 8 of 18

Electronics 2023, 12, x FOR PEER REVIEW 8 of 19 
 

 

boundaries within a 64 × 64 CU being partitioned. This approach enables us to achieve 
one-shot prediction for all partitioning methods within a 64 × 64 CU. 

For spatial feature extraction, we use a CNN model based on DenseNet. In VVC, each 
frame is divided into a number of sizes 128 × 128 CTUs, and in the encoder’s encoding 
rules, a size 128 × 128 CTU can only be divided into four size 64 × 64 CUs by QT. Therefore, 
we passed the four batches of size 64 × 64 CUs through the CNN model in batches, and 
the predicted boundary probabilities P of all 4 × 4 blocks formed the predicted probability 
vector 𝑃ᇱ. The length of the predicted probability vector 𝑃ᇱ is calculated as follows: 

1
2 4
b b

p
N NN  = − 

 
 (2)

where 𝑁௕ is 𝑁௕ in size 𝑁௕  × 𝑁௕ CU. 𝑁௣ is the length of the predicted probability vec-
tor 𝑃ᇱ. For example: size 64 × 64 CU, 𝑁௕ is 64, and the length of 𝑁௣ is 480. The predicted 
probability vector 𝑃ᇱcontains the boundary probabilities 𝑃 for all 4 × 4 blocks, as shown 
in Figure 4, where the boundary probabilities 𝑃 in the predicted probability vector 𝑃ᇱ 
are ordered. 𝑃ଵ is denoted as the lower boundary of the 4 × 4 blocks in the first column 
of the first row, 𝑃ଶ is denoted as the lower boundary of the 4 × 4 blocks in the first column 
of the second row, 𝑃ଶସଵ is denoted as the right boundary of the 4 × 4 blocks in the first 
column of the first row, 𝑃ଶସଶ is denoted as the right boundary of the 4 × 4 blocks in the 
first column of the second row, and 𝑃ସ଼଴ is denoted as the right boundary of the 4 × 4 
blocks in the 16th row of the right border of the 4 × 4 block in the 15th column of the 16th 
row. For a deterministic division, the boundary probability value for each 4 × 4 block that 
lies on the division boundary is close to 1. After CNN, all 4 × 4 CU boundary probabilities 
form a spatial feature vector, which is input into the DT classifier. 

...

...

1P

2P

241P

242P

480P  
Figure 4. All boundary probability distributions in a size 64 × 64 CU. 

The architectural diagram of our CNN model is inspired by the DenseNet network 
model. Figure 5 shows the architecture of the DenseNet network model [28]. As can be 
seen from the diagram, the light green is the convolutional layer and activation function. 
The DenseNet block contains six convolutional layers, and the internal structure of the six 
convolutional layers is the same. Brown is the pooling layer, green is the convolution 
layer, brown and green form the Transition layer, and blue is the fully connected layer. 
There are three main reasons why we chose this network model architecture. DenseNet 
requires half as many parameters as the ResNet model for the same dataset and the same 
correct rate. DenseNet takes half the time than the ResNet model for the same correct rate. 
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The architectural diagram of our CNN model is inspired by the DenseNet network
model. Figure 5 shows the architecture of the DenseNet network model [28]. As can be
seen from the diagram, the light green is the convolutional layer and activation function.
The DenseNet block contains six convolutional layers, and the internal structure of the six
convolutional layers is the same. Brown is the pooling layer, green is the convolution layer,
brown and green form the Transition layer, and blue is the fully connected layer. There
are three main reasons why we chose this network model architecture. DenseNet requires
half as many parameters as the ResNet model for the same dataset and the same correct
rate. DenseNet takes half the time than the ResNet model for the same correct rate. The
DenseNet network model is also excellent in terms of overfitting resistance performance.
DenseNet proposes a more radical dense connection mechanism than ResNet, which simply
adds up the elements of the previous layer and the current layer, while DenseNet adds
up the elements of the current layer and all the previous layers. This continuous jump
connection alleviates, to some extent, the problem of disappearing features and gradients
when the neural network is passed too deep. The reason why we choose to improve the
DenseNet model is because of its excellent performance.
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Figure 6 is a diagram of our CNN model. The DenseNet network model is mainly
composed of a Dense Block layer and a Transition layer. The Transition layer is used to
connect two Dense Block layers. We will focus on the Transition layer and Dense Block
layer of the CNN model. Our CNN model contains four Transition layers and three
Transition layers, and the Dense Block layer contains six bottleneck layers. Since the
convolution kernels used in the four Dense Blocks are the same, please refer to Table 4 for
more information. Therefore, Dense Block 1 (D1) is described in detail. First, the size 64 ×
64 CU goes through a 3 × 3 convolutional layer 1 (C1), with an output size of 64 × 64 × 16,
and then through Dense Block 1 (D1), with an output size of 64 × 64 × 208. In particular,
Dense Block 1 (D1) contains six convolutional layers, and the non-linear composition used
in each convolutional layer ensures that the feature maps in each layer have the same size,
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as shown in Table 5. Each layer contains a 1 × 1 convolution and a 3 × 3 convolution,
where the 1 × 1 convolution is used to quadruple the output channels. When the input is
64× 64× 16, the output is 64× 64× 48 after DenseNet bottleneck 1 (DL1), and the other six
convolutional layers are the same as DL1. The Transition layer connects two Dense Blocks.
Its main function is to down sample and compress the model. It is mainly composed of
3 × 3 Avgpool and 1 × 1 convolution.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

D1 T1 D2 T2 D3 T3 D4
64

16

208
104 392 196 484

242 53064 21 21 7 7 3 3
C1

16 16+32 48+32 80+32 112+32 144+32 176+32

DL1 DL2 DL3 DL4 DL5 DL6

S=3
K=3

21

208

1

104

21

Avg Pooling

1

480

48 80 112 144 176 208

64 64 64 64 64 64 64

64

16

1 364 64

128 32 32+16

64

 
Figure 6. CNN model architecture. 

Table 5. Parameters of 4 Transition Blocks. 

Transition Block Operation 
Output Size 
(W × H × N) 

Operation 
Output Size 
(W × H × N) 

Transition Block1 
(T1) 

3 × 3 Avgpool 
Stride3 

21 × 21 × 208 1 × 1 Conv 21 × 21 × 104 

Transition Block2 
(T2) 

3 × 3 Avgpool 
Stride3 

7 × 7 × 392 1 × 1 Conv 7 × 7 × 196 

Transition Block3 
(T3) 

3 × 3 Avgpool 
Stride3 

3 × 3 × 484 1 × 1 Conv 3 × 3 × 242 

4.2. Multi-Class Classifier Based on Decision Tree Model 
After extracting spatial feature vectors using CNN, we need to classify them using 

DT classifier based on their predicted probability vectors, selecting the optimal splitting 
pattern. Therefore, we have to select an appropriate classifier combining CUs of different 
sizes. LGBM (Light Gradient Boosting Machine) stands as a cutting-edge gradient boost-
ing framework devised by Microsoft researchers, employing tree-based learning algo-
rithms to achieve optimal performance [29]. Compared to other classifiers, our classifier 
has four main advantages: (i) high accuracy, (ii) fast speed, (iii) ability to handle large 
amounts of data, and (iv) ease of implementation [4]. In solving the classification problem, 
we tried to use different classifier models, which contain SVM, LGBM, and random forest 
models, and finally the LGBM model was used. There are two main reasons for this. First, 
the complexity of the training phase is low while maintaining excellent classification per-
formance; second, the LGBM model can fully utilize the edge information of CU, while 
other models do not utilize the edge information sufficiently. 

In previous studies on CU partition decision, usually only local information is con-
sidered. However, the decision tree we use can effectively utilize the global information 
for partitioning decision. The probability vector generated after passing a 64 × 64 CU 
through the CNN model is considered as the spatial feature during the CU partition pro-
cess. After obtaining the probability vector, it is passed through our DT classifier model. 
The DT classifier analyzes the different features and determines the most suitable partition 

Figure 6. CNN model architecture.

Table 4. Parameters of 4 DenseNet Blocks.

DenseNet Block Operation Layers Channel
(N)

Output Size
(W × H × N)

DenseNet Block1 (D1) 1 × 1 Conv
3 × 3 Conv 6 32 64 × 64 × 208

DenseNet Block2 (D2) 1 × 1 Conv
3 × 3 Conv 6 48 21 × 21 × 392

DenseNet Block3 (D3) 1 × 1 Conv
3 × 3 Conv 6 48 7 × 7 × 484

DenseNet Block4 (D4) 1 × 1 Conv
3 × 3 Conv 6 48 3 × 3 × 530

Table 5. Parameters of 4 Transition Blocks.

Transition Block Operation Output Size
(W × H × N) Operation Output Size

(W × H × N)

Transition
Block1 (T1)

3 × 3 Avgpool
Stride3 21 × 21 × 208 1 × 1 Conv 21 × 21 × 104

Transition
Block2 (T2)

3 × 3 Avgpool
Stride3 7 × 7 × 392 1 × 1 Conv 7 × 7 × 196

Transition
Block3 (T3)

3 × 3 Avgpool
Stride3 3 × 3 × 484 1 × 1 Conv 3 × 3 × 242
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4.2. Multi-Class Classifier Based on Decision Tree Model

After extracting spatial feature vectors using CNN, we need to classify them using
DT classifier based on their predicted probability vectors, selecting the optimal splitting
pattern. Therefore, we have to select an appropriate classifier combining CUs of different
sizes. LGBM (Light Gradient Boosting Machine) stands as a cutting-edge gradient boosting
framework devised by Microsoft researchers, employing tree-based learning algorithms
to achieve optimal performance [29]. Compared to other classifiers, our classifier has four
main advantages: (i) high accuracy, (ii) fast speed, (iii) ability to handle large amounts of
data, and (iv) ease of implementation [4]. In solving the classification problem, we tried to
use different classifier models, which contain SVM, LGBM, and random forest models, and
finally the LGBM model was used. There are two main reasons for this. First, the complexity
of the training phase is low while maintaining excellent classification performance; second,
the LGBM model can fully utilize the edge information of CU, while other models do not
utilize the edge information sufficiently.

In previous studies on CU partition decision, usually only local information is con-
sidered. However, the decision tree we use can effectively utilize the global information
for partitioning decision. The probability vector generated after passing a 64 × 64 CU
through the CNN model is considered as the spatial feature during the CU partition process.
After obtaining the probability vector, it is passed through our DT classifier model. The
DT classifier analyzes the different features and determines the most suitable partition
combination for the CU [30–32]. In VVC, it is statistically derived that there are a total
of 16 different sizes of CUs that can continue to be divided downwards, and there are
2–6 division patterns for these sixteen CUs. The probability vectors of the six division
patterns were obtained after the CU had been subjected to the DT classifier, but some CUs
had less than six division patterns. As shown in Figure 7, after going through the CNN
model to generate the feature vector P′, the DT classifier will select different combinations
of feature vectors P according to different depths, and then select the most appropriate
division pattern. The LGBM grows in a leafy (vertical) manner exactly in line with the
top-to-bottom division of the CU, which also brings less loss to the forecasting process.
For each different size of CU, we design separate multi-class classifiers. Compared to
other algorithms that design one classifier, our individually designed classifier provides
better analysis of features and can better improve the accuracy of predicting segmentation
patterns. When the feature vector P′ is used as input in the DT classifier, the output is a
probability vector C′ of six division patterns. In dividing different sizes of CU, the resulting
probability vector C′ is different, partly because of the different choices of division methods,
and also partly because of the different kinds of division patterns. In the probability vector
C′, the impossible division is treated directly as 0. Therefore, it is this method of training
the models individually that improves the accuracy of the model predictions. When the
probability vector C′ is obtained, the encoder automatically selects the division model with
the higher probability. Combining the division patterns of different depths gives us the
optimal division pattern we want.
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4.3. Loss Function 
There must be an error between the predicted value and the true value, so we intro-

duce a loss function to train the model and improve its prediction accuracy. Our model’s 
prediction of the segmentation pattern first passes through the CNN model and then the 
DT classifier, which has the possibility of a large deviation from the real segmentation 
pattern. Also, since the feature probability vector generated after the CNN model is be-
tween [0, 1], during our training process, we used the cross-entropy function to improve 
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4.3. Loss Function

There must be an error between the predicted value and the true value, so we introduce
a loss function to train the model and improve its prediction accuracy. Our model’s
prediction of the segmentation pattern first passes through the CNN model and then the
DT classifier, which has the possibility of a large deviation from the real segmentation
pattern. Also, since the feature probability vector generated after the CNN model is
between [0, 1], during our training process, we used the cross-entropy function to improve
the accuracy of our model. The cross-entropy function is expressed as:

LossCNN = − 1
m

m

∑
i=1

n

∑
j=1

p(xi,j) log(q(xi,j)) (3)

where m is the number of samples, n is the number of elements in each sample, p is the
true value, and q is the predicted value. p

(
xi,j

)
denotes the jth vector of the ith sample in

the true value, and q
(
xi,j

)
denotes the jth vector of the ith sample in the predicted value.

For the selection of the classifier, it is found through experiments that the LGBM model
has relatively high accuracy among all currently available decision trees and can better
handle large-scale data. LGBM needs to combine classifiers that predict CUs of different
sizes at the same depth with classifiers at different depths to improve the accuracy of
model predictions. Although the accuracy of the LGBM model is high, there is still an error
between the predicted value and the real value, mainly due to the high computational
complexity of CUs of different depths and sizes. Therefore, we need to optimize each stage
of the classifier. We used a loss function to train our model. The loss function we used is
calculated as follows:

LossDT = −
6

∑
i=1

Ci log C′i (4)

4.4. Performance of the Model

To improve the accuracy of model predictions, we use some video sequences from the
training set to train our model. The video sequences in the training set are mainly selected
from six different video sequences. The video sequence consists of 1000 images of different
content, with subjects such as animals, plants, and people. During CU segmentation, we
add DenseNet CNN model and DT classifier to the encoding process for optimization. With
the addition of new algorithms, the encoding process is significantly shortened. Therefore,
we will analyze the performance of our model using the following three aspects. The
receiver operating characteristic curve is used to measure the performance of DenseNet;
the accuracy of the N modes selected by the DT classifier is used to measure the accuracy of
the DT classifier; and the ratio of the model running time to the running time of VTM10.0
is used to measure the performance of the model.

4.4.1. DenseNet Performance

We analyze the performance of our DenseNet model by comparing the 8 × 16 CU and
4× 8 CU receiver operating characteristic curves, as shown in Figure 8. The abscissas of the
two graphs represent the false positive rate, and the ordinate represents the true positive
rate. The left picture is the ROC curve of 8 × 16 CU under the selection of VBT, and the
right picture is the ROC curve of 4 × 8 CU under the selection of HBT. The areas enclosed
by the two curves and their respective coordinate axes are 0.65 and 0.61, respectively, which
is consistent with the BT split being less than 0.7. Figure 9 shows the real partition results of
CU and the predicted partition results of CNN. When the QP value is 22, we find that the
predicted partition results are most similar to the actual partition results. These two aspects
are enough to prove the excellent performance of our DenseNet model.
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4.4.2. DT Performance

We train an LGBM classifier and calculate the prediction accuracy for different CU
sizes. Figure 10 selects four CUs with representative sizes and counts the prediction
accuracy under the three classifier schemes. For both 32 × 32 CU and 16 × 16 CU, there
are six partition modes. When N = 1, N = 2, and N = 3 in 32 × 32 CU, the accuracy
rates are 59.54%, 78.38%, and 88.87%, respectively. Obviously, the higher the value of N,
the higher the accuracy of CU partitioning. Similarly, for 16 × 32 and 32 × 16 CU sizes,
the larger the value of N, the higher the correct prediction rate. Since there are only five
partition modes for 16 × 32 and 32 × 16 CUs, the predicted probabilities are 89.85% and
89.24%, respectively, which are higher than those of 32 × 32 and 16 × 16 CUs. Therefore,
our approach of designing different classifiers based on CU shape is very successful, and
because the average accuracy of our DT classifier exceeds 85%, this demonstrates the
excellent performance of our classifier.

4.4.3. Overall Model Performance

Our proposed algorithm consists primarily of two components: the CNN prediction
stage and the LGBM classifier decision stage. Among these, the CNN prediction stage
requires significantly less time compared to the decision stage of the LGBM classifier.
Therefore, we aggregate the running times of the CNN and DT models for statistical
purposes. The prediction time for other CNN models typically comprises approximately
7% of the original VTM encoding time. Consequently, we compared the prediction time of
our model with that of other models. Figure 11 illustrates the running time of our proposed
model as a percentage of the total encoding processing time of the original VTM. We
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measured the model’s running time on six standard video training sets, with the average
running time accounting for 6.1% of the overall duration of the original VTM encoding
process. This further attests to the excellent performance of our model.
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5. Experimental Results

We first introduce the pre-experimental preparations and experimental equipment.
Subsequently, we present experimental results obtained from our algorithm. Finally, we
analyze these results and compare them with those of other state-of-the-art algorithms.
In this comparison, we focus on two key metrics, namely TS and BDBR, to highlight the
advantages of our algorithm.

5.1. Experimental Setup

The algorithm proposed in this paper is tested on VTM10.0. The video sequences
used in the experiments are 25 video sequences in the JVET test set. We divide the video
sequences in the test set into six categories according to different resolution and texture
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features, as shown in Table 1. Video sequences are encoded at four QPs (22, 27, 32, 37) in the
default encoding profile. Our experiments are performed on a computer system equipped
with a 12th Generation Intel(R) Core (TM) i9-12900H 2.50 GHz processor, 16GB of RAM,
and running the Windows operating system.

In the experimental session, the performance of the algorithm was judged by recording
the BDBR and the coding time savings (TS), and finally we used the TS/BDBR as a judge of
the overall performance of the algorithm. The TS was calculated as follows:

TS =
1
4∑QPi∈{22,27,32,37}

TVTM10.0(QPi)− TSC(QPi)

TVTM10.0(QPi)
× 100% (5)

where TVTM10.0 is the coding time of the anchoring algorithm in VTM 10.0, and TSC is the
coding time of our proposed algorithm in VTM 10.0. From the formula for TS, when the
value of TSC is larger, the smaller the value of TS, and less coding time is saved. When the
value of TSC is smaller and the value of TS is larger, more coding time is saved and the
better the performance of the model.

5.2. Results and Analysis

According to the different needs of users, we have designed two schemes: Top-1 and
Top-3. Table 6 shows the experimental data of Top-1 and Top-3 schemes. Our Top-1 scheme
achieves a 71.1% reduction in encoding time but a 2.53% increase in BDBR. This solution is
especially suitable for users who prioritize fast coding needs. Compared with the VTM
anchor algorithm, our algorithm significantly reduces the encoding time. Compared with
other state-of-the-art algorithms, although BDBR has a large loss, it is very good in terms
of encoding time. The Top-3 solution is mainly tailored for users who are looking for
high video quality and do not place as much emphasis on encoding speed. Compared
with VTM anchoring, our scheme has significant advantages in both encoding time and
complexity. Compared with other state-of-the-art algorithms, although our scheme may
not be outstanding in saving time, the final video quality is clearly superior. This result
is mainly attributed to the fine CU partitioning of high-resolution video sequences. By
dividing the coding unit into smaller units, our method better conforms to the texture
characteristics of the video.

After conducting tests, it has been observed that our algorithm performs well across five
different resolution video sequences. Although there is some degree of fluctuation, it remains
within an acceptable range. A brief analysis of the Top-3 schemes reveals the following. Video
sequences A1 and A2 have the same resolution, but they differ significantly in terms of subject
matter and theme. The algorithm’s coding performance exhibits a similar behavior in both A1
and A2 sequences. The primary reason for the variation between the two groups, A1 and A2,
lies in the fact that the visual intensity of the A2 video is higher compared to A1, as evident
from the TS and BDBR indicators. Analyzing the TS and BDBR indicators, A2 demonstrates
only a marginal increase of 0.2% in BDBR and a mere 0.08% decrease in average encoding time
compared to A1. Across the five resolutions of the video sequences, our algorithm achieves
average encoding time savings of 47.6%, with the highest savings of 51% in Group B and
the lowest savings of 45.1% in Group C. The overall fluctuation is just 6.1%, highlighting the
reliability of our encoding scheme.

In the literature [33], a state-of-the-art CNN model is used to implement CU partition-
ing by two-checking the correlated texture and limiting the depth, and this algorithm has a
very high performance in video coding, with an average coding time reduction of 42.34%
and a BDBR increase of only 0.71%. In the literature [34], although the TS is 47.82%, our
model is lighter than their model, and the prediction size is larger than their model. More
importantly, our BDBR loss is significantly less than their model. Based on the experience
of comparing the experimental results in the literature [35,36], we selected three papers
for comparison. The comparison between the data obtained in our experiment and the
experimental data of other algorithms is shown in Table 7. The experimental data of other
algorithms are found in the corresponding papers to ensure the authenticity of the data.
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Although the VTM versions used by Fu, Wang, Zhao, and us are different, the CU partition
schemes of the four versions of VTM 4.0, VTM 5.0, VTM 10.0, and VTM 12.0 are the same,
so experimental comparisons can be made. Moreover, the selected datasets are the same,
which also ensures the authenticity and validity of the experimental comparison.

Table 6. Experimental results obtained for both scenarios.

Class Sequence
TOP-1 Propose TOP-3 Propose

BDBR (%) TS
(%) TS/BDBR BDBR (%) TS

(%) TS/BDBR

A1
Campfire 2.12 68.5 32.3 0.72 48.2 66.9

FoodMarket4 1.48 67.9 45.9 0.75 45.8 61.1
Tango2 1.53 79.5 52.0 0.83 49.1 59.2

A2
CatRobot1 2.59 63.4 24.5 0.95 46.6 49.1

DaylightRoad2 2.42 72.8 30.1 1.03 52.3 50.8
ParkRunning3 0.99 67.7 68.4 0.84 45.8 54.5

B

Cactus 2.67 73.6 27.6 0.84 49.9 59.4
BQTerrace 2.83 76.4 27.0 1.01 46.5 46.0

BasketballDrive 2.59 75.8 29.3 0.87 53.8 61.8
Kimono 1.35 76.2 56.4 0.79 55.4 70.1

PartyScene 2.47 73.8 29.9 0.85 51.1 60.1

C

RaceHorses 1.95 69.8 35.8 0.72 45.9 63.8
PartyScene 2.22 71.1 32.0 0.81 43.8 54.1

BQMall 3.13 72.5 23.2 0.95 46.9 49.4
BasketballDrill 4.58 68.6 15.0 1.48 45.1 30.5

D

BasketballPass 2.93 68.1 23.2 0.85 44.1 51.9
BlowingBubbles 2.45 65.4 26.7 0.77 40.5 52.6

BQSquare 2.47 70.5 28.5 0.82 44.2 53.9
RaceHorses 2.25 66.8 29.7 0.85 43.1 50.7

E
KristenAndSara 3.38 70.2 20.8 0.99 48.5 49.0

FourPeople 3.53 72.4 20.5 1.05 49.3 47.0
Johnny 3.78 73.5 19.4 1.38 50.2 36.4

Average 2.53 71.1 28.1 0.91 47.6 52.3

Table 7. Comparison with three other advanced algorithms.

Class Sequence
Fu [33] Wang [34] Zhao [25] TOP-3 Propose

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

A

Campfire 0.81 45.6 0.82 55.8 - - 0.72 48.2

FoodMarket4 0.21 29.9 0.57 40.6 - - 0.75 45.8

Tango2 0.47 47.0 - - - - 0.83 49.1

B

Cactus 0.72 46.8 1.31 56.9 0.92 49.3 0.84 49.9

BQTerrace 0.60 41.8 0.91 50.7 0.84 47.6 1.01 46.5

PartyScene - - - - 1.13 50.4 0.85 51.1

C

RaceHorsesC 0.61 43.4 0.67 48.2 0.84 46.3 0.72 45.9

PartyScene 0.28 38.7 0.97 47.0 0.78 46.4 0.81 43.8

BasketballDrill 1.40 37.6 1.17 44.4 1.27 44.2 1.48 45.1

D

RaceHorses 0.45 36.9 0.68 44.3 1.12 39.5 0.85 43.1

BlowingBubbles 0.32 37.0 1.16 48.9 0.93 44.3 0.77 40.5

BQSquare 0.43 32.5 0.87 40.6 0.82 46.7 0.82 44.2
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Table 7. Cont.

Class Sequence
Fu [33] Wang [34] Zhao [25] TOP-3 Propose

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

BDBR
(%)

TS
(%)

E

KristenAndSara 1.00 45.5 1.53 50.9 1.93 45.6 0.99 48.5

FourPeople 1.08 42.6 0.88 46.8 1.35 48.2 1.05 49.3

Johnny - - - - 1.67 51.6 1.38 50.2

Average 0.68 40.3 1.06 47.8 1.10 46.7 0.91 47.6

Our scheme achieves a significant 47.6% reduction in encoding time, while BDBR
only increases 0.91%, which is negligible. When BDBR is considered, our scheme is
significantly better than Zhao and Wang’s. In terms of time savings, our scheme significantly
outperforms Zhao and Fu’s. The increase in BDBR is negligible, while the decrease in
encoding time is considerable. Therefore, our encoding scheme exhibits excellent encoding
performance. When evaluating video sequences of various resolutions, our algorithm
outperforms three other state-of-the-art algorithms on high-resolution videos. It performs
similarly to the other three algorithms on low-resolution videos. By incorporating our
algorithm into VTM, we achieve a significant reduction in encoding time, and the CU
partition is more in line with the texture characteristics of the video, making the video
picture look more realistic.

To further evaluate the RD performance of our model, we analyze two video sequences
“FourPeople” and “CatRobot”, as shown in Figure 12. The X-axis represents code rate, and
the Y-axis represents Y-PSNR. When the QP value is 37, our proposed algorithm exhibits
similar performance to the VTM10.0 anchored algorithm. Furthermore, at a QP value of
22, the performance of our algorithm is slightly lower than that of the VTM10.0 anchored
algorithm. The main advantage of our algorithm is the ability to increase encoding speed
and save encoding time while maintaining high video quality.
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6. Conclusions

In this paper, we propose a fast CU partition decision algorithm based on the DenseNet
network and DT classifier, which reduces the complexity of the encoding process. First,
each frame of an image is divided into coding units with a size of 64 × 64. Then, the CNN
analyzes the texture features and pixels of the CU to obtain the boundary probability of the
minimum size 4× 4 CU. This process is repeated for all 4× 4 coding units, and the resulting
boundary probabilities are combined into a probability vector, enabling spatial feature
extraction. The main function of a DT classifier is to classify feature vectors. By analyzing
the feature vectors and ranking the probabilities of all partitioning modes, it selects the top
N partition patterns with higher probability and skips the partition patterns with lower
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probability. Finally, we compare the RD costs of the first N division methods and select
the division method with the smallest RD cost. Our algorithm strikes a balance between
encoding performance and complexity. Compared with other advanced algorithms, we
provide two encoding schemes, which satisfy users who pursue high-quality video and
users who pursue encoding speed. Compared with VVC’s anchor algorithm, our Top-3
solution saves an average of 47.6% of encoding time, and BDBR improves by a minimum
of 0.91%. The experimental data given prove the feasibility of the method. However, it
should be noted that the dataset used for training is not large enough and the performance
of the network model is not optimal, and further improvement is needed. In future work,
we aim to enhance and optimize our models with larger datasets.
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