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Abstract: Visual quality assessment is often used as a key performance indicator (KPI) to evaluate
the performance of electronic devices. There exists a significant association between visual quality
assessment and electronic devices. In this paper, we bring attention to alternative choices of perceptual
loss function for end-to-end deep video coding (E2E-DVC), which can be used to reduce the amount
of data generated by electronic sensors and other sources. Thus, we analyze the effects of different full-
reference quality assessment (FR-QA) metrics on E2E-DVC. First, we select five optimization-suitable
FR-QA metrics as perceptual objectives, which are differentiable and thus support back propagation,
and use them to optimize an E2E-DVC model. Second, we analyze the rate–distortion (R-D) behaviors
of an E2E-DVC model under different loss function optimizations. Third, we carry out subjective
human perceptual tests on the reconstructed videos to show the performance of different FR-QA
optimizations on subjective visual quality. This study reveals the effects of the competing FR-QA
metrics on E2E-DVC and provides a guide for further future study on E2E-DVC in terms of perceptual
loss function design.

Keywords: end-to-end; deep video coding; perceptual quality assessment; performance evaluation;
rate–distortion

1. Introduction

Visual quality assessment pertains to the evaluation of the aesthetic presentation of
images or videos. Electronic products serve as the means by which these visual media are
displayed. Thus, there exists a significant association between visual quality assessment and
electronic devices, given that the quality of the latter directly impacts the visual presentation
of media content. Employing visual quality assessment methods can effectively gauge the
optimal display performance of electronic products, thereby enabling the enhancement of
user enjoyment and satisfaction, as well as facilitating quality control and improvement of
electronic devices.

Visual quality evaluation focuses on users’ subjective perception of images or video
quality, while security privacy evaluation focuses on the degree to which sensitive infor-
mation is protected and the ability to mitigate potential threats. The combination of these
evaluation methods can ensure that the system or product not only provides a high-quality
user experience but also has the necessary security and privacy protection capabilities.
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In the context of electronics devices, visual quality assessment can be used to evaluate
the performance of systems that use visual sensors [1], such as cameras, to monitor physical
processes. For example, in a manufacturing plant, cameras may be used to monitor the
quality of products as they move through the production line. The visual data captured
by these cameras can then be analyzed to detect defects or other issues that may affect
product quality. In addition, electronic devices generate and store large amounts of data
from sensors and other sources [2], which must be processed and transmitted efficiently to
enable real-time control [3] and decision making. Therefore, compression technology [4,5]
is important for electronic devices to reduce the amount of data generated by sensors and
other sources [6,7], which can help to optimize system performance. Obviously, a good
quality assessment (QA) metric is the key to guide and evaluate the compression coding.

Since the original distortion-free images/frames are available during the coding pro-
cess, the QA metrics referred to in this paper are full-reference (FR) metrics, which derive
the quality of a distorted image/frame by comparing it with the original one. Nowadays,
some FR-QA metrics, such as mean squared error (MSE) and peak signal-to-noise ratio
(PSNR), are already widely used in video compression, such as High Efficiency Video
Coding (HEVC) [8] and Versatile Video Coding (VVC) [9]. However, many FR-QR metrics
have poor correlation with the perception of the human visual system (HVS) and are not
precise enough to reflect the perceptual quality of an image. To address this issue, a variety
of perceptual FR-QA metrics have been developed in the past two decades, which can
be divided in to early prior knowledge based models [10,11], traditional machine learn-
ing based algorithms [12,13], and the latest, emerging end-to-end deep-learning-based
models [14,15].

In traditional hybrid video coding frameworks (shown in Figure 1), such as AVC,
HEVC, and VVC, coding tools basically perform rate–distortion optimization on their own
within a specific codec structure. Currently, modularized neural video coding (MOD-NVC)
integrates a modular learning-based coding tool into the traditional video coding frame-
work, either as a stand-alone module replacing the original module, as an enhancement
to the original module, or as a part of the coding strategy. MOD-NVC can improve the
performance of traditional video coding algorithms but is still constrained by the coupling
between coding tools; so, MOD-NVC is a local optimization of the traditional hybrid video
coding framework. In contrast, end-to-end deep video coding (E2E-DVC) can overcome
these shortcomings and enable a simple replacement of the network model to an overall
end-to-end optimization. As shown in Figure 1, an E2E-DVC model is essentially a deep
learning model based on autoencoders (AE), and most existing E2E-DVC models still
follow the basic idea of hybrid coding. Currently, a variety of different neural network
structures are used in the design of AE, including the use of convolutional neural network
(CNN), recurrent neural network (RNN), generative adversarial network (GAN), long
short-term memory (LSTM), gated recurrent unit (GRU), and attention mechanism [16],
which significantly improve the E2E-DVC models’ performance.

The choice of a loss function is an important factor when designing and configuring
neural networks. By using a stochastic gradient descent (SGD) algorithm to decrease a
differentiable loss function, parameters of a neural networks model can be optimized.
There have been some studies on loss functions for image processing [17], such as image
restoration [18]. However, the impact of the loss functions has not received much attention
in the context of E2E-DVC. Most existing E2E-DVC models use MSE or SSIM [19] as a part
of the loss function. Since an important application of the FR-QA metrics is evaluating
and guiding image/video compression coding, there are many other FR-QA metrics to be
chosen as a loss function, and it can be challenging to know what to choose or even what
role it plays.
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Figure 1. Framework of traditional hybrid video coding and E2E-DVC: (a) framework of traditional
hybrid video coding and (b) framework of E2E-DVC.

To address the above problem, we bring attention to alternative choices of perceptual
loss function for E2E-DVC and analyze the effects of different FR-QA metrics on E2E-DVC.
The main contributions of this study are as follows:

• We select five optimization-suitable FR-QA metrics as perceptual objectives, which
are differentiable and thus support back propagation, and use them to optimize an
E2E-DVC model.

• We analyze the rate–distortion (R-D) behaviors of an E2E-DVC model under under
different loss function optimizations, which provides a basis for further future study
of the rate control of E2E-DVC.

• We conduct subjective human perceptual tests on the reconstructed videos to show
the effects of different FR-QA optimizations on subjective visual quality and reveal
the relative performance of the competing FR-QA metrics.

The remainder of this paper is structured in the following way. The relevant research is
presented in Section 2. Section 3 describes the study in detail. In Section 4, comprehensive
experiments are conducted to discuss the effects of different FR-QA optimizations from
various aspects. Finally, we draw a conclusion in Section 5.

2. Related Work
2.1. End-to-End Deep Video Coding

The classic E2E-DVC model was proposed by Lu et al. [20] in 2019, showing the
possibilities of E2E video coding techniques. Most existing E2E-DVC models that emerged
subsequently still follow the framework of traditional hybrid coding, using supervised
learning methods with different algorithms to efficiently represent spatial texture, temporal
motion, and prediction residuals. Chen et al. [21] extended their nonlocal attention opti-
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mization and improved context (NLAIC) method for intraframe and residual coding and
used second-order stream-to-stream prediction for a more compact motion representation,
showing consistent R-D gain across content and bit rates. Rippel et al. [22] used composite
features for the joint encoding of motion streams and residuals, embedded in aggregated
multiframe information, to efficiently generate the encoding of motion streams and residu-
als. For the effective representation of temporal information in video coding, Liu et al. [23]
proposed a learned video compression method via joint spatial–temporal correlation ex-
ploration. In this method, temporal correlation was predicted by first-order optical flow
and second-order optical flow, and a single-stage unsupervised learning method was
used to encapsulate the optical flow into quantized successive frame features, followed by
context-adaptive entropy coding to remove second-order correlation.

2.2. QA Metrics for Perceptual Optimization

The use of FR-QA metrics as targets for designing and optimizing new image process-
ing algorithms is one of its less studied but very promising applications [24]. The tuning
of model parameters is usually performed in image processing systems, with minimiz-
ing MSE as the objective function. SSIM [19] was used in early studies for perceptual
optimization and applied in image recovery, wireless video streaming, and image syn-
thesis. Zhao et al. [18] found that the optimization of image recovery tasks using mean
absolute error (MAE, `1-norm) was better than using MSE (`2-norm). A multiscale struc-
tural similarity metric (MS-SSIM) [25] is often used to guide neural-network-based image
super-resolution and image compression. Laparra et al. [26] used normalized Laplace
pyramid-based metrics [27] to optimize image rendering algorithms. Ding et al. [17] used
different FR-QA metrics as loss functions to train deep neural networks for low-level image
processing tasks, including denoising, deblurring, super-resolution, and image compres-
sion. Zhang et al. [28] designed a mixed loss function containing MSE and a mixed loss
function for perceptual optimization of deep video compression.

3. FR-QA Model for Perceptual Optimization
3.1. Deep Video Compression

As shown in Figure 2, the encoding procedure of the deep video compression (DVC) [20]
in the encoder side is as follows.
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Figure 2. Framework of the DVC and perceptual optimization.

Step 1. Motion estimation:

vt = OPFN(xt, x̂t−1), (1)

where xt is the frame at time step t (current frame), and x̂t is the reconstructed frame.
OPFN is the optical flow net, and the output vt is the optical flow map.

Step 2. Motion information coding and quantification:

mt = ME(vt), (2)
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m̂t = Quantizer(mt), (3)

where mt is the result of the optical flow map encoded by an automatic encoder ME, and m̂t
is the quantized version of mt.

Step 3. Motion compensation:

v̂t = MD(m̂t), (4)

x̄t = MCNet(x̂t−1, v̂t), (5)

where MD is the motion information decoder, MCNet is the motion compensation net, v̂t

is the reconstructed optical flow map, and x̄t is the predicted frame.
Step 4. Residual coding and quantification:

rt = xt − x̄t, (6)

yt = RE(rt), (7)

ŷt = Quantizer(yt), (8)

where rt is the residual between xt and x̄t, yt is the result of rt encoded by the residual
encoder RE, and ŷt is the quantization result of yt.

Step 5. Frame reconstruction:

r̂t = RD(ŷt), (9)

x̂t = x̄t + r̂t, (10)

where RE is the residual decoder, and r̂t and x̂t represent the reconstructed residual and
reconstructed frame, respectively.

The loss function of the model is rate–distortion loss, which is defined as follows:

L = (R(m̂t) + R(ŷt)) + λ · d(xt, x̂t), (11)

where d(xt, x̂t) denotes the perceptual distortion between xt and x̂t, and R(·) represents
the number of bits used for encoding the representations. λ is the super-parameter that
balances the rate–distortion trade-off, commonly referred to as the Lagrangian coefficient.

3.2. Perceptual Quality Optimization

Since the loss function should encourage E2E-DVC models to reconstruct natural and
perceptually pleasing videos, we chose five commonly used or the state-of-the-art FR-QA
metrics to guide the learning of DVC model as follows:

1. Mean Absolute Error (MAE).

MAE, a popular error measurement method, is intuitive because, unlike RMSE, its
variation is linear. MSE and RMSE have more of a “penalty” for larger errors, because
the square of the error value increases the average error value. In MAE, the MAE value
is measured as the average of the absolute error values, and the different errors are not
weighted more or less but increase linearly as the error increases. When the MAE value is
used as the quality loss in Equation (11), it is calculated as follows:

dMSE(xt, x̂t) =
∑W

i=1 ∑H
j=1 |xt(i, j)− x̂t(i, j)|

W × H
, (12)

where W × H is the resolution of the original image xt and the reconstructed image x̂t,
and (i, j) is the location coordinate of the pixel point. Although MAE focuses only on
pixel-level changes in the image, it has shown better performance in image restoration
tasks [18].
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2. Multiscale Structural Similarity (MS-SSIM)

Unlike MAE, which compares pixel-level differences across an image, MS-SSIM [25]
works on blocks of sliding windows. This approach better simulates the HVS function,
because HVS can easily perceive local information differences in specific regions of two
images rather than individual differences in pixel values over the entire region. MS-SSIM,
as an SSIM-based method, extends SSIM at a single scale by retaining the results after
multiple downsamplings to measure changes in structural information at multiple scales.
When the MS-SSIM value is used as the quality optimization objective in Equation (11), it is
calculated as follows:

dMS−SSIM(xt, x̂t) = 1−
[lM(i, j)]αM ∏M

m=1 [cm(i, j)]βm [sj(i, j)]γm

W × H
, (13)

where W × H is the resolution of the original image xt and the reconstructed image x̂t,
(i, j) is the location coordinate of the pixel point, and lm(i, j), cm(i, j), and sm(i, j) are the
luminance contrast factor, contrast factor, and structure contrast factor of the original image
at (i, j) for the sliding window block at the h-th scale, respectively. For the original image,
i.e., m = 1, it is calculated as follows:

l1(i, j) =
2µxt(i, j) · µx̂t(i, j) + C1

µ2
xt(i, j) + µ2

x̂t
(i, j) + C1

, (14)

c1(i, j) =
2σxt(i, j) · σx̂t(i, j) + C2

σ2
xt(i, j) + σ2

x̂t
(i, j) + C2

, (15)

s1(i, j) =
σxt x̂t(i,j) + C3

σxt(i,j)σx̂t(i,j) + C3
, (16)

where µxt(i, j) and µx̂t(i, j) are the means of xt and x̂t within the sliding window block
at (i, j), respectively. σ2

xt(i, j) and σ2
x̂t
(i, j) are the variances of xt and x̂t within the sliding

window block at (i, j), respectively. σxt x̂t(i,j) is the covariance between xt and x̂t within the
sliding window block at (i, j). The three fixed constants C1, C2, and C3 in the formulas
are set to C1 = (K1L)2, C2 = (K2L)2 , and C3 = C2/2, where L is the dynamic range
of the pixel values (256 for 8-bit images), and the default settings for K1 and K2 are 0.01
and 0.03, respectively. For the m-th scale, lm(i, j), cm(i, j), and sm(i, j) are calculated on
the image obtained after m low-pass filtering and downsampling with a factor of 2 (i.e.,
the image is reduced by 2m−1), and their calculation formulas are the same as lm(i, j),
cm(i, j), and sm(i, j).

3. Visual Information Fidelity (VIF)

VIF [10] is an FR-QA method based on natural scene statistics and HVS to extract image
information concepts, which uses information-theoretic metrics to measure image fidelity.
In the information-theoretic framework, the reference image is modeled as the output
of a random “natural” source that passes through the HVS channel and is subsequently
processed by the brain. The information content of the reference image is quantified as
the mutual information between the input and output of the HVS channel, which is the
information that the brain can ideally extract from the reference image. Similarly, in the
presence of an image distortion channel, the information capacity of the distorted image is
quantified as the mutual information between the input of the distortion channel and the
output of the HVS channel of the test image, which is the information that the brain can
ideally extract from the distorted image.

VIF uses the Gaussian scale mixture (GSM) method to statistically model the wavelet
coefficients after image pyramidal decomposition, i.e., an HVS multichannel model for a
given sub-band of multiscale multidirectional decomposition.
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The original image information model is

C = S · U = {~Ci = Si~Ui : i ∈ I}, (17)

where S = {Si : i ∈ I} is a scalar field taking positive values, U = {~Ui : i ∈ I} is a
Gaussian vector field with mean 0 and covariance CU , and I is a spatial index set of sub-
bands.

The distorted image information model is

D = G · C + V = {~Di = gi~Ci + ~Vi : i ∈ I}, (18)

where G = {gi : i ∈ I} is a deterministic scalar gain field, V = {~Vi : i ∈ I} is a Gaussian
vector field with mean 0 and covariance CV = σ2

v I, and I is the identity matrix.
The HVS output models for the original image and the distorted image, respectively, are

E = C +N = {~Ei = ~Ci + ~Ni : i ∈ I}, (19)

F = D +N ′ = {~Fi = ~Di + ~N′i : i ∈ I}, (20)

where both N and N ′ are Gaussian vector fields with mean 0 and covariance CN = σ2
nI.

Let the superscript indicate that there are Nj blocks in the j-th sub-band, then when
VIF is used as the quality optimization objective in Equation (11), it is calculated as follows:

dVIF(xt, x̂t) = 1−
∑j∈subbands I(~CNj ;~FNj | sNj)

∑j∈subbands I(~CNj ;~ENj | sNj)
, (21)

where sNj is the maximum likelihood estimate of SNj . I(~CNj ;~ENj | sNj) is the mutual
information between E and C, i.e., the information that the brain gets from the original
image xt; I(~CNj ;~FNj | sNj) is the mutual information between F and C, i.e., the information
that the brain gets from the reconstructed image x̂t, which can be calculated as follows:

I(~CNj ;~ENj | sNj) =
1
2 ∑

Nj
i=1 log2

(
| s2

i CU + σ2
nI |

| σ2
nI |

)
, (22)

I(~CNj ;~FNj | sNj) =
1
2 ∑N

i=1 log2

(
| g2

i s2
i CU + (σ2

v + σ2
n)I |

| (σ2
v + σ2

n)I |

)
. (23)

4. Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS [29], as a deep-learning-based approach, uses a CNN feature extractor to
generate distances between low-dimensional features for the reference and distorted images
and then a shallow network to produce a better probability of one over the other. the LPIPS
model also solves the problem caused by the extraction of different ranges of features by
each layer and introduces learning weights to weight the importance of different features.

Let the feature map of the original image xt obtained after the l-th layer of convolution
be xl

t with a size of Hl ×Wl × Cl . Let the feature of xl
t on the k-th channel be xl,k

t ; the
associated symbols of the reconstructed image x̂t are defined similarly. When the LPIPS
value is used as the quality loss in Equation (11), it is calculated as follows:

dLPIPS(xi, x̂i) = ∑l
1

Wi × Hi
∑

Wj
i=1 ∑

Hj
j=1 ∑Cl

k=1

[
wi,k ·

(
xl,k

i (i, j)− x̂l,k̂
t (i, j)

)]2
(24)

where wi,k is the weight parameter obtained by LPIPS after training.

5. Deep Image Structure and Texture Similarity (DISTS)

DISTS [30], as a deep-learning-based model, is based on a pretrained VGG network
as a feature extractor of the image and converts the image nonlinearly into a multiscale
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overcomplete representation, whose quality is then evaluated by a distance metric. Similar
to the PIPAL, DISTS allows for small inconsistencies between the distorted and reference
images in the texture information. DISTS can be seen as a version of the SSIM method in
the depth domain, but DISTS contains only the luminance factor and the structure factor.

Let the feature map of the original image xt obtained after the l-th layer of convolution
be xl

t, with a size of Hl ×Wl × Cl . Let the feature of xl
t on the k-th channel be xl,k

t ; the
associated symbols of the reconstructed image x̂t are defined similarly. When the LPIPS
value is used as the quality loss in Equation (11), it is calculated as follows:

dDISTS(xt, x̂t) = 1−∑l ∑
Cl
k=1

(
αl,kL(xl,k

t , x̂l,k
t ) + βl,kS(xl,k

t , x̂l,k
t )
)

(25)

where αl,k and βl,k are the weight parameters obtained from DISTS after training, and L(xl,k
t , x̂l,k

t )

and S(xl,k
t , x̂l,k

t ) are the luminance factor and structure factor, respectively, which are defined
as follows:

L(xl,k
t , x̂l,k

t ) =
2µl,k

xt µl,k
x̂t
+ C1

(µl,k
xt )

2
+ (µl,k

x̂t
)

2
+ C1

, (26)

S(xl,k
t , x̂l,k

t ) =
2σl,k

xt ,x̂t
+ C2

(σl,k
xt )

2
+ (σl,k

x̂t
)

2
+ C2

, (27)

where µl,k
xt and µl,k

x̂t
are the means of xl,k

t and x̂l,k
t , respectively, σl,k

xt and σl,k
x̂t

are the standard

deviations of xl,k
t and x̂l,k

t , respectively, and σl,k
xt ,x̂t

is the covariance between xl,k
t and x̂l,k

t . C1
and C2 are the same as in Equations (14) and (15).

Since the scales of these metrics vary widely, we normalized them as follows for a fair
comparison when training the DVC model. We normalize the difference mean opinion
scores (DMOS) in the LIVE database [31] (the lower the value, the better the perceptual
quality) into the range [0, 1] by min-max scaling. For each FR-QA metric Q, a nonlinear
four-parameter logistic (4PL) regression is used to fit the relationship between normalized
DMOS and Q as follows:

Q̃(xt, x̂t) =
k1 − k2

1 + exp(k3(Q(xt, x̂t)− k4))
+ k2, (28)

where Q̃ is the predicted quality score, and ki (i = 1, 2, 3, 4) are parameters to be estimated.
Thus, the above five FR-QA metrics are mapped to around [0,1] using the 4PL functions.
This processing allows the DVC models trained with the same λ but with different FR-QA
optimizations to encode a video at the most similar bit rates as possible.

Since the five selected FR-QA metrics are differentiable almost everywhere, and the
4PL function is also differentiable, Q̃ supports backpropagation. In addition, as Q̃(xt, x̂t) is
an approximation to DMOS of x̂t, a smaller Q̃(xt, x̂t) indicates a higher perceptual quality
of the reconstructed frame x̂t. Therefore, in order to make the videos reconstructed by the
DVC model have better perceptual quality, we optimize the DVC model by making d(xt, x̂t)
in Equation (11) equal to Q̃(xt, x̂t) in Equation (28). In addition, the normalization method
used in this section allows the E2E-DVC model to obtain encoded videos with as similar
bit rates as possible when trained with the same and different FR-QA optimizations.

4. Experiments
4.1. Implementation Details

We train (PyTorch 1.7.1, Nvidia GeForce GTX 3090 GPU with 24 GB memory, and Intelr

CoreTM i9-12900K CPU with 64 GB memory) the DVC on the Vimeo-90k [32], which is
built for evaluating different video processing tasks, such as video interpolation, video
denoising/deblocking, and video super-resolution. The dataset contains 89,800 video clips
covering a rich variety of video content. The model is trained using the Adam optimizer
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with parameters set to β1 = 0.9 and β2 = 0.999, the batch size is set to 4, with an initial
learning rate of 0.0001, and the learning rate is divided by 10 when the loss becomes stable.
Both the codes for DVC and FR-QA metrics are online available at [33]. The rate–distortion
weight factor λ is set to 256,512,1024,2048, and the resolution of the images for training is
256 × 256.

During the testing period, the HEVC standard test sequence was used to evaluate the
performance of E2E-DVC, which is widely used to measure the performance of video com-
pression algorithms because of the diversity of video content and resolutions in this dataset.

4.2. Objective Results
4.2.1. R-D Performance

As shown in Figure 3, we compare the coding perfomance of the DVC models opti-
mized under different FR-QA loss functions on the HEVC Class B sequences. Since peak
signal-to-noise ratio (PSNR) is the most commonly used metric for lossy compression
codecs, we use it to describe R-D performance. The detailed PSNR values are shown in
Table 1. We also found that the R-D data can be well fitted by the following function:

PSNR = α · log(R) + β, (29)

where α and β are parameters to be estimated, which are determined by the codec models
and video content.
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Figure 3. Performance on the HEVC Class B dataset between different FR-QA metrics in term of
PSNR: (a) R-D performance and (b) fitted R-D functions.
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Table 1. Objective or subjective comparisons.

DISTS LPIPS VIF MS-SSIM MAE

MOS 4.66 4.20 1.66 2.86 2.68
PSNR 24.6 24.2 22.6 25.4 25.7

4.2.2. Objective Model Ranking

For a fairer comparison, the five FR-IQAs self-evaluated and mutually evaluated the
videos encoded and reconstructed by their respective optimized E2E-DVC models under
the same settings. The average ranking on HEVC Class B sequences is shown in Figure 4,
where 1 indicates the best and 5 indicates the worst.

MAE
MS-

SSIM
VIF LPIPS DISTS human

MAE 1 2 2 4 4 4

MS-

SSIM
2 1 3 3 3 3

VIF 5 5 1 5 5 5

LPIPS 4 3 4 1 2 1

DISTS 3 4 5 2 1 2

Figure 4. Objective rankings and subjective ranking of the reconstructed videos by the five FR-QA
metrics. The horizontal axis indicators are used for evaluation.

From Figure 4, it can be seen that the traditional MAE and MS-SSIM methods consider
the deep-learning-based methods to perform more poorly when evaluating the deep-
learning-based LPIPS and DISTS methods; conversely, the deep-learning-based LPIPS
and DISTS methods also consider the traditional MAE and MS-SSIM methods to perform
more poorly. This indicates that traditional methods and deep-learning-based methods
are very different in nature. The human subjective perception believes that the E2E-DVC
model optimized by the deep-learning-based methods can encode videos with higher
visual quality. Moreover, VIF received the worst ranking in both human eye and other
FR-IQA evaluations, which implies that modeling the visual channel of the human eye is a
complex process and that using simple source channel coding theory in information theory
is not sufficient to portray the perceptual characteristics of HVS; so, VIF is not suitable for
optimizing and guiding image/video processing algorithms.

4.3. Subjective Results

It should be noted that PSNR has shown poor performance when it comes to esti-
mating the perceptual quality of images and videos as perceived by humans. Thus, it is
necessary to compare perceptual quality by performing subjective tests. We use the double-
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stimulus impairment scale (DSIS) method according to the methodology for the subjective
assessment of the quality of television pictures of Recommendation ITU-R BT.500-13.

The monitor used in the subjective experiment was a Dell-U2720Q, with a viewing
distance of 2.5 times the height of the screen. A total of 25 experimental observers between
the ages of 22 and 35 participated in the subjective test, 11 of whom were female and
14 were male. All observers did not work in the video imaging industry, meaning that
they had no expertise in the field of image and video processing, they had normal or
normal corrected vision using glasses, and there were no color-weak or color-blind persons.
A five-point scale was used for the subjective evaluation, with five indicating that the
video distortion was imperceptible, four indicating that the video was perceptible but not
annoying, three indicating that the video distortion was slightly annoying, two indicating
that the video distortion was annoying, and one indicating that the video distortion was
very annoying. Finally, the abnormal testers and abnormal scores were removed using the
test screening method, and the observer’s mean opinion score (MOS) were derived as the
quality scores of the video samples. Finally, the human eye subjective quality rankings
of the five FR-IQA-optimized E2E-DVC model-encoded reconstructed videos are listed
in Figure 4, and their rankings are LPIPS, DISTS, MS-SSIM, MAE, and VIF, in order from
good to bad. The detailed MOS values are shown in Table 1.

The frame of the “BasketballDrive” sequence in HEVC class B constructed by the
DVC models optimized by the five FR-QA metrics are shown in Figure 5. The MAE-
guided reconstructed frame is somewhat blurred. The VIF-guided reconstructed frame
has overenhanced global contrast and a lot of noise. Both LPIPS and DISTS succeed in
reconstructed details of the original frame.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 5. Visual results of the DVC optimized using different FR-QA metrics: (a) reference, (b) origi-
nal, (c) MS-SSIM, (d) LPIPS, (e) MAE, (f) VIF, and (g) DISTS.

5. Conclusions

Visual quality assessment is often used as a KPI to evaluate the performance of ICPS.
In this paper, we bring attention to alternative choices of perceptual loss function for
E2E-DVC, which can be used to reduce the amount of data generated by sensors and
other sources in ICPS. We selected five optimization-suitable FR-QA metrics as perceptual
objectives for analysis of effects of different FR-QA metrics on E2E-DVC. The R-D function
of the DVC model in terms of PSNR is similar to traditional video coding. The subjective
human perceptual tests on the reconstructed videos showed the perceptual performance
of different FR-QA optimizations. In addition, further study of the R-D performance of
E2E-DVC and perceptual loss function design is needed in the future.
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