
Citation: Liu, K.; Bi, Y.; Zhang, Q.; Li,

J. A Source Seeking Method for the

Implicit Information Field Based on a

Balanced Searching Strategy.

Electronics 2023, 12, 3027. https://

doi.org/10.3390/electronics12143027

Academic Editor: Enzo Pasquale

Scilingo

Received: 23 May 2023

Revised: 30 June 2023

Accepted: 7 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Source Seeking Method for the Implicit Information Field
Based on a Balanced Searching Strategy
Kun Liu , Yang Bi * , Qi Zhang and Junfang Li

School of Electronic Engineering, Xi’an Aeronautical Institute, Xi’an 710077, China; liukunkmz@126.com (K.L.);
202104002@xaau.edu.cn (Q.Z.); li_jf@xaau.edu.cn (J.L.)
* Correspondence: 200707002@xaau.edu.cn

Abstract: To address the issue of low efficiency in source seeking within implicit information fields,
this paper proposes an autonomous sourcing method based on a balanced search strategy inspired by
biological homing behaviors. At the outset of the research, the task of source seeking boiled down to a
multi-objective convergence problem. By utilizing feasibility search behaviors as individual samples
in evolutionary population, drawing on the principles of evolutionary algorithms, motion searching
was integrated with population evolution to guide carriers towards completing source seeking tasks
by solving multi-objective problems. Furthermore, the distribution entropy was also considered to
measure the searching bias in the process of source seeking. In combination with the requirements of
the source seeking process, a new method for balanced searching was designed. Ultimately, through
theoretical analysis and simulation verification, we confirmed the effectiveness and rationality of this
proposed method.

Keywords: source seeking; biological homing behaviors; implicit information field; balanced
searching strategy

1. Introduction

In near-Earth space, any environmental location can be described by various informa-
tion features. According to the difference in sensor detection methods, some information
can be observed in a large range, which is called an explicit information field. At present,
it is also one of the main ways for humans to carry out autonomous positioning, such as
using the feature information of environmental images to carry out matching navigation.
The other information field has certain observation limitations, and the neighborhood data
of adjacent space cannot be obtained during measurement, so it is often necessary to obtain
data through field measurement [1,2]. We define the geomagnetic field, gravity field, and
odor field as implicit information fields, and this kind of information field is an important
navigational information source for organisms in nature.

An explicit information field is often used to carry out navigation and positioning,
and a prior database of the information field needs to be obtained in advance. In general,
it is difficult to obtain large-scale and high-precision prior databases, which undoubtedly
limits the autonomy of mobile carriers. In nature, creatures such as turtles and homing
pigeons can use natural navigation information fields to achieve long-distance migration
and homing. In this process, it is obviously unimaginable that creatures such as turtles and
homing pigeons store complete information field databases in advance. Therefore, this
paper used implicit information as navigation clues to carry out source search research,
which is a useful supplement to the existing autonomous navigation methods.

From the perspective of characteristic distribution, although the implicit information
distribution between adjacent elements has a certain continuity, its gradient direction varies;
therefore, it is difficult to use the measured data to deduce the data in the unreachable area.
This issue causes difficulties for the development and utilization of implicit information
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fields, such as geomagnetic navigation [3,4] and odor source finding [5]. In the modern
industrial environment, there are similar scenarios, such as in nuclear leakage environ-
ments, carrying out the search for a nuclear leakage source [6]; in fingerprint positioning
applications, the reverse positioning of the faulty fingerprint source is reversed [7].

At present, for the source seeking problem of implicit information fields, the searching
method is mainly based on searching by path planning and searching by data driving.

The searching method based on path planning means that the carrier moves along
the way that was planned to search for the target source, and the typical methods are
traversal search and Z-shape search [8–10]. This method does not distinguish the types of
information sources and achieves certain universality characteristics by the optimization of
the path and the expansion of detection capabilities [11–14]. By optimizing the path and
expanding the detection ability, the search efficiency can be improved to a certain extent.
However, the shortcoming of this method lies in the exponential relationship between
the searching time and the searching space, which is difficult to accept in the context of
large-scale applications.

The data-driven searching method refers to the research on source seeking methods
from the perspective of data acquisition and data utilization [15–17]. For example, the
formation cooperative searching method improves the measurement ability of the envi-
ronmental characteristics of implicit information fields and then can obtain more data.
However, it is prone to information redundancy or conflict, which leads to the failure of
the source search [18,19]. Probabilistic predictive searching based on historical measured
data uses the method of statistical probability to predict the position of the target point
and adjusts the predicted results constantly in the subsequent searching, so as to guide
the carrier to realize the source searching [20]. However, this method easily falls into the
partial minimum.

At present, with the development of technology and our exploration of the envi-
ronment, knowledge seeking forms and occasions are becoming more and more diverse.
However, not all scenarios allow the prediction of structure and internal correlation, and
many scenarios are presented as black box solving problems [21–23]. There are some
black box problems with solvable properties. For example, underwater organisms can
complete thousand-mile migrations by using magnetic field characteristics without any
prior database, but it is difficult for humans to achieve navigation tasks without a prior
geomagnetic database [24,25]. Dogs can accurately detect odor sources in unfamiliar en-
vironments without relying on the misty rain model of odor. Similar posterior detection
problems are presented in scenarios of nuclear radiation source search, pseudo-WIFI source
search, and alien exploration.

We conducted our research under the following scenarios:

(1) The acquisition of information has a clear field measurement attribute, which meets
the requirements of an implicit information field. This means that environmental
information about unarrived at locations cannot be obtained in advance.

(2) The source search task does not depend on a prior database, and the source search
path cannot be obtained in advance.

This paper proposes a source seeking method based on a balanced searching strategy
from the perspective of autonomous search, which was inspired by biological source
seeking behavior [26,27]. From the perspective of biological autonomous search, and due
to the lack of reference to an a priori database, the source seeking behavior shows the
exploration of the environment and the exploitation of the previous information in the
implicit information field. The autonomous searching behavior is carried out by taking the
characteristic parameters of the information source at the target as the convergence target. In
this paper, under the condition of limited perceptual ability, the search behavior in posterior
problem solving is explored by taking the source finding of the implicit information field
as the object.

The main contributions of this paper are as follows:
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(1) Research on navigation and positioning under conditions of limited information
detection, drawing inspiration from animal homing behavior;

(2) A balanced search strategy approach was proposed from a search bias perspective to
address black box problems, including implicit information;

(3) By conducting theoretical analysis and simulation experiments, the algorithm’s con-
vergence was confirmed, and the optimal search bias value was determined. This
provides a solid theoretical foundation for future research.

The paper proceeds as follows: Section 2 describes the problem of seeking the source
of an implicit information field. Section 3 presents the detailed approach. The algorithm
performance analysis and experimental results are shown in Sections 4 and 5, with a
discussion in Section 6.

2. Problem Description

In general, the implicit information fields that can be sourced or used for localization
have many parameters to be described and can be uniquely characterized by a variety of
feature parameters [28], as shown in the following equation:{

E = {e1, e2, · · · , en, n ∈ R}
P(x, y, z)→ E

(1)

where E stands for the set of implicit information field features, characterized by n parame-
ters e1, e2, · · · , en, and P stands for any position in space (x, y, z), with a one-to-one mapping
relationship between P and E. In the implicit information field, this mapping is ambiguous.
As a result, historical information cannot be used to accurately build mapping models.

Here, we note the target information source features as ET . Then, the problem of
source seeking for implicit information fields can be described as the process of the carrier
using the measured data combined with autonomous searching to achieve the searching
of the target source. Without a loss of generality, the implicit information source finding
problem can be reduced to the convergence of various environmental parameters to the
target environmental parameters without a prior database [29], as shown below:

min F(E, k) = ( f1(e1, k), f2(e2, k), · · · , fn(en, k))T (2)

where k represents moment information, and objective function F is k-time and the differ-
ence between EK, the measured environmental characteristics ET , and the target environ-
mental characteristics.

The termination conditions of the source seeking task are given from the perspec-
tives of parametric convergence and position convergence, respectively, as shown in the
following equation: 

∣∣∣ek
i − eT

i

∣∣∣→ 0, i ∈ n√
(xk − xT)

2 + (yk − yT)
2 + (zk − zT)

2 ≤ γ

(3)

where T represents the target location; eT
i is the characteristic parameter of the i-th target

environment; (xT , yT , zT) is the spatial position PT ; and γ is a constant, representing the
source precision. The above equation represents the true spatial position of the k-time, the
environmental feature e converges to the respective target value, and the carrier reaches or
approaches the target point.

By utilizing the measurable properties of adjacent local or global range information
features, a corresponding relationship between function F and geographical coordinates
can be established in the explicit information field. This enables one to obtain the local or
complete form of function F. The identification of sources can be accomplished through
either spatial matching or sequential planning.
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However, in the realm of implicit information, it is only possible to obtain environmen-
tal characteristics of a location, rendering the establishment of function F in Equation (2)
unfeasible. In the process of source identification, there exists significant uncertainty at
every stage of the search. Overcoming thousands of miles to reach the target point is a
formidable challenge akin to that faced by a turtle. It is important to note that the focus of
this paper does not lie in determining the specific form of function F, but rather assumes its
unknown nature.

These challenges manifest in situations such as olfactory detection, deep-sea naviga-
tion, and the autonomous exploration of uncharted territories.

3. A Source Seeking Method Based on a Balanced Searching Strategy

Obviously, it is too difficult to solve the multi-objective convergence problem described
in Equation (2) when the specific form of F is unknown. Therefore, in this section, firstly,
the characteristics and existence conditions of the solution of the implicit information field
that can be found are given. Then, by introducing the search path into the source seeking
problem, the relationship between search behavior and parameter variation is established.
Finally, according to the principle of information tendency, a search method based on
a balanced searching strategy is proposed, and a source seeking algorithm is given by
introducing the idea of an evolutionary algorithm.

3.1. Characteristic Analysis of the Source of an Implicit Information Field

In nature, there are a variety of implicit information fields that can be used as naviga-
tion information sources for animals, such as odor fields, geomagnetic fields, gravity fields,
and other hidden information fields [17,18]. These can, for example, guide animals whose
source seeking span is often tens or even thousands of kilometers to complete homing,
migration, and other source seeking tasks. In this process, it is obvious that the simple
brain structure of animals cannot store a complete “map” beforehand. It is believed that in
the process of animal source searching, the implicit information field provides one or more
winding paths to guide animals to the source.

In order to accelerate the analysis of the source solution characteristics for the implicit
information field, we can assume that the distribution of the environmental feature E in
Equation (2) is known, so the source seeking problem can be reduced to a multi-objective
convergence problem.

Therefore, the distribution characteristics of the implicit information field source
seeking problem solution can be analyzed from the perspective of a Pareto optimal solution
with the help of multi-objective optimization theory.

Consider a two-dimensional plane, assuming that the carrier is located at the k-moment
Pk = (xk, yk). Within adjacent cells, there is a closed region G consisting of Pareto solution
sets (see Figure 1).
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In Figure 1, ∃x* ∈ G within the region G satisfies F〈x∗, ti〉 < F(x, ti), that is, the
region G represents the closed region composed of the Pareto solution set, and arrow “→ “
represents the direction pointing to the Pareto solution set.

The solution of the source seeking problem can be regarded as the process of finding
the region G in the search space within a particular time. Generally, when the number of
searches is enough that the parameter space can be traversed, then the search path can
enter the Pareto solution set region and obtain the source direction at the current moment.

When the time changes from k to k + 1, region G also moves, and its changing process
is shown in Figure 2.
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In Figure 2, Pg(k) shows the optimal solution in time k within region G. It can be seen
that the size and position of the optimal solution change as the moment changes. When
k ∈

[
k1, kg

]
changes continuously, there exists an optimal solution Pg(k) at every moment,

which is enclosed by the optimal solution cluster enclosed by PS(k) (see Figure 3).
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Figure 3. Schematic diagram of the distribution of solutions in continuous time.

In Figure 3, the time-optimal solution cluster for continuous time is presented as a
channel shape. By connecting the optimal solutions for continuous time in the channel,
a curve is obtained, which is called the solution curve. The solution curve connects the
known solution (starting point) and the solution (ending point), and the solution curve can
be tracked to solve the multi-objective problem.

The solution curve is the result of the source seeking problem at different times, and
tracking the curve can guide the search algorithm to converge to the global optimal solution.
In the source finding problem, this curve is the moving trajectory of the carrier in space,
connecting the starting point and the end point of navigation, so this curve can also be
called the source finding solution curve.
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3.2. Source Seeking Behavior of Implicit Information Field Based on Motion Path

Due to the limitations of measurement for implicit information field characteristics,
one cannot obtain the data of an unreached area or unit. The measurement of environmental
characteristics in implicit information fields depends on the motion path. For example, in
olfactory navigation, one cannot predict the intensity of odors in neighboring locations.
Therefore, it is necessary to introduce the motion path into the problem described in
Equation (2).

Considering the moving carrier as a particle in a two-dimensional plane, the kinematic
equation of the carrier can be described as follows:

xk+1 = xk + L cos(θ)

yk+1 = yk + L sin(θ)

u = (L, θ)

(4)

where Pk = (xk, yk) represents the position of the carrier at time k, and the motion parameter
u consists of step length L and motion direction θ. The position of the carrier at successive
moments is recorded, constituting a motion trajectory guiding the carrier to reach the
target point.

Equation (4) is introduced into the problem of source seeking for implicit information
fields, and then the multi-objective search problem is obtained as shown in Equation (5) below.{

min F(E, k) = ( f1(e1, k), f2(e2, k), · · · , fn(en, k))T

s.t. G(E, k, u) ≤ 0
(5)

where G is the constraint function of search behaviors, which is composed of environment
parameter E, motion parameter u, and time information k. After the introduction of
constraint function G, the change in objective function F can be caused by the execution of
u, and the connection between objective function F and u is indirectly established, which
provides the possibility of solving the subsequent source search problem.

3.3. Balanced Searching Strategy
3.3.1. Exploration and Exploitation

Exploration and exploitation are two basic strategies in the process of search optimiza-
tion [26,30]. Exploration refers to the searching strategy aimed at obtaining the information
of the objective function from the perspective of breadth in the searching process. On the
other hand, exploitation refers to the searching strategy based on the function information
obtained by exploration, which aims to find the optimal solution at the depth level.

In nature, animals homing in unknown environments through the exploration of
the unknown environment and the exploitation of historical information. The source
seeking process can be described as follows: in the initial stage, animals may explore
the environment through their own movement to obtain the distribution information of
features to make up for the lack of environmental cognition; then, they use the accessed
information, search for the source path, and respond to changes in the environmental
feature distribution and implement search behaviors to maintain an equilibrium between
exploration and exploitation in order to obtain maximum profits (here, the benefits include
the cognition of the environment and the optimization of the target point of convergence);
thus, individuals are guided to arrive at the target point.

Inspired by the homing behaviors of animals, we propose a balanced searching strat-
egy, which focuses on the exploration and exploitation of environmental information and
the dynamic balance of information returns and optimization returns, then combines differ-
ent stages of searching to carry out equilibrium searching. In the early stage of searching,
the environment information is explored through random roaming, and the trend move-
ment is gradually formed. In the stage of source searching, the searching bias is dynamically
adjusted between exploration and exploitation for the purpose of maximizing revenue.
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3.3.2. The Algorithm of Source Seeking

(1) Search behavior design based on evolutionary algorithm

In the following, a source seeking algorithm is proposed based on the balanced
searching strategy.

The searching process depends on the movement of the carrier, and its searching
behaviors can be characterized by the motion parameter u. Drawing on the idea of an
evolutionary algorithm, the evolutionary population is constructed by taking the feasible
searching behaviors as the sample of the evolutionary population. Thus, the j-th sample
individual can be defined as follows:

Qj = θR = Dθ × R, j = 1, · · · , Npop (6)

where R ∈ [1, · · · , 2π/Dθ ] is a random number; Dθ is the search space compression ratio;
and Npop stands for the population size, which is usually set as Npop > (2π/Dθ ).

The carrier’s search for the target features of the environment depends on its move-
ment in space. Multi-target searching and the movement of the source space have the
temporal characteristics shown in Figure 4.
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Combined with Figure 4, the source seeking process can be described as follows. At
the time k, a certain Qk

i is selected from the evolutionary population Pop(k) with medium
probability as the motion parameter of the carrier, and the carrier obtains the motion
displacement of Lk by executing Qk

i . The Ek and Ek+1 at positions Pk and Pk+1 are measured
by carrier movement and then substituted into Equation (5) for the multi-objective solution,
and the multi-objective function F is calculated. According to the convergence state of
the multi-objective function F, the source seeking performance of the executed samples is
evaluated, and the breeding or elimination operation is used to increase or decrease the
proportion of such samples. Through the mutation operation to improve the population
diversity, a new population Pop(k + 1) is obtained, and the next round of the searching
process is re-entered. Through repeated iterations, the multi-objective function converges
to the minimum, and the source search task is realized.

(2) Search bias measure

The bias of search behaviors can be measured by the diversity of the evolving pop-
ulation. The higher the population diversity, the more scattered the sample distribution
in the population, resulting in the greater randomness of the search behaviors, and the
search behaviors are biased towards exploration at this moment; the lower the population
diversity, the more concentrated the distribution of samples in the population, resulting in
less randomness in the search behaviors, which are biased toward development at this time.

Currently, diversity has garnered significant attention in performance research and
the development of evolutionary algorithms; however, there is a relative scarcity of quanti-
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tative descriptions of diversity. Population diversity is commonly described through the
measurement of spatial location differences among sampled individuals across multiple
dimensions. However, the search ability and group search bias of the population are not
adequately reflected, resulting in instances where diversity is equivalent between a few
individuals deviating significantly from the majority and a more dispersed majority. In this
case, the low probability of distribution for a few individuals results in a low likelihood of
being selected for execution. As such, the search behavior of the population is dominated
by aggregating individuals and biased towards exploitation. However, when individuals
are more widely dispersed, the distribution probability of each sample becomes closer,
and the likelihood of being selected for execution is similar. This results in a bias towards
exploratory search behavior. For the above reasons, the concept of distributed entropy is
introduced here.

Definition 1. Distributed entropy: The sample type is class N, and the sample individual can be
represented as C1, · · · , CN . At some point in the evolution of the group, the proportion of sample

individuals in the group is p1, · · · , pN and satisfies
N
∑

i=1
pi = 1; then, the distribution entropy is:

H(p1, p2, · · · , pN) = −
N

∑
i=1

pi ln pi (7)

The distribution entropy is nonnegative, symmetric, and additive in the distribution
space, and it is a strictly concave function. When all samples are uniformly distributed, H
has a unique maximum value; when one type of individual dominates the population, that
is, p1 → 1 , pi → 0(∀i > 1) , it is true that:

lim
p1→1

H = lim
p1→1

[
−p1 ln p1 −

N

∑
i=2

pi ln pi

]
= 0 (8)

The distribution entropy is the lowest currently.
The distribution entropy quantifies the population diversity and reflects the searching

bias of the population. More exactly, the larger the entropy value is, the stronger the global
exploration behaviors of the population will be. The smaller the entropy value is, the
stronger the local exploitation ability of the population will be.

(3) The strategy of balance

Combined with the analysis of the source seeking path of the implicit information
field in Section 3.1, the source seeking path will change with the spatial position. It is
not conducive to the tracking of the source path when the distribution entropy of the
evolutionary population is too large or too small in the source seeking process. Therefore,
we combined the structural characteristics of evolutionary algorithms and the distribution
characteristics of source paths to provide a specific algorithm for a balanced searching
strategy. We divided the source searching process into three stages (see Figure 5).

In the first stage, the initial stage of source seeking, the searching behaviors are mainly
exploration. When the population sample species at time k is greater than 1, the process
will enter the source seeking stage.

In the second stage in the process of source seeking, the searching behaviors change
dynamically between exploration and exploitation.
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When the distribution entropy H is less than or equal to the highest threshold entropy
Hhigh−th, the searching process is exploitation-oriented to avoid too much random motion
leading to the failure of the search. When the distribution entropy H is greater than or equal
to the lowest threshold entropy Hlow−th, the process of source seeking enters the searching
process dominated by exploration to avoid the premature population problem caused by
low population diversity. Other time, the carrier carries out the search task according to the
results of population evolution.

In the third stage, the end of source seeking, when the parameter space and the real
space in Equation (3) are reached, the source seeking task can be completed.

So far, we have presented a source seeking method based on a balanced searching
strategy, and then combined mathematical analysis and experimental simulation to verify
the effectiveness and rationality of the algorithm.

4. Algorithm Performance Analysis
4.1. Analysis for the Convergence of the Algorithm

Using the balanced searching method based on genetic evolution, we could obtain
the source path by solving the multi-objective function and guide the carrier to the target
source position. The algorithm is still essentially a multi-objective evolutionary algorithm.

For the optimization problem, the global convergence of the algorithm should meet the
following two conditions: (1) strictly covered variation distribution, so that any individual
x’ ∈ X can be generated by individual x ∈ X according to a certain mutation probability;
(2) in evolutionary algorithms, the population sequence Pop(0), Pop(1), · · · , Pop(k), · · · is
monotone, meaning that the entire evolutionary process does not degenerate the population
due to the loss of the optimal individual.

Condition (1) is easily guaranteed in evolutionary algorithms that include mutation
operations.

Considering that the transfer probability from individual i to individual j is rij, and con-
sidering the limiting behaviors in the finite search space k→ ∞ , there exists lim

k→∞
rij(∞) = 1.

This means that the balanced searching strategy with genetic variation as the core can
ensure that any individual can be generated by another individual.

Proof.
Condition (2) can be proved from the perspective of population learning.
During the searching process, the progeny population consists of two parts. One part

is the parent population that was not selected Pop′, and the other part is the new population
that has been learned through trial and error popN .

The source seeking algorithm selects only one sample of the population to reproduce
in any one evolution.

When the population reaches a certain size, the performance h′p(k) of the old popu-
lation Pop′ is equal to the performance hp(k− 1) of the parent population Pop(k− 1), so
h′p(k) = hp(k− 1).
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The popN performance of the progeny population obtained through learning hN−p(k)
is superior to hp(k− 1), so hN−p(k) > hp(k− 1).

If sample qi is selected and the evaluation result is good, the breeding operation
is performed.

The next generation population is composed of the progeny population popN and the
parent population Pop′(k). Then, the performance of the next generation population is:

hp(k) = hp(k− 1) + hN−p(k) > hp(k− 1) (9)

If sample qi is selected and the evaluation result is inferior, and the elimination
operation is performed to generate new sample individuals according to the probability. In
terms of results, its performance is no lower than that of its parent population.

Therefore, after performing an evolutionary operation, the performance of the progeny
population is no worse than that of the parent population, and the population sequence for
continuous time Pop(0), Pop(1), · · · , Pop(k), · · · is monotonous. �

4.2. Analysis for the Performance of Source Seeking

As for the source seeking algorithm based on a balanced searching strategy, its source
searching ability can be clarified from the perspective of obtaining and tracking the solution.

At time k, the purpose of the source seeking is to find the closed region G composed
of the Pareto solution set. Because the carrier searching behaviors are limited, and the
mutation operation is used between behaviors, the region has connective reachability.

Therefore, the source seeking issue at time k can be optimized.
When the closed region G is obtained at time k, and the optimal solution G contained

in this region is wrapped by the Pareto boundary, a meandering channel is formed to reach
the global optimal solution.

Under the constraint of a balanced searching strategy, the solution curve can be
obtained by the search behaviors. Additionally, the multiple environmental parameters
converge to the global optimal solution at time T.

Therefore, the source seeking process based on a balanced searching strategy can
converge to the target point when one or more source paths exist in the source search space.

5. Experiment
5.1. Simulation Background Field and Source Seeking Parameter Setting

The geomagnetic field is a natural resource of the Earth with abundant characteristic
parameters and a natural navigation information source in nature. It is a typical implicit in-
formation field because of the complex nonlinear mapping relationship between parameter
distribution and geographical location. In this paper, we took the source seeking behaviors
of animals using the geomagnetic field, such as migration, homing, and migration, as the
prototype to verify the source seeking method.

(1) Parameter setting for carrier movement

The global geomagnetic model WMM2020 was employed to construct the source
seeking environment in MATLAB. Considering the accuracy of the actual geomagnetic
field sensor, we set the movement step length L = 500 m, and each movement step caused a
change in the total field strength of about 1~2 nt.

The geomagnetic field is characterized by seven parameters that are perceptible to
humans, among which we selected the northward component Bx, the eastward component
By, and the vertical component Bz. This parameter combination has been validated in the
literature [31] and exhibits favorable searchability.

The characteristic parameters of the geomagnetic environment were selected as
B = {Bx , By, Bz}.
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Therefore, we could obtain the form of the normalized G function as follows:

G(B, k) =
3

∑
i=1

∣∣∣∣∣BT
i − Bk

i
BT

i − Bo
i

∣∣∣∣∣ (10)

(2) Parameter setting for BSS algorithm

We set the sampling interval as Dθ = 30
◦
, the population size as Npop = 36, the

propagation operator as Pb = 2, and the mutation operator as Pmut = 0.02.

We chose the intermediate threshold entropy Hth =
Hhigh−th+Hlow−th

2 , and H ∈[min(H),
max (H)], where min(H) = 0, max (H) = 2.3. Here, we set Hth = 1.5, Hhigh−th = 1.8, and
Hlow−th = 1.2.

5.2. Comparison of Different Algorithms

Gradient descent algorithm (GDA): Assuming that the mobile carrier can obtain the
magnetic field distribution of adjacent elements, the source finding problem described in
Equation (5) was transformed into a dynamic multi-objective optimization problem, and
the source finding path could be solved using the gradient descent method. This result was
denoted as the ideal path.

A timing evolution searching strategy (TES) from the literature [31,32] was employed
as a reference algorithm.

Here, we set the target parameter set as (28,126 nT, −3121.3 nT, 54,480 nT).
The above three algorithms were used in the simulation experiment, and the source

seeking path was obtained (see Figure 6).
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Figure 6. The route of source seeking.

In Figure 6, O is the initial position of the carrier, and T is the position of the source
target. The black route is the source seeking route obtained using GDA, which does not
exist in the real environment due to the limitation of the sensor perception ability and
was only used as an ideal route to test the effectiveness of the algorithm. The red route is
the source seeking route obtained by TES. The blue route is the route obtained using the
proposed BSS algorithm. It can be seen that all three routes converged to the target point.
Compared with the red route, the blue route and the black route were more closely aligned,
indicating that the proposed algorithm could better track the solution curve and find the
target point.

In the background field, five groups of source searching tasks were randomly set.
Furthermore, three algorithms (GDA, TES, and BSS) were used for source seeking. Among
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them, TES and BSS were used to carry out 1000 source seeking experiments; then, the time
taken for source seeking was calculated, as shown in Table 1.

Table 1. Comparison of time taken for source finding by different algorithms.

Algorithm Source Seeking Task
1 2 3 4 5

GDA 2787 2266 2406 2490 2413
TES 5828 4868 5036 5168 5110
BSS 5016 4223 4406 4486 4398

As can be seen from Table 1, the source searching time of TES was about 2.0 times that
of GDA, while the source seeking time of BSS was about 1.8 times that of GDA. Obviously,
the source seeking effect of BSS was better than that of TES.

5.3. Influence of Different Parameters on Algorithm Performance
5.3.1. Analysis of the Influence of Hth

Under the condition that ∆H was unchanged, the setting of different behaviors and
entropy equilibrium points Hth and the influence of sensor noise on source seeking perfor-
mance were analyzed.

In the simulation, we set ∆H = 0.4; the equilibrium point Hth was set from 1.1 to 2.0,
and the threshold entropy was set as follows:{

Hlow−th = Hth − ∆H
Hhigh−th = Hth + ∆H (11)

The other parameters were the same as those in the previous section. Each group of
experiments was simulated 1000 times, and we obtained the simulation results shown in
Figure 7.
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In Figure 7, the blue line segment represents the data obtained without noise, and the
red line represents the data obtained when there was noise interference. Figure 7a shows
the average of the source seeking time, and Figure 7b shows the variance in the source
seeking time.

It can be seen that a change in Hth had a significant impact on the performance of the
algorithm. When Hth was small, the algorithm was biased towards exploitation; when this
parameter was large, the algorithm was biased towards exploration. Overall, when the
algorithm was biased towards exploitation, the time consumption was significantly lower
than that when the algorithm was biased towards exploration. In combination with the
variance statistics, it can be seen that the time taken for source seeking was shorter and the
performance of source seeking was better in the interval Hth ∈ [1.3, 1.6]. When Hth ≥ 1.6,
the source seeking effect was better than that in the environment without noise.
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5.3.2. Analysis of the Influence of ∆H

We set Hth = 1.4. According to Equation (10), the threshold entropy ∆H under different
conditions could be obtained. The other parameters were the same as those in the previous
section. Each group of experiments was simulated 1000 times, and the simulation results
are presented in Figure 8.
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In Figure 8, the blue line segment represents the data obtained without noise, and the
red line represents the data obtained when there was noise interference. Figure 8a shows
the average of the source seeking time, and Figure 8b shows the variance in the source
seeking time.

It can be seen that a change in ∆H had a significant impact on the performance of
the algorithm. When the value of ∆H was small, the algorithm search bias was more
binding; when the value of ∆H is large, the weaker the constraint on the search bias of the
algorithm. In an implicit information field, the behaviors of source seeking need to explore
the environment. However, when the constraint is strong, the algorithm cannot easily
explore the surroundings. Therefore, the duration of and variance in source seeking were
large. Then, with the continuous increase in ∆H, the constraint of the threshold entropy on
the algorithm bias was weakened, the source searching process depended on the search
bias regulation of the evolutionary algorithm itself, and the time taken for source seeking
tended to be constant. On the whole, the source searching performance was better when
∆H ∈ [0.4, 0.7].

5.3.3. Analysis of the Influence of Search Bias Migration Speed

After a thorough discussion, we investigated the impact of the search bias direction
and binding force on the source detection performance. Moving forward, we will delve
into the influence of the search bias migration rate on the source finding efficacy. In the
BSS searching algorithm-based search process, the population migration rate could be
represented by the change in distribution entropy H, which was reflected in the increase in
distribution probability for new optimal solutions through breeding operations, leading to
population migration towards new modes. If the migration rate was too high, the algorithm
could become trapped in local convergence, while if it was too low, tracking the solution
curve over time became challenging. However, appropriate migration rates could facilitate
the rapid movement of populations towards new modes. Among them, the migration rate
of the population was determined by the propagating operator Pb.

In order to assess the algorithm’s performance, it was imperative to compare its results
in a noise-free environment, a noisy environment, and under local extreme conditions.
Using digital simulation methods, we selected multiple values for the propagation op-
erator Pb ∈ [1, 25] and conducted 1000 simulation experiments. We then compared and
analyzed the source finding performance in different environments. Figure 9 shows the
simulation results.
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The statistical graph of the source search time is presented in Figure 9, where the red
line represents the simulation results under ideal conditions, the blue line represents the
simulation results with measurement noise, and the black line represents the simulation
results with local extreme values.

Figure 9a shows the average time spent. In all three environments, the source search
time decreased first and then increased with the increase in Pb. Figure 9b presents the
statistical outcomes of time variance D(k), indicating that the statistical results and trends
of both ideal and noisy environments were highly similar. The red and blue lines in
Figure 9b represent D(k) < 0.5× 106. In the local extreme environment, the time variance
showed a large change. In the range of Pb ≤ 5, the time variance first increased and then
decreased, and the maximum value exceeded 3.5× 106. In the Pb > 5 range, the time
variance D(k) was around 1× 106. If the Pb ∈ [1, 4) selection was too limited, the migration
speed of the population slowed down, resulting in poor information transmission and
increasing the time cost of source searching; with the increase in Pb ∈ [4, 8), the speed of
population migration was accelerated, enabling the timely tracking of the solution curve by
the population. At this stage, satisfactory results were observed in terms of source search
time and consistency. When Pb ∈ [8, 25] continued to increase, rapid population migration
resulted in search behaviors that were overly sensitive to environmental changes. Even
minor alterations could significantly impact the population and prolong the time required
to locate resources. The time spent on source searching was too long at this point, which in
turn reduced the variance in time consumption.

To enhance the efficiency of the source detection algorithm and integrate its perfor-
mance across all three environments, it is recommended to opt for propagating operator
Pb ∈ [4, 8].

5.3.4. Analysis of the Influence of Dθ

The sampling interval Dθ is the interval at which the feasible search direction θ is
sampled, and its value directly impacts the compression of the search space as well as the
variety and quantity of search behaviors. The appropriate selection of sampling interval
Dθ has a significant impact on the source search performance. This section explores how
the sampling interval affects the source search behavior.

From a theoretical perspective, the greater the range of selection for Dθ , the lower the
amount of information that can be acquired through search behavior. Meanwhile, the value
of Dθ determines the number of species in the population sample. A smaller Dθ leads to
a larger variety of search behaviors and an extended duration for exploring all accessible
spaces, which is not conducive to effective source searching behavior. However, if the
Dθ selection is excessively large, the amount of information obtained from a single-step
movement will be significantly less than that contained in the unexplored space. Therefore,
it was imperative to investigate the impact of sampling intervals on sourcing behavior.

There exists a causal relationship between the sampling interval Dθ and the species
M of population samples, which can be described as MDθ = 2π. Simultaneously, the
probability of population sample selection is subject to alteration in response to variations
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in population size, Npop. Therefore, we bifurcated the population and sample sizes into
two categories to conduct distinct analyses of their effects on navigation performance.

(1) Impact of Dθ on source localization performance in the presence of constant

Figure 10 presents the statistical data of 1000 simulation results in three different
environments under varying values of Dθ . Specifically, Figure 10a displays the mean source
search time k, while Figure 10b illustrates the variance in source search time D(k).
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As depicted in Figure 10, for a given population size, distinct Dθ values exhibited
varying effects on source detection performance across the three environments.

Compared to a noise-free environment, the time required for source searching in noisy
and local minimum environments increased overall from a time-consuming perspective.
(1) In a noisy environment, the increase in Dθ did not significantly decrease k, and the time
spent on source finding remained relatively stable. In terms of time variance statistics,
the increase in Dθ did not result in significant changes to k’s time variance, and overall k
exhibited a relatively stable trend. (2) In the local extreme environment, when between
Dθ ∈ [1◦, 40◦], the average time k consumed in this environment was close to the k in the
noise environment. However, significant increases were observed in Dθ > 40◦, k and D(k)
during the period under study. In the context of time variance statistics, D(k) exhibited a
significantly higher value in the local extreme value environment compared to the other two
environments. Furthermore, there was a significant increase in D(k) following Dθ > 40◦.

(2) Influence of Dθ on source search performance with equal sample size

To further investigate the impact of the sampling interval on the algorithm, a statistical
analysis was conducted on the source detection time and time variance across different
population sizes. Npop = 4× 360

◦
/Dθ was established with an initial population size of

four samples. As Dθ increased, the population size Npop decreased. The sampling interval
fell within the Dθ ∈ [1◦, 60◦] range, and 1000 independent experiments were conducted at
multiple value positions to determine the mean time k and time variance D(k). The results
are presented in Figure 11 below.

As depicted in Figure 11a, the average time consumption k exhibited a decreasing
trend with the increase in Dθ in both the environment with noise and that without noise.
Upon reaching Dθ > 30

◦
, k converged towards the respective stable values.

As depicted in Figure 11b, after the occurrence of Dθ > 40
◦
, the time variance D(k) in

the local extreme value environment experienced a sharp increase, leading to a deteriora-
tion in the consistency of the sourcing behavior. The performance of the BSS navigation
algorithm remained consistent across all three environments.
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(a) The average source seeking time; (b) the variance in source seeking time.

Based on the above analysis, it can be seen that:

(1) Under the circumstance of an equal population size, altering the sampling interval
did not significantly impact the performance of the source detection algorithm.

(2) With equal sample sizes, changes in the sampling intervals significantly impacted
the performance of the source finding algorithms. Within a certain range, increasing
the sampling interval could greatly reduce the navigation time while diminishing the
effect of Dθ ∈ [30◦, 90◦].

Combined with the analysis of the two sets of comparative experiments, it is recom-
mended that Dθ ∈ [30◦, 60◦] be adopted as the sampling interval and Dθ = 30◦ be utilized
in subsequent studies.

5.3.5. Analysis of the Influence of Npop

From a theoretical perspective, the algorithm’s search inertia increases as the popu-
lation size Npop grows larger, resulting in reduced sensitivity to environmental changes.
Conversely, a smaller Npop leads to lower search inertia and greater sensitivity to environ-
mental factors. Therefore, this section will employ numerical simulations to analyze how
the population size influenced the source searching behavior.

In a noise-free environment, the impact of different population sizes on the source
search performance was simulated and analyzed by measuring the noise levels and extreme
local conditions. The statistical results are presented in Figure 12 below.
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As depicted in Figure 12, the algorithm exhibited similar source search time char-
acteristics in both noiseless and locally extreme environments under identical sampling
intervals, with an increase in population size leading to a corresponding increase in source
search time. In a noisy environment, the noise resistance performance was weaker with
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smaller population sizes, particularly for population size Npop = 1, where the time spent in
the noisy environment was nearly 2.6 times longer than in the environment without noise.
When the population size fell within the range of Npop ∈ [20, 70], the variance in sourcing
time across the three environments exhibited a high degree of similarity.

Furthermore, the algorithm’s ability to suppress noise was evaluated and compared
in both a noisy environment and a noise-free environment in terms of source localization
time. The simulation results are presented in Figure 13 below.
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In Figure 13, the vertical axis is the ratio Bk of the mean time k in the environment with
noise to the mean time k in the environment without noise. The closer the ratio approached
to 1, the less susceptible the source finding algorithm was to population-size-induced noise.

As depicted in Figure 13, Npop = 20 served as the conspicuous demarcation point, and
the mean time consumption decreased rapidly with an increase in population size within
the Npop = 20 range. In contrast, the average time consumption remained relatively stable
at approximately 1.2 within the Npop ≥ 20 interval.

In general, the size of the population had a certain impact on the source finding
performance. Specifically, when the population size reached a certain level, the time
required for source finding was positively proportional to the population size, while the
noise resistance performance improved. Therefore, it is recommended to choose between
Npop ∈ [20, 70].

6. Conclusions

This paper studied an implicit information field source seeking method from the angle
of search behavior bias. A balanced searching strategy was proposed, which introduced the
search path into the solution of the source seeking problem, constructed an evolutionary
population with feasible search behaviors as the individual, introduced the metric of the
search bias of distribution entropy, and designed a balanced searching strategy combining
evolutionary optimization and the source seeking process. Through the performance
analysis and simulation experiments, the validity and rationality of the method were
verified. In this research, insufficient attention was given to implicit information fields
beyond magnetic fields. Therefore, hidden information fields such as odor and gravity will
be compared in order to identify their sources. Additionally, the algorithm still exhibited
mutual coupling among certain parameters, necessitating further analysis and research into
the impact of additional parameter settings on the algorithm’s source finding performance.
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