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Abstract: Voiceprint recognition can extract voice features and identity the speaker through the
voice information, which has great application prospects in personnel identity verification and voice
dispatching in the electric industry. The traditional voiceprint recognition algorithms work well in a
quiet environment. However, noise interference inevitably exists in the electric industry, degrading
the accuracy of traditional voiceprint recognition algorithms. In this paper, we propose an enhanced
deep residual shrinkage network (EDRSN)-based voiceprint recognition by combining the traditional
voiceprint recognition algorithms with deep learning (DL) in the context of the noisy electric industry
environment, where a dual-path convolution recurrent network (DPCRN) is employed to reduce
the noise, and its structure is also improved based on the deep residual shrinkage network (DRSN).
Moreover, we further use a convolutional block attention mechanism (CBAM) module and a hybrid
dilated convolution (HDC) in the proposed EDRSN. Simulation results show that the proposed
network can enhance the speaker’s vocal features and further distinguish and eliminate the noise
features, thus reducing the noise influence and achieving better recognition performance in a noisy
electric environment.

Keywords: voiceprint recognition; deep learning; deep residual shrinkage network; convolutional
block attention mechanism; hybrid dilated convolution

1. Introduction

With the rapid development of the social economy and urban construction, the high
efficient operation and management of the electric industry becomes more and more im-
portant, and the limitations of the traditional electric industry are gradually appearing.
Nowadays, intelligent electricity is widely and rapidly developing. It is a new generation
of electric systems based on traditional electricity and it integrates new materials, new
equipment, and new technologies, such as information and control technology and artifi-
cial intelligence (AI), which has the characteristics of having a high informatization and
automation and which ensures an efficient and reliable operation of electric systems.

As the scale of the electric industry gradually expands, its applications tend to be
extensive, and electricity dispatching plays an important role among them. At present, the
dispatching commands are mainly given by human voice, which makes the dispatching
system have certain security risks due to the lack of personnel verification and the inaccurate
voice recognition. Voiceprint recognition [1], as a biometric verification method, can
improve the voice recognition security even in the voice-dispatching scenario. In electric
communication systems, voice dispatching and identity authentication can be implemented
by voiceprint recognition technology, so that the dispatching commands can be given
without additional identity authentication steps, which ensures the reliability and security
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of electricity dispatching. However, due to the presence of large mechanical noise and an
electromagnetic noise environment in the electric industry [2], the voice signals are easily
disturbed, which significantly reduces the accuracy of traditional voiceprint recognition
algorithms. As a main branch of AI, deep learning (DL) can be applied to the electricity
dispatching system because of its inherent characteristics, especially for noisy scenarios.
Combined with voiceprint recognition technology, we can use DL to extract the noise
features and reduce the voice noise and then feed the noise-reduced voice signals into the
designed voiceprint recognition network to realize highly reliable dispatcher authentication
and improve the security of electricity dispatching. With the development of DL techniques,
more and more network models have been proposed for speaker recognition. However,
the following problems still exist in the field of DL:

(1) The continuous deepening of the model leads to the degradation of the network
performance.

(2) The error gradient used to update the network weights keeps increasing or decreasing,
which results in a gradient explosion and gradient disappearance.

(3) A low accuracy for short-time speech recognition and a low recognition accuracy in
noisy scenarios.

(4) A poor robustness.

To solve the above problems in the noisy electric industry, this paper takes full advan-
tage of DL and combines it with traditional voice preprocessing methods to improve the
recognition accuracy. Our contributions are summarized below.

(1) We divide the voiceprint recognition in a noisy environment into two main parts:
the first part performs the noise reduction on the voice dataset, and the second part
aims to realize identity matching by voiceprint recognition. In the noise reduction
part, we model the voice signal features using a dual-path convolutional recurrent
network (DPCRN) [3] in a noisy electric environment and set the model learning
target as the complex ratio mask (CRM). First, we use the spectrogram of the noisy
voice signals as the inputs to the encoder. Subsequently, an RNN is used in the
frequency domain to capture the long-term speech’s harmonic correlations [4]. Finally,
the real and imaginary parts of the CRM are output at the decoder. The learning
objective is optimized by a signal approximation (SA), and the multiplication of the
estimated CRM with the noisy signal spectrogram is performed to achieve the noise
reduction process.

(2) For the voiceprint recognition, an enhanced deep residual shrinkage network (EDRSN)
is proposed in a noisy electric environment. The proposed EDRSN scheme recon-
structs the network structure based on a deep residual shrinkage network (DRSN) [5]
and combines the convolutional block attention mechanism (CBAM) [6] and the
hybrid dilated convolution (HDC) [7]. Meanwhile, we combine the EDRSN with
traditional voice processing methods to accomplish the voiceprint recognition in noisy
environments. After the noise reduction by DPCRN, we enhance the voice segments
in the voice signals by pre-emphasizing and eliminating the silent segments by an
endpoint detection to facilitate the extraction of voiceprint features. Finally, the soft
thresholding mechanism of EDRSN is utilized to further distinguish and eliminate
the noisy features, and the CBAM and HDC are taken to extract the effective vocal
features and improve the recognition accuracy.

(3) Simulation results are provided to verify the accuracy of the proposed scheme in voice
recognition. Based on the comparison of the time–frequency spectrograms before and
after noise reduction, it is shown that the DPCRN is able to reduce the background
noise in the voice signals. Furthermore, numerical results show that the proposed
EDRSN model has a better accuracy in voiceprint recognition than the other neural
network models while ensuring a lower complexity.

The remaining sections of this paper are organized as follows. In Section 2, we present
some related work in the field of voiceprint recognition. In Section 3, we introduce the
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noise reduction scheme for voice signals, including the DPCRN model and the principle
of noise reduction. In Section 4, the preprocessing and feature extraction process of the
voiceprint recognition are given, followed by the identity recognition method. In Section 5,
the voiceprint recognition network EDRSN is proposed, and its basic composition and
structural parameters are presented. The simulation results and conclusions of this paper
are presented in Sections 6 and 7, respectively.

2. Related Work

A method for speech feature extraction, linear prediction coding (LPC), was presented
in [8], where the linear sampling prediction was obtained a linear fitting and local minimiza-
tion algorithm. In ref. [9], Bing-Hwang Juang first used Gaussian mixture models (GMM)
to represent the relationship between hidden Markov models (HMM) states and acoustic
inputs. Ref. [10] provided a joint factor analysis (JFA) method, which further modeled the
space where the mean supervector obtained by the GMM-based method was located to
compensate for the effects of channel variation. However, this model still had a very high
complexity. A Gaussian mixture model–universal background model (GMM-UBM) was
proposed in [11] for speaker verification, and the proposed system included preprocessing,
feature extraction, modeling and classification stages. Pitch frequencies and Mel frequency
cepstrum coefficients (MFCC) were used as feature vectors. It utilized a large quantity of
data for the computation and had a high computational complexity, but its recognition
accuracy was not sufficient.

At present, DL is widely used in the field of voiceprint recognition and has achieved
good results due to its operation mechanism. D-vector was proposed by Google in 2014 to
convert the training process into a classification problem [12], which took the hidden layer
output of the neural network instead of the I-Vector method and proved the feasibility
of using a DL method in voiceprint recognition. A recurrent neural network (RNN) [13]
takes the sequence data as its input and recurs in the direction of sequence evolution,
where all the nodes (recurrent units) are connected in a chainlike manner. RNNs are
able to handle speech sequences with variable length well and are widely used in speech
recognition. Nowadays, RNNs are also applied in the field of voiceprint recognition. D.
Snyder et al. used the time-delay neural network to extract the frame-level features and the
aggregated statistical pooling layers to extract the utterance-level features in [14], where the
probabilistic linear discriminant analysis (PLDA) was used for back-end scoring, and offline
data were added for data enhancement. The overall effectiveness of the model surpassed
that of the I-Vector scheme. The work in [15] replaced the traditional Gaussian mixture
model (GMM) with a deep neural network (DNN) and proposed a new GMM-derived
(GMMD) algorithm to train the DNN acoustic model. This work took each voice frame of
the speaker as the input and took a hidden layer to extract the speaker’s voice features for
regularization with a d-vector vocal recognition model. The analysis and comparison of
the related works is shown in Table 1.

Table 1. Analysis of the related works.

Algorithms Technologies Datasets Results

GMM-UBM GMM TIMIT corpora Accuracy: 80.83%
JFA GMM NIST EER 1: 5.2%

RNN DL Self-collected datasets FAR 2: outperformed GMM by 26%
d-vector DNN DL Self-collected datasets EER: outperformed i-vector by 14%

End-to-end DNN DL US English speech EER: outperformed i-vector by 29%
GMMD DNN DL CHiME WER 3: outperformed baseline by 16%

1 Equal error rate (EER). 2 False accept rate (FAR). 3 Word error rate (WER).

3. Noise Reduction

The noise interference in the electric industry may affect the voiceprint information
and degrade the recognition accuracy. To reduce the impact of noise on the performance
of voiceprint recognition and overcome the problems of incomplete or nonideal noise
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reduction of traditional noise elimination methods, we employed a DPCRN to separate the
clean speech from the background interference and increase the speech intelligibility and
perceptual quality. The DPCRN model consists of an encoder, a two-path RNN module,
and a decoder, as shown in Figure 1. The core of DPCRN is an RNN structure, which
has two types of RNNs, intrablock and interblock RNNs. The intrablock RNN is used to
simulate the spectrum of a single time period, and the interblock RNN is used to simulate
the change in the spectrum over time.

STFT Encoder
RNN 

Module
Decoder ISTFT

Noise-reduced 

Voice

Conv. Layers Transposed Conv. 

Layers

Noisy Voice

DPCRN

Figure 1. Noise reduction process of DPCRN.

3.1. Noise Reduction Theory

For a voice containing noise, its time domain expression can be expressed as

x(t) = s(t) + n(t), (1)

where s(t) and n(t) represent the pure voice and the noise in the time domain, respectively.
Then, the short-time Fourier transform (STFT) is used to convert the time-domain

noisy voice signal x(t) into the time–frequency-domain signal X(t, f ) as

X(t, f ) =
∫ ∞

−∞
x(τ)h(τ − t)e−j2π f τdτ, (2)

where h(t) is the STFT analysis window function. The time-frequency domain expression
of Equation (1) becomes

X(t, f ) = S(t, f ) + N(t, f ), (3)

where S(t, f ) and N(t, f ) are the STFTs of the pure voice s(t) and the noise n(t) at time t
and frequency f , respectively. In order to recover the pure voice signal, we can make the
estimation by a CRM as

M(t, f ) = Mr(t, f ) + jMj(t, f ), (4)

where M(t, f ) is the complex signal and consists of a real part Mr(t, f ) and an imaginary
part Mj(t, f ).

Then, we can obtain the recovered voice signal Ŝ(t, f ) by multiplying M(t, f ) with the
noisy voice signal X(t, f ) as

Ŝ(t, f ) = X(t, f )�M(t, f ), (5)

where � denotes the element-by-element multiplication of two vectors. Finally, the noise-
reduced voice signal in the time domain obtained through the inverse short-time Fourier
transform (ISTFT) can be expressed as

ŝ(t) =
∫ ∞

−∞
Ŝ(t, f )ej2πt f d f . (6)

3.2. Noise Reduction Process

Unlike the traditional noise reduction modeling method in the time domain, the
DPCRN utilizes the harmonic structure of the voice signals and models it based on fre-
quency characteristics, thus providing better speech noise reduction performance. The
RNNs in DPCRN can overcome the disadvantages of a partial absence of information in
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convolutional neural networks (CNNs) [16] and can capture the harmonic correlation of
voice signals over a long time.

We feed the noisy voice signals into the DPCRN and send its real and imaginary parts
to the encoder as two data streams. The encoder employs a two-dimensional convolutional
layer to extract the voice features from the noise spectrogram and compress the feature
resolution. The decoder is symmetric with respect to the encoder and uses the transposed
convolutional layers to restore the low-resolution features to their original size. The DPCRN
outputs a CRM in the last transposed convolutional layer by learning the voice features
and using the signal approximation algorithm. Finally, the noise is removed by CRM and
the time-domain noise-reduced voice signals can be obtained by an ISTFT.

4. Voiceprint Recognition

After the processing of DPCRN, we can obtain the noise-reduced voice signals and
start the voiceprint recognition process. The purpose of voiceprint recognition is the
identification of the speaker based on the uniqueness of the voiceprint features due to
the specific vocal fold construction. The process of voiceprint recognition consists of four
parts: preprocessing, audio feature extraction, voiceprint feature extraction, and identity
evaluation. Among them, preprocessing is a necessary prerequisite for audio feature
extraction, and these two parts are usually referred to as preprocessing in voiceprint
recognition. Therefore, we introduce the process of voiceprint recognition from three
aspects: preprocessing, voiceprint feature extraction, and identity recognition evaluation,
as shown in Figure 2.

Noise-reduced 

Voice Datasets

Pre-

emphasis

Framing 

and 

Windowing

Endpoint 

Detection

Preprocessing

EDRSN

MFCC

Voiceprint Feature Extraction

Speaker

Voice

Speaker

Voice

Identity Recognition 

Evaluation

Figure 2. Diagram of the voiceprint recognition system.

4.1. Preprocessing

The preprocessing of the voice signals has three main steps, including a pre-emphasis,
framing and windowing, and endpoint detection [17].

When a speaker makes a sound, the voice is radiated by the mouth and lips. Mean-
while, the air is used as a medium in which the voice signals consume energy as they travel.
The higher the frequency of the voice signals, the greater the energy loss. Therefore, a
pre-emphasis is needed for the processing of voice signals, which can alleviate the effect of
voice radiation to a certain extent and compensate for the loss of high-frequency voice sig-
nals. In voiceprint recognition, a high-pass filter is generally used to achieve this purpose,
which can be written as

H(Z) = 1− µZ−1, (7)
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with µ ∈ [0.9, 1]. If the input signal is x[n], the output y[n] through the filter can be
expressed as

y[n] = x[n]− µx[n− 1]. (8)

Framing is the process of splitting the voice signals in very small intervals and treating
these intervals as a smooth signal. This is because in the feature extraction process of
voiceprint recognition, smooth voice signals are needed for the Fourier transform, while
pre-emphasized voice signals are fluctuating. When we split the voice signals into voice
frames with time intervals of about 20 ms, each small segment can be considered to be
smooth. The frame shift is the difference between the starting positions of two adjacent
voice frames, and the ratio of the frame shift to the frame length is generally less than
one-half. The voice frame’s splitting diagram is shown in Figure 3.

voice signal

kth frame

(k+1)th frame

(k+2)th frame

length of frame

frame shift

Figure 3. Voice framing model.

After framing, there exist discontinuities in the starting and ending positions of
the signal, and if the feature extraction is performed directly on the signal by a Fourier
transform, a Gibbs phenomenon will occur and cause spectral loss. To deal with the above
problems, we can perform a windowing operation to multiply the original voice signals
with the window function. In the process of voiceprint recognition, we generally take the
Hemming window [18] as

ω(n) = [0.54− 0.46 cos(
2πn

N − 1
)]RM(n), (9)

where M is the length of the Hemming window function and RM(n) is the rectangular
window that can be denoted as

RM(n) =
{

1, 0 ≤ n ≤ M− 1
0, otherwise.

. (10)

Finally, we need to perform the endpoint detection on the voice signals, which aims to
distinguish the silent part from the nonsilent part, so as to filter the invalid information
in the voice signals and keep the valid one. The endpoint detection marks the start and
end points of the voice segments, removes the silent and noisy parts, and gets the valid
voice information.

In this paper, a double-threshold method for endpoint detection was used, which
contained a short-time energy detection and short-time overzero detection to further
distinguish the voice segment from the noise segment and to distinguish the voice segment
from the silent segment, respectively. For the short-time energy of a voice signal y at a
moment n, we can consider it as the sum of the squares of the samples of the frame, which
can be expressed as

En =
n

∑
m=n−(N−1)

[y(m)ω(n−m)]2 (11)
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We define the short-time overzero as the number of voice signals passing through the
zero value per second. When the window function starts from zero, the short-time per-zero
rate Zn can be calculated as

Zn =
∞

∑
m=−∞

|sgn[y(m)]− sgn[y(m− 1)]|ω(n−m) (12)

where sgn() is the step function, which can be expressed as

sgn(n) =
{

1, n ≥ 0
−1, n < 0

(13)

Based on the characteristic parameters, such as short-time energy and short-time
overzero rate, we can set the high and low thresholds to detect the signal changes and
complete the endpoint detection process.

4.2. Voiceprint Feature Extraction

When the preprocessing process is completed, the voice signals become voice frames
with a fixed time interval, which subsequently need to be subjected to a voiceprint feature
extraction, and their features are used as the input to the neural network. In the feature
extraction, acoustic features are commonly obtained by typical methods, such as MFCC,
linear predictive cepstral coefficients (LPCC), and a spectrogram. In this paper, we adopted
the speech spectrogram method in the voiceprint recognition process and applied the
discrete Fourier transform (DFT) [19] for the voice frames as

x[k] =
N−1

∑
n−0

x[n]e−j 2π
N nk, 0 ≤ k ≤ N − 1, (14)

where x[k] is the frequency-domain signal and N is the length of the discrete signal x[n].
The STFT is generally used in the calculation of the time-frequency spectrum [20]. The

voice signals are split into many time segments with small time intervals, and the STFT is
used in each time segment as

+∞

∑
n=−∞

x(n)ω(n−mLR)e−jωn, (15)

where x(n) is a continuous voice signal, m is the minimum length interval of the window,
and LR is the window movement distance.

In Section 4, we describe the neural network designed for the extraction of the
voiceprint features in detail.

4.3. Identity Recognition Evaluation

We input two voice signals and obtained their acoustic features by the speech spectro-
gram method. With these feature data, the diagonal cosine value of the two voice signals
can be calculated as [21]

cos θ =

n
∑

i=1
(s1,i × s2,i)√

n
∑

i=1
s2

1,i

√
n
∑

i=1
s2

2,i

, (16)

where n represents the number of input voice signal pairs, s1,i is the first signal of the ith
pair of the voice signals, and s2,i denotes the second signal of the ith pair of the voice signals.

The obtained cosine value cos θ can be used to evaluate their similarity. We set the
threshold of the similarity to be 0.7, and if cos θ > 0.7, the two voice signals can be
considered as emitted by the same speaker, otherwise they are from two different speakers.
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5. Enhanced Deep Residual Shrinkage Network

In this section, we redesign the network structure based on DRSN and introduce the
CBAM module and HDC to build the EDRSN. By employing the EDRSN for voiceprint
recognition, we can further enhance the extraction capability of voiceprint features.

5.1. Deep Residual Shrinkage Network

To solve the problems in Section 1, a constant mapping was considered in CNNs [22].
In 2017, Li et al. used residual networks for acoustic recognition, proposed a deep residual
convolutional neural network (Res-CNN) to extract voiceprint features, and then trained
the model using a triplet loss method based on the cosine similarity. Compared to the
DNN-based i-vector recognition method, its recognition accuracy was improved by 60% on
a text-independent dataset [23].

The DRSN is an optimization of the residual network (ResNet) [24], which introduces
a soft thresholding mechanism, while retaining the residual module and the constant path
in ResNet. As a classical denoising method, the input signal is firstly decomposed by the
convolutional layers, then the signal is filtered by automatically generated thresholds, and
finally, the filtered signal can be reconstructed. Zhao et al. introduced the soft thresholding
method in the voiceprint fault diagnosis [25] and proved that the DRSN model with soft
thresholding improved the accuracy performance by 2% over the ResNet model, due to the
fact that the soft thresholding could ignore the noise-related features contained in different
channels of the feature map. The basic structure of the residual shrinkage module is shown
in Figure 4.

Input Feature

absolute + GAP

FC

BN + ReLU + FC

Sigmod

C W H

C W H

X

X

1 1C

1 1C

1 1C

1 1CX

Output Feature

Figure 4. Diagram of the deep residual shrinkage module.

5.2. Convolutional Block Attention Mechanism Module

The core of the CBAM module is to focus on the key features and ignore the irrelevant
features. As an attention module applied to feedforward neural networks, the CBAM
module serially incorporates a channel attention module (CAM) and a spatial attention
module (SAM) to perform the feature extraction in two independent dimensions for the
adaptive feature optimization. The CBAM module is a lightweight attention module
that can be easily integrated into the DRSN architecture, while reducing the use of large
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numbers of parameters and the complexity of the model. It was discussed in [26] how
the CBAM was able to improve the feature extraction without increasing the complexity,
outperforming the traditional SE attention module with a 22.66% error in ImageNet-1K
classification experiments [27]. The structure of the CBAM module is shown in Figure 5.

Input Feature

Channel 

attention module 

Spatial attention 

module

Output Feature

Figure 5. Structure of CBAM Module.

In the CAM, the input feature map X is first subjected to a global maximum pooling
and a global average pooling operation. Then, the results are fed into a two-layer multilayer
perceptron (MLP), and the output results are summed based on the elementwise summation
operation. Finally, the obtained results are fed into the activation function to obtain the
feature map of the channel attention Mc(X) as

Mc(X) = σ
(

W2

(
W1

(
Xc

avg

))
+ W2(W1(Xc

max))
)

, (17)

where σ is the sigmoid activation function, W1 is the weight matrix of the first layer of
the MLP, and W2 denotes the weight matrix of the second layer of the MLP. Xc

max and
Xc

avg are the max pooling and global average pooling operations on X in the channel
dimension, respectively.

For the SAM, the feature map output Y from CAM is used as its input. First, the
channel-based global max pooling and the global average pooling operations are performed
on the input Y. Then, the two feature maps are concatenated according to the multilayer
fusion operation, and the result is further fed into the convolutional layer for dimensionality
reduction. Finally, the reduced-dimensional result is passed through the activation function
to obtain the feature map of the spatial attention Ms(Y) as

Ms(Y) = σ
(

conv7×7
([

Ys
avg; Ys

max

]))
, (18)

where conv7×7 represents a convolution operation with a kernel size of 7 × 7, Ys
max and

Ys
avg denote the max pooling and global average pooling operations on Y in the spatial

dimension, respectively.

5.3. Hybrid Dilated Convolution

In the design of the EDRSN, the use of multiple convolutional layers subsequently
led to a loss of local information and a resolution degradation of the input information.
To cope with these issues, we introduced a null convolution in the convolutional layer by
changing the size of the perceptual field. In the convolutional layer, we can change the
perceptual field by setting the size of the dilation rate. Taken Figure 6 as an example, for a
3 × 3 convolutional kernel with a dilation rate of 1, the perceptual field size is the same as
the original convolutional kernel. Therefore, for successive convolutional layers in a neural
network, increasing the dilation rate can increase the receptive field size. However, the
continuous increase in the dilation rate may lead to data loss due to the kernel discontinuity.
In this case, we can apply an HDC so that the dilation rate of the superimposed convolution
cannot get a factor greater than 1.
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dilation rate = 2

dilation rate = 1

Figure 6. Introduction diagram of the dilated convolution.

Figure 7 describes the architecture of the proposed EDRSN in detail. We improved
the network structure based on a DRSN and introduced a CBAM and an HDC to form
the EDRSN. The EDRSN consisted of one input layer, three enhanced residual shrinkage
block units (ERSBU), one average layer, one affine layer, and one output layer. As shown
in Table 2, each ERSBU contained three convolutional layers, two CBAM modules, one
residual path, and one soft-threshold module. We put the CBAM module between every
two convolutional layers as a way to enhance the extraction of acoustic features and set the
dilation rates of the three consecutive convolutional layers to be 1, 2, and 5, respectively, to
expand the perceptual field. Finally, the noise effect on the voiceprint was further reduced
through the soft thresholding. We set three consecutive ERSBUs, added an average layer as
well as a fully connected layer at the end of the network, and output the recognition results
through the output layer.

Input layer

ERSBU-64

ERSBU-128

ERSBU-256

Average + Affine

Conv layer 3×3

Conv layer 3×3

absolute + GAP

FC

BN + ReLU + FC

Sigmod

Identity

Path

Conv layer 5×5

CBAM

CBAM

ERSBU

Output

Figure 7. Structure of the EDRSN.
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Table 2. Architecture of the EDRSN.

Layer Structure Stride Dim

Input - - -

ERSBU-64 5 × 5, 64 2 × 2 2048
[3 × 3, 64] × 2 1 × 1 2048

ERSBU-128 5 × 5, 128 2 × 2 2048
[3 × 3, 128] × 2 1 × 1 2048

ERSBU-256 5 × 5, 256 2 × 2 2048
[3 × 3, 256] × 2 1 × 1 2048

Average - - 2048
Affine 2048 × 256 - 256

K.l2normalize - - 256
Output - - -

6. Simulation Results

In this section, we provide the simulation results of the proposed voiceprint recognition
system in a noisy electric environment. In the experiments, we collected 5× 104 voice
data from 1000 speakers. First, we demonstrate the noise cancellation effect of the DPCRN.
Taking a segment of one voice signal as an example, we show the spectrum diagrams of the
voice signal in the time-frequency domain before and after noise reduction. Comparing
Figure 8a and Figure 8b, we can see that for the regular mechanical noise in the electric
industry, the curve of the voice signal becomes smoother after DPCRN processing, and the
noise effect is significantly reduced.

(a) (b)

Figure 8. Comparison of voiceprint images before and after noise reduction. (a) Time-domain
waveform and spectrogram of a noisy voice. (b) Time-domain waveform and spectrogram of a
noise-reduced voice.

After the noise reduction completed, we performed identity matching based on the
voiceprint information. First, we created a data list labeled by the speaker index. Then, we
processed the voice signals by removing the voice segments with a mute length greater
than 1.5 s through the endpoint detection, making voice enhancement for the rest of the
data, and converting the voice signals to the amplitude spectrum by an STFT. Finally, the
voice training set and the validation set were input into the EDRSN for network training,
and the model was saved at the end of each training round until the end of training. We
set the batch size to 20 and the number of epochs to 50, and the detailed parameters of the
EDRSN are shown in Table 3.
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Table 3. Simulation Parameters.

Parameter Value

Input Shape (160, 64, 1)
Size of batch 20

No. of epochs 50
Learning rate 0.001

Optimization function Adam
Loss function Triplet

Moreover, we used the triplet loss [28] as the loss function for training different speak-
ers’ voiceprints. The triplet loss has three inputs, a segment of a particular speaker’s voice, a
segment of that speaker’s voice, and a segment of another speaker’s voice. We represented
these three inputs as an anchor, a positive example, and a negative example. The triplet loss
calculates the intersample similarity by continuously optimizing the distance between the
anchor and the positive example so that it is smaller than the distance between the anchor
and the negative example. In the voiceprint recognition, we used the cosine similarity, as
in Equation (13), between the examples to represent the intersample distance. The triplet
loss is shown as L = max

(
cosap − cosan + α, 0

)
, where cosap is the cosine similarity of the

anchor and the positive example, and cosan is the cosine similarity of the anchor and the
negative example. To prevent the model from training the distance from the anchor point to
the positive and negative examples to be very similar, we set a minimum bound α between
the similarities. Thus, we could correctly distinguish the positive and negative examples of
voice signals and prevent the case where cosap = cosan.

For N triplets, the loss function can be expressed as

Loss =
N

∑
i=1

max
(
cosap,i − cosan,i + α, 0

)
, (19)

where cosap,i is the distance between the anchor and the positive example in the ith triplet,
and cosan,i is the distance between the anchor and the negative example in the ith triplet.

The number of model parameters of the CNN, Res-CNN [29], and the proposed
EDRSN are shown in Table 4. It can be seen that the proposed EDRSN used the least
number of parameters. The CBAM module in the EDRSN was a lightweight attention
module and only slightly increased the number of model parameters.

In addition, we give the loss, accuracy, and F-measure performance comparison of
the above models in Table 5. The experiment results showed that the proposed EDRSN
scheme enhanced the extraction of vocal features thanks to the use of the CBAM and HDC.
Meanwhile, the utilization of the soft thresholding reduced the noise interference on the
voice signals. As seen from Table 5, the EDRSN scheme achieved the minimum training
loss during the model training process. Its training accuracy exceeded 96%, which was
much better than the Res-CNN and CNN schemes and reflected its obvious advantages in
voiceprint recognition. Meanwhile, the size of the F-measure indicated the degree of model
fit, and we found that the EDRSN model with a CBAM also achieved the best model fit.

Table 4. Comparison of model parameters.

Models Parameters Trainable Parameters Nontrainable Parameters

CNN 4.936 M 4.926 M 0.010 M
Res-CNN 4.936 M 4.926 M 0.010 M
EDRSN 3.804 M 3.800 M 0.004 M

EDRSN + CBAM 3.849 M 3.845 M 0.004 M
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Table 5. Comparison of model performance.

Models Loss Accuracy F-Measure

CNN 0.7629 86.54% 0.7124
Res-CNN 0.3507 92.38% 0.7799
EDRSN 0.2146 94.83% 0.8235

EDRSN + CBAM 0.1785 96.02% 0.8462

The loss curves of the EDRSN and Res-CNN models are shown in Figure 9. The results
are from at most 10,000 iterations. From the above two figures, it can be seen that the
loss value of the EDRSN with 4000 iterations was similar to that of the Res-CNN with
8000 iterations, which indicated that the EDRSN model converged faster than the Res-CNN
model. Moreover, the loss value of the Res-CNN model became 1.21 after 10,000 iterations,
while it was 0.94 for the EDRSN model, which proved that the proposed EDRSN model
was more accurate.
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Figure 9. The loss curves of the Res-CNN and EDRSN models.

In Figure 10, we investigated the accuracy of three different models in voiceprint
recognition with the collected voice dataset. It is clearly seen that the EDRSN exhibits
a better accuracy than the Res-CNN. Meanwhile, the network converged faster and im-
proved the recognition accuracy to some extent due to the introduction of the CBAM in
the EDRSN, which also proves the superiority of the EDRSN and CBAM in voiceprint
recognition applications.
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Figure 10. The accuracy curves of EDRSN-CBAM, EDRSN and Res-CNN models.
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7. Conclusions

Voiceprint recognition is gradually being applied to daily life due to its unique ad-
vantages. Nowadays, researchers use neural networks such as CNNs, DNNs and ResNet
for voiceprint recognition. However, due to the special nature of the electric industry and
the complex noise in its working space, research on voiceprint recognition for the electric
industry has not yet been carried out. Therefore, it is meaningful and necessary to study a
high-accuracy recognition scheme for the noisy electric environment.

In this paper, we presented the process of voiceprint recognition. Firstly, considering
the noisy environment in the electric industry, we utilized the DPCRN to model the
harmonic structure of the voice signals for the problem of noise-induced recognition-
accuracy degradation. Secondly, we use traditional pre-emphasis, framing and windowing,
and endpoint detection steps to preprocess the voice signals. Finally, we improved the
network structure based on a DRSN and proposed an EDRSN-based voiceprint recognition
scheme. By further combining CBAM and HDC, our proposed EDRSN scheme achieved
better performance in terms of noise reduction and feature extraction. Simulation results
showed that our proposed EDRSN scheme could reduce the number of model parameters
and achieve a recognition accuracy of 96.02% , which was much higher than other schemes.

The training process of the proposed EDRSN and other networks is time-consuming. It
is necessary to study a low-complexity and lightened model in the future, while ensuring a
similar recognition accuracy. Moreover, to further improve the feature extraction capability
of the model, we plan to optimize the network structure by introducing other new attention
mechanisms and loss functions for better performance.
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