
Citation: Cheng, Y.; Chen, W.; Fan,

W.; Huang, W.; Yu, G.; Liu, W.

IoTFuzzBench: A Pragmatic

Benchmarking Framework for

Evaluating IoT Black-Box Protocol

Fuzzers. Electronics 2023, 12, 3010.

https://doi.org/10.3390/

electronics12143010

Academic Editor: Elif Bilge Kavun

Received: 19 June 2023

Revised: 5 July 2023

Accepted: 8 July 2023

Published: 9 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

IoTFuzzBench: A Pragmatic Benchmarking Framework for
Evaluating IoT Black-Box Protocol Fuzzers
Yixuan Cheng 1,2, Wenxin Chen 1,2, Wenqing Fan 1,2, Wei Huang 1,2, Gaoqing Yu 1,2 and Wen Liu 1,2,*

1 State Key Laboratory of Media Convergence and Communication, Communication University of China,
Beijing 100024, China; yixuancheng@cuc.edu.cn (Y.C.)

2 School of Computer and Cyber Sciences, Communication University of China, Beijing 100024, China
* Correspondence: lw8206@cuc.edu.cn

Abstract: High scalability and low operating cost make black-box protocol fuzzing a vital tool for
discovering vulnerabilities in the firmware of IoT smart devices. However, it is still challenging
to compare black-box protocol fuzzers due to the lack of unified benchmark firmware images,
complete fuzzing mutation seeds, comprehensive performance metrics, and a standardized evaluation
framework. In this paper, we design and implement IoTFuzzBench, a scalable, modular, metric-
driven automation framework for evaluating black-box protocol fuzzers for IoT smart devices
comprehensively and quantitatively. Specifically, IoTFuzzBench has so far included 14 real-world
benchmark firmware images, 30 verified real-world benchmark vulnerabilities, complete fuzzing
seeds for each vulnerability, 7 popular fuzzers, and 5 categories of complementary performance
metrics. We deployed IoTFuzzBench and evaluated 7 popular black-box protocol fuzzers on all
benchmark firmware images and benchmark vulnerabilities. The experimental results show that
IoTFuzzBench can not only provide fast, reliable, and reproducible experiments, but also effectively
evaluate the ability of each fuzzer to find vulnerabilities and the differential performance on different
performance metrics. The fuzzers found a total of 13 vulnerabilities out of 30. None of these fuzzers
can outperform the others on all metrics. This result demonstrates the importance of comprehensive
metrics. We hope our findings ease the burden of fuzzing evaluation in IoT scenarios, advancing
more pragmatic and reproducible fuzzer benchmarking efforts.

Keywords: fuzzing evaluation; black-box fuzzing; IoT smart device; benchmark suite

1. Introduction

The Internet of Things (IoT) smart devices have become a part of the daily life of
billions of people and have brought us new lifestyles and convenience [1,2]. Recent
statistics show that the number of IoT smart devices will reach 29.42 billion by 2030 [3].
However, IoT smart devices have been reported to be vulnerable to various attacks for a
long time [4,5]. According to a report published by Palo Alto in 2020 [6], over 50% of IoT
smart devices worldwide are vulnerable to medium-high severity attacks.

Fuzzing has become one of the most successful techniques for finding software security
vulnerabilities [7]. Fuzzing generates many test cases, repeatedly tests the target software,
and monitors the abnormal conditions of the program [7,8]. Security vulnerabilities in
IoT smart devices usually exist in device firmware [9]. The firmware is code embedded
in hardware which can provide hardware support for upper-level users [9,10]. Some
components in the firmware of these devices usually have security vulnerabilities due to
the implementation defects of protocol parse or improper handling of data submitted by
users [11]. Since IoT smart devices are computing devices with networking capabilities, they
cannot be immune to attacks from the internet as long as users can access them remotely
through specific network protocols [12]. This prompted researchers to explore how to
perform black-box fuzzing on firmware from outside the device via network protocols,
successfully finding many vulnerabilities [11,13–15].

Electronics 2023, 12, 3010. https://doi.org/10.3390/electronics12143010 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12143010
https://doi.org/10.3390/electronics12143010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12143010
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12143010?type=check_update&version=1

Electronics 2023, 12, 3010 2 of 23

Although black-box protocol fuzzing has successfully improved the firmware quality
of IoT smart devices, there are still many challenges to properly evaluating black-box
protocol fuzzing techniques. The first challenge is the lack of unified benchmarks for IoT
fuzzing evaluation. Fuzzing papers use different benchmark devices and firmware images,
making comparing them hard. Moreover, some benchmark devices may be discontinued
or updated, making reproducing the experiments hard. Therefore, follow-up research may
not be able to obtain the same benchmark devices or firmware images as existing work.
The second challenge is the high cost of fuzzing evaluation. It involves comparing fuzzing
tools on many benchmark firmware images, which requires time and effort, sometimes
months [16]. Setting up all these tools and the benchmark firmware images and ensuring
each tool–baseline pair works together (e.g., firmware emulation) also requires much
effort. Due to cost concerns, many fuzzing papers may not fully reproduce the existing
experiments [17–20]. The third challenge is the lack of a unified seed message. An IoT
smart device may have dozens of different network interfaces. Using a seed message
from one interface to fuzz another interface may not be effective, as the quality of seeds
influences the fuzzing results [4]. However, many fuzzing papers do not disclose the seed
messages they use for different interfaces [11,13,14], making it hard to replicate their work.
The fourth challenge is the lack of comprehensive metrics. Existing fuzzing papers mainly
use the number and time of triggering crashes as evaluation metrics [13,14], but these are
not enough. The feedback response message of the IoT smart device can reflect the code
coverage of the fuzzer. More unique response messages indicate more paths explored
by the fuzzer. In addition, the computational resource consumption of fuzzers is often
ignored as an evaluation indicator [20], but it is important for selecting fuzzers under
limited resources. All of these challenges hinder the reproducibility and comparability of
black-box protocol fuzzers for IoT firmware.

Klees et al. were the first to study fuzzing evaluation [17]. They analyzed 32 fuzzing
research papers and found that none provided enough evidence to justify general valid-
ity claims [16]. Following their work, FuzzBench [16], Magma [21], and UNIFUZZ [20]
conducted further studies on fuzzing evaluation from different focus points. FuzzBench
regards code coverage as an essential indicator for evaluating fuzzers, and fuzzers with
higher code coverage are considered to perform better. Unlike FuzzBench, Magma tries
to introduce actual bugs into genuine software and believes that the number of bugs is an
important metric to measure the performance of a fuzzer. They argue that the correlation
between the crashes found by coverage guidance and actual bugs is not strong, which
means that higher coverage does not necessarily mean better fuzzer effectiveness. UNI-
FUZZ considers bug count and coverage metrics and suggests other metrics, such as the
speed of finding bugs [16]. The benchmark programs for evaluating these fuzzers are
software in a general IT environment, and the evaluated fuzzers are general fuzzers under
coverage guidance. However, in the IoT scenario, the benchmark program should be the
firmware images of the IoT smart devices, and the architectures of these are pretty differ-
ent (such as x86, MIPS, and ARM) [8]. At the same time, these firmware images usually
provide various network communication services [22]. Therefore, software in a general
IT environment cannot effectively represent firmware. In addition, since device vendors
usually do not provide firmware source code and documentation, the firmware images
cannot be recompiled and instrumented [11], and the hardware debugging interface is
usually disabled [2], so general-purpose fuzzers based on source code or coverage cannot
be directly applied to IoT fuzzing. Therefore, the above fuzzing evaluation methods
cannot be directly used to evaluate existing IoT black-box protocol fuzzers. There is
an urgent need for a quantitative fuzzing evaluation method to comprehensively and
pragmatically evaluate state-of-the-art black-box protocol fuzzers for IoT smart devices
on a unified framework.

Our Approach. To address the above challenges, we designed and implemented
IoTFuzzBench, a scalable, modular, metric-driven fuzzing evaluation framework for IoT
black-box protocols. So far, IoTFuzzBench has included 14 real-world benchmark firmware

Electronics 2023, 12, 3010 3 of 23

images, 30 real-world benchmark vulnerabilities, corresponding fuzzing seeds, 7 popular
fuzzers, and 5 categories of performance metrics. We verified the emulation ability of each
benchmark firmware image and provided a benchmark bundle to facilitate the automated
construction of emulation environments for the firmware images. For each benchmark
vulnerability in benchmark firmware images, we manually verified its existence and deliv-
ered the original communication message corresponding to the vulnerability as the seed
message for fuzzing. We tested the usability of each fuzzer and provided a fuzzer bundle
for easy deployment and testing. We also proposed a collection of performance metrics in
5 categories, which can be used to evaluate the performance of fuzzers comprehensively.
We present the rationale behind IoTFuzzBench, the challenges encountered during its
creation, implementation details, and some preliminary results that show the effectiveness
of IoTFuzzBench.

Contributions. In summary, we make the following contributions:

• New Benchmark Suite: We constructed a set of practical IoT firmware benchmark
suites. The benchmark suite includes 14 real-world benchmark firmware images and
their operating environment, 30 verified real-world vulnerabilities that can be triggered
in the benchmark firmware environment, and fuzzing seed messages corresponding
to each benchmark vulnerability;

• New Framework: We described the design of IoTFuzzBench. To the best of our
knowledge, this is the first framework to evaluate IoT black-box protocol fuzzers
comprehensively and quantitatively. IoTFuzzBench includes the above benchmark
suite, 7 popular fuzzers, and 5 categories of performance metrics and can automate
the evaluation process of fuzzers in a configurable manner;

• Implementation and Evaluation: We implemented the prototype of IoTFuzzBench,
conducted a proof-of-concept evaluation of the widely used fuzzers on the above
benchmark suite, and presented the evaluation results. In addition, we open-sourced
the prototype of IoTFuzzBench and the complete benchmark suite [23].

Roadmap. The remainder of this article is organized as follows. Section 2 reviews the
background and related work of IoT smart device fuzzing and fuzzing evaluation. Section 3
details the architecture of IoTFuzzBench. In Section 4, the experiments and evaluation
results are introduced. The limitations of the current design are discussed in Section 5.
Finally, Section 6 concludes the article.

2. Background and Related Work

In this section, we briefly introduce the background of fuzzing in the IoT smart device
scenario and fuzzing evaluation, an approach that has focused on comparing vulnerability
discovery performance between different fuzzers.

2.1. IoT Smart Device Fuzzing

The main challenges of discovering vulnerabilities in IoT smart devices include the lack of
computing resources of IoT devices, the diversity of device types and protocols, the difficulty
in obtaining and emulating firmware, and the limited feedback from devices [7,8]. Fuzzing is a
software vulnerability discovery method widely used in academic and industrial fields [22].
Fuzzing repeatedly tests the target program by generating many test cases and monitors
the abnormal conditions of the program to trigger a fault [21]. Fuzzing is widely used in
vulnerability discovery of IoT smart devices due to its characteristics of easy use, convenient
deployment, and easy recurrence of crashes [12–14]. According to the prior knowledge
of the program under test during execution, fuzzing methods can be divided into three
categories: black-box, grey-box, and white-box fuzzing [22]. Black-box fuzzing does not
know the internal state of the program for each execution [13,24]. The program under test
is a black box to fuzzers, which usually optimize the fuzzing process by exploiting input
formats or different program output states [25,26]. White-box fuzzing usually needs to have
all the source code of the target object, to be able to obtain all the execution information of
the target object during the fuzzing process [27]. Grey-box fuzzing acquires knowledge

Electronics 2023, 12, 3010 4 of 23

of the execution state between black-box and white-box fuzzing. Grey-box fuzzers do not
require access to the source code of the target program and typically use edge coverage as
the internal execution state [28,29].

Since the first fuzzers were created, fuzzers have evolved significantly and have
become one of the most effective methods for discovering software vulnerabilities [7,9].
However, some challenges are encountered when fuzzing technology is applied to the
embedded environment of the IoT. On the one hand, compared with the general IT envi-
ronment, the embedded environment of the IoT has more types of firmware architecture,
more scarce computing resources, and less responsiveness of information systems [22]. On
the other hand, firmware source code and documentation are usually unavailable [2,9].
Therefore, some out-of-the-box fuzzing methods that depend on the source code or de-
tailed execution status of the target program cannot be directly applied to embedded
systems [12,14].

Existing fuzzing methods for IoT smart devices mainly address the above challenges
using grey-box fuzzing based on firmware emulation and black-box fuzzing based on the
network [7]. Emulators can execute programs that initially ran on IoT firmware without
corresponding hardware. Firmware emulation can not only provide researchers with more
low-cost research objects, but also enrich the responses obtained by fuzzers. With the help
of emulators, fuzzers can test target firmware images in a grey-box manner [30]. However,
firmware cannot always be emulated successfully. The firmware emulation success rate
of the state-of-the-art firmware emulator Firmadyne is only 16.28% [31]. In practice, since
the firmware architecture and hardware dependencies of different manufacturers are very
different, the emulation success rate is lower. Therefore, grey-box fuzzers that rely on the
success of firmware emulation to obtain device internal code coverage are not suitable for
all scenarios. This has motivated researchers to attempt fuzzing IoT smart devices over the
network from outside the device [14,15,32]. Since IoT smart devices can communicate with
the outside world through the network, the fuzzer automatically sends request messages
to a device and waits for the execution response results of the device [2,11–13]. Fuzzers test
more execution paths in firmware by exploring more response classes [11].

From the perspective of fuzzer evaluation, the evaluation index of the grey-box fuzzer
for IoT devices that relies on firmware emulation is consistent with the evaluation index
of the grey-box fuzzer for general IT systems, both of which are coverage. Therefore, a
grey-box fuzzer based on firmware emulation can learn from the evaluation method of
a grey-box fuzzer for general IT systems. However, there is currently a lack of unbiased
evaluation methods for network-level black-box fuzzers for IoT smart devices.

2.2. Fuzzing Evaluation

The rapid addition and improvement of fuzzing techniques mean that different fuzzers
must be constantly compared to show that the latest fuzzers displace the previous state-
of-the-art fuzzers. Unfortunately, these evaluations have been ad hoc and haphazard [21].
Klees et al. were the first to study the current state of fuzzing evaluation [17]. They analyzed
32 fuzzing research papers and found that some papers did not use many different real-
world benchmarks, had too few trials, used short trial times, or lacked statistical testing [16].
Furthermore, making cross-comparisons across all papers is challenging, as they often use
different evaluation settings and configurations, different benchmark procedures, and even
different coverage metrics.

After Klees et al., a series of studies related to fuzzing evaluation began to ap-
pear [16,17,20]. UNIFUZZ [20] is an open-source platform to evaluate fuzzers compre-
hensively and quantitatively. UNIFUZZ contains 35 popular fuzzers, benchmark suites
of 20 real programs, and 6 types of performance metrics [20]. FuzzBench [16] aims to
solve the challenges of lack of evaluation rationality and the high cost of time and comput-
ing resources in fuzz test evaluation by providing open-source fuzzer benchmark testing
services. FuzzBench uses 22 programs from the OSSFuzz [33] project as the default bench-
mark suites. In terms of evaluation indicators, FuzzBench focuses on using coverage as

Electronics 2023, 12, 3010 5 of 23

an indicator, including code and bug coverage, independent code coverage metric, and
differential coverage. FuzzBench believes that fuzzers running more extensive code paths
are more likely to find bugs. Unlike the evaluation metrics that FuzzBench focuses on,
Magma believes that the correlation between coverage-deduplicated crashes and real
bugs is weak. This means that higher coverage does not necessarily mean better fuzzer
effectiveness. Therefore, Magma pays more attention to indicators such as the number
and time of bugs that the fuzzer can find. Magma uses forward porting to inject dozens
of bugs into the latest version of seven benchmark programs. Magma compared the
time-to-bug indicators of six fuzzers in three dimensions: bugs reached, triggered, and
detected. In the above fuzzing evaluation work, the selected benchmark programs are
all software in the general IT environment. The fuzzers evaluated are all white-box or
grey-box fuzzers using coverage guidance.

ProFuzzBench [34] is a recent work that provides benchmark programs for stateful
fuzzers for network protocols. It offers 10 protocols, and their corresponding implemen-
tation programs, and automates the construction process for these benchmark programs.
However, it does not present complete evaluation methods and processes. ProFuzzBench
has advanced fuzzing evaluation from software in general IT environments to network
protocol programs to some extent. However, in the IoT scenario, firmware vulnerabilities
are not only in the network protocol implementation programs, but also in many business
function codes [11]. Moreover, the network protocol implementation programs in the
firmware are usually not the open-source software chosen by ProFuzzBench, but instead
the customized programs by many equipment manufacturers [14]. Therefore, the bench-
mark programs of ProFuzzBench cannot effectively represent the benchmark firmware
images required in the IoT fuzzing evaluation. There is still a lack of practical benchmark
suites and complete evaluation methods for black-box protocol fuzzers for IoT devices.

3. Design

This section details the architecture and implementation of IoTFuzzBench, a frame-
work for evaluating black-box protocol fuzzers for IoT devices. In this work, we focus
on the network-level black-box fuzzing evaluation of IoT devices. Therefore, we as-
sume that all IoT devices under test support the management and control of the device
through network protocols, and we evaluate the fuzzers based on their ability to discover
vulnerabilities in the firmware via network interactions. IoTFuzzBench supports the
description of fuzzers, benchmark firmware images, and vulnerabilities in evaluation
experiments through configuration files. Each benchmark firmware may contain one or
more vulnerabilities.

Figure 1 shows the high-level architectural design of IoTFuzzBench. The framework
consists of four main components: the scheduler, the database, the task queue, and the
job driver. The scheduler reads the evaluation configuration file, generates fuzzing tasks,
and invokes the analyzer. The database stores the benchmark bundles, the fuzzer bundles,
and the fuzzing results. The task queue manages the fuzzing tasks and schedules them for
execution. The job driver creates and runs the benchmark and fuzzer containers, drives
the fuzzing process, monitors the process, and records the fuzzing results. The scheduler
reads the evaluation configuration file when an evaluation process starts. It combines
each fuzzer in the configuration file with each vulnerability in each benchmark to form
a triple of fuzzer, benchmark firmware image, and vulnerability. Different triples will
correspond to fuzzing tasks that can run independently of each other in the subsequent
fuzzing process. For each triple, the scheduler retrieves the benchmark bundle for building
the benchmark firmware runtime environment and the fuzzer bundle for creating the
fuzzer runtime environment from the database. A typical benchmark bundle includes an
emulated firmware image, a Dockerfile, start-up scripts, a benchmark configuration file,
and a fuzzing seed update script. A standard fuzzer bundle consists of a stand-alone fuzzer
and all its dependencies, a Dockerfile, and start-up scripts. The scheduler creates several
independent fuzzing tasks according to the triple, benchmark, and fuzzer bundles, and

Electronics 2023, 12, 3010 6 of 23

configures the corresponding task parameters. These fuzzing tasks are added to the task
queue and scheduled for execution by the task queue. In each fuzzing task, the job driver
creates a set of independent benchmark containers and fuzzer containers according to the
task parameters, drives the fuzzing process, monitors the process, and records the fuzzing
results. After each fuzzing task, the fuzzing results are added to the database. After all the
fuzzing tasks are finished, the scheduler invokes the analyzer to analyze the fuzzing results
of all tasks. It outputs the corresponding fuzzing report and stores it in the database.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 23

runtime environment from the database. A typical benchmark bundle includes an emu-

lated firmware image, a Dockerfile, start-up scripts, a benchmark configuration file, and a

fuzzing seed update script. A standard fuzzer bundle consists of a stand-alone fuzzer and

all its dependencies, a Dockerfile, and start-up scripts. The scheduler creates several inde-

pendent fuzzing tasks according to the triple, benchmark, and fuzzer bundles, and con-

figures the corresponding task parameters. These fuzzing tasks are added to the task

queue and scheduled for execution by the task queue. In each fuzzing task, the job driver

creates a set of independent benchmark containers and fuzzer containers according to the

task parameters, drives the fuzzing process, monitors the process, and records the fuzzing

results. After each fuzzing task, the fuzzing results are added to the database. After all the

fuzzing tasks are finished, the scheduler invokes the analyzer to analyze the fuzzing re-

sults of all tasks. It outputs the corresponding fuzzing report and stores it in the database.

Figure 1. Overview of IoTFuzzBench.

In Section 3.1, we outline the structure of the task driver and the workflow of a single

fuzzing job. Section 3.2 discusses the selection principles for benchmark firmware images.

Section 3.3 details the process of building benchmark firmware images and addresses spe-

cific issues encountered during benchmark environment construction. Section 3.4 pro-

vides an overview of the integrated fuzzers and fuzzer bundles used by IoTFuzzBench.

Finally, Section 3.5 introduces the evaluation metrics employed by IoTFuzzBench.

3.1. Fuzzing Job Workflow

The workflow of each fuzzing task is shown in Figure 2. Each task runs through the

job driver. The driver mainly consists of a benchmark builder, seed updater, fuzzer

builder, and monitor.

The benchmark builder reads the configuration file in the benchmark bundle to pre-

pare the container runtime parameters. Then, the benchmark builder builds the bench-

mark image according to the Dockerfile in the benchmark bundle and starts the container

according to the runtime parameters to complete the construction of the benchmark con-

tainer.

The seed updater updates the authentication information in the fuzzing seed. Since

the firmware emulation process takes a certain amount of time, when the benchmark con-

tainer is started, the seed updater cyclically monitors the service survival in the bench-

mark container and waits for the service to go online. When the service goes online, the

seed updater calls the seed update interface implemented in the benchmark bundle to

complete the update operation of the fuzzing test seed. Further, the seed updater creates

a packet capture process in the container to capture the network traffic during the subse-

quent fuzzing process.

Figure 1. Overview of IoTFuzzBench.

In Section 3.1, we outline the structure of the task driver and the workflow of a single
fuzzing job. Section 3.2 discusses the selection principles for benchmark firmware images.
Section 3.3 details the process of building benchmark firmware images and addresses
specific issues encountered during benchmark environment construction. Section 3.4
provides an overview of the integrated fuzzers and fuzzer bundles used by IoTFuzzBench.
Finally, Section 3.5 introduces the evaluation metrics employed by IoTFuzzBench.

3.1. Fuzzing Job Workflow

The workflow of each fuzzing task is shown in Figure 2. Each task runs through the
job driver. The driver mainly consists of a benchmark builder, seed updater, fuzzer builder,
and monitor.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 23

Figure 2. Fuzzing job workflow.

The monitor is used to monitor the fuzzer container and the benchmark container to
judge the fuzzing results and collect primary data for fuzzing evaluation. For the fuzzer
container, the monitor periodically checks the survival of the fuzzer container to deter-
mine whether the fuzzing process is over. At the same time, the monitor periodically rec-
ords the consumption of computing resources (such as memory) when the fuzzer is run-
ning for subsequent evaluation. For the benchmark container, the emulation tool can cre-
ate an independent runtime environment to run the benchmark firmware. Therefore,
when a bug in the benchmark firmware is triggered, the service of the benchmark firm-
ware will usually be abnormal, and the benchmark container will not exit directly. There-
fore, the monitor creates an independent monitoring subprocess, which periodically ac-
cesses the benchmark service to monitor whether the bug in the benchmark firmware is
successfully triggered. When the benchmark service crashes or the fuzzer container exits
or reaches the maximum fuzzing time, the monitor collects all fuzzing results, which in-
clude traffic data packets, log information, runtime computing resource consumption, and
other information generated during the fuzzing process. These resulting data are written
into the database.

3.2. Benchmark Selection Principles
A benchmark suite is essential for evaluating the performance of fuzzers for IoT de-

vices. The benchmark firmware in the suite should be carefully selected to evaluate fuzz-
ers fairly. The selection of benchmark firmware images should follow these principles:
• Real-world Firmware Images: Each benchmark firmware image should come from

the real world and cover mainstream architectures. According to the findings of Yun
[22], firmware images for MIPS and ARM architectures account for more than 90% of
all embedded device architectures. Therefore, these benchmark firmware images
should include at least MIPS and ARM architectures;

• Real-world Vulnerabilities: Each benchmark firmware image should contain at least
one real-world vulnerability. Choosing real-world vulnerabilities is more effective
for verifying fuzzer performance in practice than artificially implanted vulnerabili-
ties using forward-porting methods [21];

• Typical Vulnerability Types: The types of vulnerabilities in the firmware should
cover typical IoT device vulnerability types. The existing black-box fuzzing research
on IoT devices mainly focuses on typical vulnerability types such as memory

Figure 2. Fuzzing job workflow.

Electronics 2023, 12, 3010 7 of 23

The benchmark builder reads the configuration file in the benchmark bundle to prepare
the container runtime parameters. Then, the benchmark builder builds the benchmark im-
age according to the Dockerfile in the benchmark bundle and starts the container according
to the runtime parameters to complete the construction of the benchmark container.

The seed updater updates the authentication information in the fuzzing seed. Since the
firmware emulation process takes a certain amount of time, when the benchmark container
is started, the seed updater cyclically monitors the service survival in the benchmark
container and waits for the service to go online. When the service goes online, the seed
updater calls the seed update interface implemented in the benchmark bundle to complete
the update operation of the fuzzing test seed. Further, the seed updater creates a packet
capture process in the container to capture the network traffic during the subsequent
fuzzing process.

The monitor is used to monitor the fuzzer container and the benchmark container to
judge the fuzzing results and collect primary data for fuzzing evaluation. For the fuzzer
container, the monitor periodically checks the survival of the fuzzer container to determine
whether the fuzzing process is over. At the same time, the monitor periodically records
the consumption of computing resources (such as memory) when the fuzzer is running
for subsequent evaluation. For the benchmark container, the emulation tool can create an
independent runtime environment to run the benchmark firmware. Therefore, when a bug
in the benchmark firmware is triggered, the service of the benchmark firmware will usually
be abnormal, and the benchmark container will not exit directly. Therefore, the monitor
creates an independent monitoring subprocess, which periodically accesses the benchmark
service to monitor whether the bug in the benchmark firmware is successfully triggered.
When the benchmark service crashes or the fuzzer container exits or reaches the maximum
fuzzing time, the monitor collects all fuzzing results, which include traffic data packets, log
information, runtime computing resource consumption, and other information generated
during the fuzzing process. These resulting data are written into the database.

3.2. Benchmark Selection Principles

A benchmark suite is essential for evaluating the performance of fuzzers for IoT
devices. The benchmark firmware in the suite should be carefully selected to evaluate
fuzzers fairly. The selection of benchmark firmware images should follow these principles:

• Real-world Firmware Images: Each benchmark firmware image should come from
the real world and cover mainstream architectures. According to the findings of
Yun [22], firmware images for MIPS and ARM architectures account for more than 90%
of all embedded device architectures. Therefore, these benchmark firmware images
should include at least MIPS and ARM architectures;

• Real-world Vulnerabilities: Each benchmark firmware image should contain at least
one real-world vulnerability. Choosing real-world vulnerabilities is more effective
for verifying fuzzer performance in practice than artificially implanted vulnerabilities
using forward-porting methods [21];

• Typical Vulnerability Types: The types of vulnerabilities in the firmware should cover
typical IoT device vulnerability types. The existing black-box fuzzing research on
IoT devices mainly focuses on typical vulnerability types such as memory corruption,
command injection, and denial of service [2,11,12,15]. Therefore, the vulnerabilities in
the benchmark firmware images should include these types;

• Similar Exploit Difficulty and Value of Vulnerabilities: The vulnerabilities in the
firmware should have similar exploit difficulty to ensure that the difficulty of dis-
covering each vulnerability by fuzzers is similar. Since the Common Vulnerability
Scoring System (CVSS) considers multiple dimensions such as attack vector, attack
complexity, privileges required, and user interaction during calculation; if the CVSS
scores of each vulnerability are closer, their exploit difficulty is also relatively similar
to some extent. At the same time, the value of different vulnerabilities also affects
the evaluation of fuzzers. For example, the value of a high-risk vulnerability may be

Electronics 2023, 12, 3010 8 of 23

higher than that of multiple low-risk vulnerabilities. Therefore, to more easily evaluate
the exploit difficulty and value of vulnerabilities discovered by fuzzers, the selected
vulnerabilities should have CVSS scores in the same range, such as all being high-risk
vulnerabilities with CVSS scores above 7;

• Determined Seed Messages: Each vulnerability contained in each benchmark firmware
image should have a determined seed message for fuzzing. Since IoT devices usu-
ally are managed through network interfaces, a single vulnerability may exist in a
message-handling function corresponding to a network interface. Therefore, from
a proper perspective, all evaluated fuzzers should have the same standard network
interface communication messages as initial seeds for mutation;

• Emulation and Fidelity of Firmware Images: Each benchmark firmware should be
successfully emulated and easy to use. Unlike programs that can be run directly on
x86 general-purpose Linux operating systems, the firmware has more underlying
architectures, such as ARM and MIPS. Different firmware has different emulation
methods, such as user-mode and system-mode emulation. Therefore, to make bench-
mark firmware easy to use, researchers should provide rich runtime information
for each benchmark firmware, such as architecture information, emulation method,
and emulation steps. In addition, a better approach is for developers of evaluation
frameworks to provide automated benchmark firmware emulation for each bench-
mark firmware, but this also means that the workload of developers of evaluation
frameworks will increase dramatically. In addition to the emulation of firmware im-
ages, the fidelity of firmware images also needs to be verified. For example, many
emulated firmware images crash after deep interaction (such as clicking on a web page
to set properties), affecting the fuzzer evaluation’s validity. Therefore, the fidelity of
firmware images also needs to be verified.

Following the 6 principles outlined above, we have constructed a practical benchmark
suite consisting of 14 real-world firmware images, 30 real-world vulnerabilities, and corre-
sponding fuzzing seed messages for each benchmark vulnerability. This suite evaluates
black-box fuzzers for IoT devices, as shown in Table 1.

3.3. Real-World Benchmark Firmware Images

This section describes the details of the critical steps in constructing a benchmark suite
that adheres to the abovementioned six principles. These steps include selecting candidate
baseline firmware, matching vulnerabilities with firmware, and addressing specific issues
the benchmark suite addresses.

Candidate Benchmark Firmware Images Selection. Since the benchmark firmware
needs to be emulated successfully and the success rate of the emulation is relatively low,
we first need to screen a batch of firmware images that can be successfully emulated as can-
didate benchmark firmware images. Considering that the emulation methods that do not
depend on hardware are divided into user-mode emulation and system-mode emulation,
we mainly screen the firmware that can be successfully emulated from these two aspects.
For user-mode emulation, the programs, operating parameters, and dependent resource
files in the firmware that need to be emulated by different firmware images may vary
significantly. We collect the firmware emulation reports of researchers and manually write
Dockerfile to complete the emulation process. The system-mode emulation will emulate
the entire operating system when the firmware is running and run the application program
in the firmware on the operating system. This method consumes more computing resources
than user-mode emulation, but the emulation is more versatile. Some system-mode emula-
tion tools, such as Firmadyne and FirmAE, can directly try to emulate a target firmware
image and provide feedback on whether the emulation is successful. Therefore, we first
collected some firmware images publicly available on the internet and coded a firmware
batch emulation test tool based on Firmware Analysis Toolkit [10] (an automated emulation
script based on Firmadyne) to realize automated firmware system-mode emulation testing.

Electronics 2023, 12, 3010 9 of 23

After the emulation work in these two aspects, we have successfully obtained more than
100 candidate benchmark firmware images that can be successfully emulated.

Table 1. The real-world benchmark firmware images and benchmark vulnerabilities.

ID Firmware
Images Architecture Vulnerability Vulnerability

Type CVSS (v3.x) Protocol Emulation
Tool

1 AC9 ARM CVE-2018-14558 CI 9.8 HTTP QEMU
2 AC9 ARM CVE-2018-16334 CI 8.8 HTTP QEMU
3 AC9 ARM CVE-2018-18708 MC 7.5 HTTP QEMU
4 AC9 ARM CVE-2020-13390 MC 9.8 HTTP QEMU
5 AC9 ARM CVE-2022-25428 MC 9.8 HTTP QEMU
6 AC9 ARM CVE-2022-25435 MC 9.8 HTTP QEMU
7 AC9 ARM CVE-2022-27016 MC 9.8 HTTP QEMU
8 AC15 ARM CVE-2018-5767 MC 9.8 HTTP QEMU
9 AC15 ARM CVE-2018-16333 MC 7.5 HTTP QEMU

10 AC15 ARM CVE-2020-10987 CI 9.8 HTTP QEMU
11 DIR806A1 MIPS CVE-2019-10892 MC 9.8 HNAP FAT
12 DIR818L MIPS CVE-2022-35619 CI 9.8 SOAP FAT
13 DIR818L MIPS CVE-2022-35620 CI 9.8 UPNP FAT
14 DIR822A1 MIPS CVE-2019-17621 CI 9.8 UPNP FAT
15 DIR823GA1 MIPS CVE-2019-7297 CI 9.8 SOAP FAT
16 DIR823GA1 MIPS CVE-2019-7298 CI 8.1 HNAP FAT
17 DIR823GA1 MIPS CVE-2020-25366 DoS 9.1 HTTP FAT
18 DIR823GA1 MIPS CVE-2020-25367 CI 9.8 SOAP FAT
19 DIR823GA1 MIPS CVE-2020-25368 CI 9.8 HNAP FAT
20 DIR823GA1 MIPS CVE-2021-43474 CI 9.8 SOAP FAT
21 DIR825 MIPS CVE-2020-10215 CI 8.8 HTTP FAT
22 DIR825 MIPS CVE-2020-10216 CI 8.8 HTTP FAT
23 DIR846 MIPS CVE-2019-17510 CI 9.8 HNAP FAT
24 DIR865L MIPS CVE-2020-13782 CI 8.8 HTTP FAT
25 DSL3782 MIPS CVE-2022-34528 MC 8.8 HTTP FAT
26 HG532 MIPS CVE-2017-17215 CI 8.8 SOAP QEMU
27 DIR-859 MIPS CVE-2022-46476 CI 9.8 SOAP QEMU
28 TL-WR841N MIPS CVE-2020-8423 MC 7.2 HTTP FAT
29 TL-WR940N MIPS CVE-2019-6989 MC 8.8 HTTP FAT
30 TL-WR940N MIPS CVE-2017-13772 MC 8.8 HTTP FAT

CI: Command Injection. MC: Memory Corruption. DoS: Denial of Service.

Matching CVEs. Each benchmark firmware should contain real-world vulnerabilities
in the screening principle of benchmark firmware. Therefore, we need to filter out those
firmware images that contain real vulnerabilities among all candidate benchmark firmware
images. The straightforward idea is to match all known vulnerabilities against a vulner-
ability database based on the vendor, model, and version of firmware images. A typical
vulnerability database is the National Vulnerability Database (NVD). Nevertheless, this
method encounters some challenges in practice.

First, there is an issue of missing information about affected firmware versions in the
vulnerability database. Taking NVD as an example, Common Platform Enumeration (CPE)
information is used in NVD to describe the vulnerability version, and each piece of CPE
information indicates an affected software version. However, unfortunately, in practice,
many researchers who reported vulnerabilities did not verify the scope of firmware affected
by the reported vulnerabilities, but only verified the existence of reported vulnerabilities
on a specific version of the firmware. Typical vulnerabilities that fall into this category
include CVE-2022-46570 and CVE-2022-44832. As a result, there is only one piece of CPE
information in the vulnerabilities of many IoT devices, and the candidate benchmark
firmware cannot be successfully matched to a suitable vulnerability. We try to solve this
problem in two ways.

Electronics 2023, 12, 3010 10 of 23

On the one hand, we expanded the scope of the filter by reducing the filter criteria.
When inquiring, we only used the keyword combination of manufacturer and model,
and did not limit the specific version. Although this increases the number of candidate
vulnerabilities, it also means that there are a large number of vulnerabilities that need
manual verification. Therefore, on the other hand, we added specific features that can
describe the firmware to narrow down the range of candidate vulnerabilities further. We
captured the network communication traffic of the successfully emulated firmware and
screened some network interface keywords. Experience in software development tells
us that, if the communication interfaces of two programs are consistent, their back-end
codes may have high similarity. Therefore, the keywords in these network interfaces
can better represent the characteristics of the firmware. We combined these network
interface keywords as features with manufacturers and models to narrow down the scope
of candidate vulnerabilities.

Second, the lack of vulnerability reproduction information prevents candidate vulner-
abilities from being successfully reproduced. Simply matching the vulnerability with the
firmware through the version number or keywords cannot fully prove that the vulnerability
exists in the firmware. The most effective way to prove that a vulnerability exists in a
specific firmware is to trigger the target vulnerability in that firmware successfully. A
detailed vulnerability description, report, or complete Proof of Concept (PoC) is required
for successful vulnerability reproduction. The vulnerability recurrence information in
the vulnerability database usually exists in reference links, and each reference link has a
corresponding label to identify the type of reference link. For example, there are usually
vulnerability reports or PoC in reference links with exploit tags. Unfortunately, not all
vulnerabilities have relevant reference links for vulnerability reproduction. The lack of
this vulnerability reproduction information leads to a meager success rate of vulnerability
reproduction. Therefore, we conducted a secondary screening of all candidate vulnerabil-
ities. Only those with the label links related to vulnerability reproduction were used as
candidate vulnerabilities for our subsequent manual reproduction.

After completing the above steps, we successfully obtained each candidate benchmark
and the corresponding range of candidate vulnerabilities. We manually verified each
candidate vulnerability on its corresponding candidate benchmark. Finally, we successfully
validated 30 vulnerabilities on 14 candidate benchmark firmware images. At the same time,
for the successfully reproduced vulnerabilities, we recorded the original communication
messages of the corresponding network interfaces. This original communication message
did not contain the payload that triggered the target vulnerability and was used as a seed
message for fuzz testing corresponding to the target vulnerability.

Benchmark Bundle. Since the benchmark firmware needs to be emulated to run,
running multiple emulation environments on the same host at the same time may cause
conflicts, such as creating conflicts with the same emulated network card or setting the
same IP for the emulated firmware. IoTFuzzBench adopts the solution of placing the
emulated benchmark firmware in the container and exposing the network communication
port. This can ensure the independence of different benchmark emulation environments
and ensure that multiple fuzzers do not interfere with each other in the fuzzing process. To
enable the emulation environment of the benchmark firmware image to complete automatic
construction, a series of resource files are required as support. The combination of resource
files used to build a single benchmark firmware emulation environment are named a
benchmark bundle. A typical benchmark bundle includes an emulated firmware image, a
Dockerfile and start-up scripts, a benchmark configuration file, and a fuzzing seed update
script. Below, we introduce how the benchmark bundle plays a role in solving a series of
issues while constructing the firmware emulation environment.

The first issue is the construction of the virtual environment for benchmark firmware
emulation. Due to different manufacturers, architectures, and hardware dependencies,
the emulation methods of each benchmark firmware may vary significantly. Therefore,
we coded an independent Dockerfile and corresponding container start-up script for each

Electronics 2023, 12, 3010 11 of 23

benchmark firmware to standardize the construction process of each benchmark firmware
emulation environment. The Dockerfile and corresponding container start-up scripts are
part of the benchmark bundle.

The second is the access issue of the emulation service. After the benchmark firmware
image is emulated successfully in the container, the logical typical network topology of
the host where the fuzzing task is located, the benchmark, and the successfully emulated
device are as shown in Figure 3. The tap1 network card of the emulation device and the
tap0 network card of the benchmark container are in the same independent subnet, and
the eth0 network card of the host where the fuzzing task is located and the eth1 network
card of the benchmark container are in another independent subnet. Therefore, to enable
the network service provided by the emulation device to be accessed by the host where
the fuzzing task is located and the subsequent fuzzer, the network service port needs to be
forwarded to a particular port on the eth1 network card of the benchmark container. This
step can be achieved by creating a separate port forwarding process inside the benchmark
container. IoTFuzzBench achieves the above requirements by creating an independent port
forwarding process in the benchmark container. Although the default IP assigned by the
same firmware is consistent with the listening port after multiple successful emulations,
the default IP assigned by different firmware and the listening port may differ after the
emulation is successful. When the same firmware image is successfully emulated multiple
times, the default assigned IP and listening port are the same each time. However, different
firmware images may have different IPs assigned by default and listening ports when the
emulation is successful. Therefore, the default assigned IP and open port information of
each benchmark firmware need to be defined in a configuration file. This configuration file
is included as part of the benchmark bundle.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 23

IP for the emulated firmware. IoTFuzzBench adopts the solution of placing the emulated
benchmark firmware in the container and exposing the network communication port. This
can ensure the independence of different benchmark emulation environments and ensure
that multiple fuzzers do not interfere with each other in the fuzzing process. To enable the
emulation environment of the benchmark firmware image to complete automatic con-
struction, a series of resource files are required as support. The combination of resource
files used to build a single benchmark firmware emulation environment are named a
benchmark bundle. A typical benchmark bundle includes an emulated firmware image, a
Dockerfile and start-up scripts, a benchmark configuration file, and a fuzzing seed update
script. Below, we introduce how the benchmark bundle plays a role in solving a series of
issues while constructing the firmware emulation environment.

The first issue is the construction of the virtual environment for benchmark firmware
emulation. Due to different manufacturers, architectures, and hardware dependencies,
the emulation methods of each benchmark firmware may vary significantly. Therefore,
we coded an independent Dockerfile and corresponding container start-up script for each
benchmark firmware to standardize the construction process of each benchmark firmware
emulation environment. The Dockerfile and corresponding container start-up scripts are
part of the benchmark bundle.

The second is the access issue of the emulation service. After the benchmark firmware
image is emulated successfully in the container, the logical typical network topology of
the host where the fuzzing task is located, the benchmark, and the successfully emulated
device are as shown in Figure 3. The tap1 network card of the emulation device and the
tap0 network card of the benchmark container are in the same independent subnet, and
the eth0 network card of the host where the fuzzing task is located and the eth1 network
card of the benchmark container are in another independent subnet. Therefore, to enable
the network service provided by the emulation device to be accessed by the host where
the fuzzing task is located and the subsequent fuzzer, the network service port needs to
be forwarded to a particular port on the eth1 network card of the benchmark container.
This step can be achieved by creating a separate port forwarding process inside the bench-
mark container. IoTFuzzBench achieves the above requirements by creating an independ-
ent port forwarding process in the benchmark container. Although the default IP assigned
by the same firmware is consistent with the listening port after multiple successful emu-
lations, the default IP assigned by different firmware and the listening port may differ
after the emulation is successful. When the same firmware image is successfully emulated
multiple times, the default assigned IP and listening port are the same each time. How-
ever, different firmware images may have different IPs assigned by default and listening
ports when the emulation is successful. Therefore, the default assigned IP and open port
information of each benchmark firmware need to be defined in a configuration file. This
configuration file is included as part of the benchmark bundle.

Figure 3. Benchmark firmware runtime logical network topology.

Finally, there is the issue of authentication of fuzzing seeds. Some IoT smart devices
require authentication when communicating with the outside world through network in-
terfaces. In this case, the messages used for communication usually carry authentication
information to meet the authentication requirements of IoT smart devices. At the same
time, due to the timeliness requirement of the authentication information, the authentica-
tion information in the communication message used as the seed of the fuzzing test needs

Figure 3. Benchmark firmware runtime logical network topology.

Finally, there is the issue of authentication of fuzzing seeds. Some IoT smart devices
require authentication when communicating with the outside world through network
interfaces. In this case, the messages used for communication usually carry authentication
information to meet the authentication requirements of IoT smart devices. At the same time,
due to the timeliness requirement of the authentication information, the authentication
information in the communication message used as the seed of the fuzzing test needs to be
dynamically updated after the firmware emulation is successful. The fuzzing seed after
updating the authentication message is valid. The interface for updating seeds was defined
in IoTFuzzBench, and the inputs of this interface were the target IP, target port, and a
fuzzing seed message to be updated. The output was a good fuzzing seed with updated
authentication information. We coded independent seed update scripts for each benchmark
firmware to complete different implementations of this interface. Since all communication
interfaces of a single benchmark firmware usually use the same authentication method, the
fuzzing seeds of all vulnerabilities in a single benchmark firmware can use the same seed
update script. The seed update script is included as part of the benchmark bundle.

3.4. Usable Fuzzers

Fuzzers Selection Principle. To evaluate black-box protocol fuzzers for IoT devices,
we need to select representative black-box protocol fuzzers. We mainly follow these
principles to select fuzzers:

Electronics 2023, 12, 3010 12 of 23

• Diverse Sources: The evaluated fuzzers should have diverse sources, including
open-source fuzzers from academic papers, industrial vendors, and an active open-
source community;

• Ease of Use and Extensibility: Out-of-the-box fuzzers are the most popular type
of fuzzer. However, considering that some popular framework-based fuzzers are
extensible frameworks rather than specific, out-of-the-box fuzzers—because they do
not contain implementations of specific protocols or communication channels—users
need to write their own fuzzers using them. However, these fuzzers are also widely
used. Therefore, the evaluated fuzzers should also include framework-based fuzzers;

• Classic Benchmark Fuzzers: Some classic fuzzers are often used as benchmark fuzzers
in academic papers. These fuzzers should also be considered for evaluation.

So far, IoTFuzzBench has integrated seven available black-box fuzzers, including
Snipuzz [11], T-Reqs [35], Mutiny [36], Fuzzotron [37], Boofuzz-Default [38], Boofuzz-
Byte [38], and Boofuzz-Reversal [38]. These fuzzers all support fuzzing target IoT devices
through the network. Among them, Snipuzz and T-Reqs are both articles published in
the top security conference ACM CCS 2021 [39] and have been open-sourced. Mutiny is
an open-source fuzzer from Cisco with over 500 stars on GitHub. Fuzzotron is an active
community fuzzer with more than 350 stars on GitHub that has been continuously updated
and maintained over the past six months. Snipuzz, T-Reqs, Mutiny, and Fuzzotron are all
out-of-the-box fuzzers. Boofuzz is a typical representative of generative fuzzer frameworks.
Similar frameworks include Sulley [40] and KittyFuzzer [41]. Among them, Boofuzz is the
successor of Sulley and has better functionality and performance than Sulley. KittyFuzzer is
another fuzzer framework inspired by Sulley, but its last update was four years ago and it is
no longer maintained. Boofuzz has the most active community and has been continuously
updated over the past three months. At the same time, Boofuzz is also widely used as a
benchmark fuzzer in various academic papers [11,15,42]. Therefore, we chose Boofuzz as a
representative of generative fuzzer frameworks.

It should be noted that Boofuzz, as a classic fuzzing tool, is usually used for three
mutation strategies when it is used in comparative experiments of fuzzing by existing
research work, including Boofuzz-Default, Boofuzz-Byte, and Boofuzz-Reversal [11]. In the
Boofuzz-Default strategy, each message in the input is set to a whole string, and Boofuzz
takes the message as a string for mutation testing. In the Boofuzz-Byte strategy, each
message in the input is set as a complete byte stream, and each byte in Boofuzz is mutated
individually. In the Boofuzz-Reversal strategy, non-data domains are mutated while data
domains remain unchanged. IoTFuzzBench evaluates Boofuzz with these three strategies
as three separate fuzzers. As Boofuzz is a flexible and customizable fuzzer, it is necessary to
manually code a corresponding fuzzing script that can run independently for each fuzzing
seed message. In this script, researchers can customize the format of the message, the fields
that need to be mutated, and the mutation method. Performing this process manually
is, undoubtedly, very complex and time-consuming, so we implemented the automated
generation process of Boofuzz scripts by employing these three strategies based on our
published work PDFuzzerGen [9]. Every time IoTFuzzBench conducts a Boofuzz-related
evaluation experiment, the corresponding Boofuzz script is dynamically generated, and
the fuzzing process is automatically completed after generation;

Fuzzer Runtime Environment: In order to better complete the evaluation experiment,
we chose Docker as the primary container tool for fuzzing experiments. Encapsulating the
fuzzer in a Docker container has several benefits. First, resource allocation and isolation of
Docker containers are more accessible to control than fuzzing on physical machines. At
the same time, information, such as the traffic generated by the fuzzer and the computing
resource consumption during runtime, is also more convenient to be counted. This provides
a reasonable basis for a fair fuzzing evaluation. Second, Docker is more lightweight and
uses fewer computing resources than a virtual machine. Finally, Docker can be more
convenient for operation, maintenance, and management;

Electronics 2023, 12, 3010 13 of 23

Fuzzer Bundle: Similar to the benchmark bundle, we named all resource files used
to build a single fuzzer runtime environment as a fuzzer bundle. A typical fuzzer bundle
includes a stand-alone fuzzer and all its dependencies, a Dockerfile, and start-up scripts.
Compared with building benchmark firmware, since the fuzzer operating environment
does not require firmware emulation steps, building the fuzzer operating environment is
more straightforward. For each fuzzer participating in the evaluation, we wrote a Dockerfile
that supported its independent operation. It is worth noting that, to enable each fuzzer
to have a relatively uniform operation and scheduling method, IoTFuzzBench provides
three runtime parameters for each fuzzer container in the form of runtime parameters,
which are the operating environment of the benchmark firmware to be tested, i.e., IP, port,
and updated fuzzing seeds. The start-up scripts of each fuzzer specifically use these three
parameters and implement the start-up process of the fuzzer separately.

3.5. Performance Metrics

Current black-box protocol fuzzers for IoT devices need comprehensive and practical
performance metrics when evaluating them. Therefore, we systematically studied perfor-
mance metrics for fuzzing existing black-box protocols, combined with metrics adopted
by grey-box fuzzing evaluation methods [11,13–16,20,21]. Finally, we recapitulated and
presented a set of metrics that can be grouped into five classifications: number of discovered
vulnerabilities, speed of discovering vulnerabilities, stability of discovery process, number
of unique responses, and runtime overhead. Below, we propose specific metrics for each
classification and suggest applications in practical evaluations:

Number of Discovered Vulnerabilities: IoTFuzzBench provides the raw seed for
the mutation of each vulnerability so that crashes triggered by fuzzers can be associated
with specific vulnerabilities. The number of vulnerabilities found by each fuzzer is an
essential and valid indicator. Due to the random nature of fuzzing, multiple stable fuzzing
experiments must be performed to provide more reliable results [20]. Based on the results
of multiple experiments, IoTFuzzBench adds a set of statistical indicators, such as variance,
median, and mean, to enrich the results and uses box plots and critical difference diagrams
to make more decadent visual displays of these results.

It is worth noting that the critical difference diagram is an essential experimental result
for comparing different fuzzers. We show concrete examples in Section 4.2. This diagram
was introduced by Demsar [43] and is often used in machine learning to compare algorithms
on multiple benchmarks [16]. The diagram compares the fuzzers of all benchmarks by
visualizing their average rank and statistical significance [16]. The average rank is calculated
from the median number of vulnerabilities found by each fuzzer across all experiments.
Groups of fuzzers connected by thick lines are not significantly different;

Speed of Discovering Vulnerabilities: Finding vulnerabilities quickly and effi-
ciently is significant. Since IoTFuzzBench can correlate the crash triggered by the fuzzer
with a specific vulnerability, the time for each fuzzer to trigger the crash of the benchmark
firmware can be approximately equivalent to the time when the corresponding vulner-
ability is discovered. On this basis, IoTFuzzBench uses two indicators to measure the
speed of discovering vulnerabilities. First, for all the vulnerabilities selected for testing
in a single experiment, IoTFuzzBench can create multiple tasks in parallel to complete
the testing process and record the time when each fuzzer discovers these vulnerabilities.
This is a relatively quantitative indicator. Second, since the maximum fuzzing time of
each task is the same (for example, each task runs for 24 h), IoTFuzzBench can draw a
curve of the number of vulnerabilities discovered by the fuzzer during the maximum
fuzzing time over time. We can qualitatively judge the speed at which each fuzzer finds
vulnerabilities through the slope of the curve. A fuzzer with a higher slope over time
intervals finds bugs faster;

Stability of Discovery Process: Due to the randomness of fuzzing, there may be dif-
ferences in the performance of fuzzers in multiple experiments under the same conditions.
Therefore, stability is another important indicator to measure the performance of fuzzers.

Electronics 2023, 12, 3010 14 of 23

When a fuzzer is more stable in finding vulnerabilities, its performance in practice is more
reliable and predictable. IoTFuzzBench calculates the relative standard deviation (RSD) [20]
of the number of vulnerabilities found by each fuzzer in each experiment as a specific
quantitative indicator. Lower RSD values mean higher stability;

Number of Unique Responses: Since IoT smart devices usually communicate with
the outside world through network interfaces, the number of unique response messages
from IoT devices is an important indicator to measure the performance of fuzzers. A
higher number of unique responses triggered indicates that the fuzzer may have detected
more code execution paths in IoT smart devices. The more code paths detected, the more
vulnerabilities the fuzzer has the potential to find. From this perspective, although the
number of unique responses cannot be directly equivalent to the precise coverage index
used in grey-box or white-box fuzzing methods, it can also represent the coverage effect
of the fuzzer on the code execution path to a certain extent. IoTFuzzBench uses two
metrics to measure the number of unique responses triggered by a fuzzer. On the one
hand, IoTFuzzBench can count the unique responses triggered by each fuzzer to the same
vulnerability in a single experiment and the average ranking across multiple experiments.
On the other hand, IoTFuzzBench can graph the number of responses over time as each
fuzzer fuzzes each vulnerability. The higher the slope of the curve, the faster the fuzzer can
find a response;

Runtime Overhead: Runtime overhead is an often-overlooked metric. However,
knowing the runtime overhead of a fuzzer during fuzzing is instructive when resources
for running fuzzing experiments are limited. When different fuzzers can successfully find
the same vulnerability, we believe the fuzzer that spends fewer computational resources
performs better. IoTFuzzBench uses memory consumption as a metric to measure the
overhead of different fuzzers.

4. Experiments and Results

Using IoTFuzzBench, we performed extensive experiments on a state-of-the-art set
of seven black-box protocol fuzzers, including Boofuzz-Default, Boofuzz-Byte, Boofuzz-
Reversal, Mutiny, Snipuzz, T-Reqs, and Fuzzotron. Meanwhile, we comprehensively
compared these fuzzers on 30 vulnerabilities in 14 benchmark firmware images according
to 5 categories of performance metrics and repeated the experiment 10 times.

4.1. Experiment Settings

Since IoTFuzzBench establishes the relationship between the benchmark and its vulner-
abilities, we treated each vulnerability as an independent target to be tested. IoTFuzzBench
creates separate fuzzing tasks for each fuzzer/target combination in a complete fuzzing
experiment. In each task, the standard communication message of the communication
interface corresponding to the target vulnerability was used as the seed file, and the fuzzing
process ran for 24 h. All evaluated black-box protocol fuzzers fuzzed the target IoT device
from outside through the network and received the feedback response of the target service
to judge the target service status. When the target service did not respond or the response
timed out, the target service was considered to have crashed. IoTFuzzBench uniformly
implements failure detection as detecting the crash of the target service.

Environments: We conducted all experiments on a single server: 64 Intel Xeon Silver
4314 CPU cores, 2.40 GHz, 256 GB of RAM, 64-bit Ubuntu 22.04 LTS. In each task of each
set of experiments, the fuzzer ran in an independent Docker container and fuzzed the
target benchmark firmware running in another independent Docker container. Benchmark
containers were not shared between tasks. All fuzzers used default or recommended
fuzzing parameters.

Next, we present and analyze the evaluation results in detail according to the five
categories of performance metrics.

Electronics 2023, 12, 3010 15 of 23

4.2. Number of Discovered Vulnerabilities

IoTFuzzBench mainly monitors whether the target benchmark firmware has crashed
as the primary basis for whether the fuzzer triggers the vulnerability. Figure 4a shows
the number of crashes that fuzzers triggered in the benchmark firmware provided by
IoTFuzzBench in 10 experiments. The experimental results show that Fuzzotron and
Mutiny found the most crashes. Among all 30 vulnerabilities, Fuzzotron even found
27 crashes, which is significantly more than the number found by other fuzzers. We
were surprised by the excellent performance of Fuzzotron and Mutiny. Therefore, we
analyzed in detail the complete data packets of the fuzzing process corresponding to all
crashes. Further, we tried to locate the message that triggered the crash and analyze the
cause of the crash.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 23

communication interface corresponding to the target vulnerability was used as the seed

file, and the fuzzing process ran for 24 h. All evaluated black-box protocol fuzzers fuzzed

the target IoT device from outside through the network and received the feedback re-

sponse of the target service to judge the target service status. When the target service did

not respond or the response timed out, the target service was considered to have crashed.

IoTFuzzBench uniformly implements failure detection as detecting the crash of the target

service.

Environments: We conducted all experiments on a single server: 64 Intel Xeon Silver

4314 CPU cores, 2.40 GHz, 256 GB of RAM, 64-bit Ubuntu 22.04 LTS. In each task of each

set of experiments, the fuzzer ran in an independent Docker container and fuzzed the

target benchmark firmware running in another independent Docker container. Bench-

mark containers were not shared between tasks. All fuzzers used default or recommended

fuzzing parameters.

Next, we present and analyze the evaluation results in detail according to the five

categories of performance metrics.

4.2. Number of Discovered Vulnerabilities

IoTFuzzBench mainly monitors whether the target benchmark firmware has crashed

as the primary basis for whether the fuzzer triggers the vulnerability. Figure 4a shows the

number of crashes that fuzzers triggered in the benchmark firmware provided by IoT-

FuzzBench in 10 experiments. The experimental results show that Fuzzotron and Mutiny

found the most crashes. Among all 30 vulnerabilities, Fuzzotron even found 27 crashes,

which is significantly more than the number found by other fuzzers. We were surprised

by the excellent performance of Fuzzotron and Mutiny. Therefore, we analyzed in detail

the complete data packets of the fuzzing process corresponding to all crashes. Further, we

tried to locate the message that triggered the crash and analyze the cause of the crash.

Through extensive analysis, we found that most crashes caused by Fuzzotron and

Mutiny were not due to the real vulnerabilities corresponding to the raw seeds. Most

crashes caused by Fuzzotron and Mutiny were denial-of-service effects. Specifically, many

mutated messages generated by Fuzzotron and Mutiny during the fuzzing caused a de-

nial-of-service attack on the emulation device under test. There were two reasons for this

phenomenon. On the one hand, the limited computing resources of the emulation IoT

devices led to low processing capacity for many requests. This situation of limited com-

puting resources is widespread even on real devices [22]. On the other hand, some appli-

cations in the firmware had defects in processing requests. When they received a mal-

formed variation message simultaneously, their response time was too long, resulting in

a denial-of-service during the fuzzing process. However, the emulation device service re-

turned to normal after the fuzzing process.

(a) (b)

Figure 4. The number of crashes detected by fuzzers: (a) The number of crashes without regression

judgment. (b) The number of crashes with regression judgment.
Figure 4. The number of crashes detected by fuzzers: (a) The number of crashes without regression
judgment. (b) The number of crashes with regression judgment.

Through extensive analysis, we found that most crashes caused by Fuzzotron and
Mutiny were not due to the real vulnerabilities corresponding to the raw seeds. Most
crashes caused by Fuzzotron and Mutiny were denial-of-service effects. Specifically, many
mutated messages generated by Fuzzotron and Mutiny during the fuzzing caused a denial-
of-service attack on the emulation device under test. There were two reasons for this
phenomenon. On the one hand, the limited computing resources of the emulation IoT de-
vices led to low processing capacity for many requests. This situation of limited computing
resources is widespread even on real devices [22]. On the other hand, some applications in
the firmware had defects in processing requests. When they received a malformed variation
message simultaneously, their response time was too long, resulting in a denial-of-service
during the fuzzing process. However, the emulation device service returned to normal
after the fuzzing process.

From the above results, Fuzzotron and Mutiny have significant advantages in finding
the denial-of-service problems of IoT devices. However, at the same time, this phenomenon
that causes a denial-of-service effect in the fuzzing process and service recovery after the
fuzzing is over is not an actual vulnerability. Therefore, we further enriched the monitor
and increased the regression judgment of service availability. After a crash was found, the
monitor performed a secondary regression judgment on the availability of the emulation
device at a specific interval to avoid the interference of the above denial-of-service effect on
the results.

Then, we conducted a complete experiment again and counted the results, as shown
in Figure 4b. The critical difference ranking of each fuzzer is shown in Figure 5. The
experimental results show that the denial-of-service effect caused by Fuzzotron and Mutiny
can be effectively detected, and this situation was not considered as the vulnerability found.
Among all fuzzers, Snipuzz performed best in finding vulnerabilities, ranking first in
the number of vulnerabilities found in each experiment. The performances of Boofuzz-

Electronics 2023, 12, 3010 16 of 23

Reversal and Mutiny were slightly weaker than that of Snipuzz. Boofuzz-Byte was the
worst performer. This shows that simply changing the communication message into a
byte stream cannot effectively discover the vulnerabilities in the intelligent devices of the
Internet of Things.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 23

From the above results, Fuzzotron and Mutiny have significant advantages in finding
the denial-of-service problems of IoT devices. However, at the same time, this phenome-
non that causes a denial-of-service effect in the fuzzing process and service recovery after
the fuzzing is over is not an actual vulnerability. Therefore, we further enriched the mon-
itor and increased the regression judgment of service availability. After a crash was found,
the monitor performed a secondary regression judgment on the availability of the emula-
tion device at a specific interval to avoid the interference of the above denial-of-service
effect on the results.

Then, we conducted a complete experiment again and counted the results, as shown
in Figure 4b. The critical difference ranking of each fuzzer is shown in Figure 5. The ex-
perimental results show that the denial-of-service effect caused by Fuzzotron and Mutiny
can be effectively detected, and this situation was not considered as the vulnerability
found. Among all fuzzers, Snipuzz performed best in finding vulnerabilities, ranking first
in the number of vulnerabilities found in each experiment. The performances of Boofuzz-
Reversal and Mutiny were slightly weaker than that of Snipuzz. Boofuzz-Byte was the
worst performer. This shows that simply changing the communication message into a
byte stream cannot effectively discover the vulnerabilities in the intelligent devices of the
Internet of Things.

Figure 5. Critical difference diagram of the number of vulnerabilities found by the fuzzer in the
experiment.

Due to the randomness of fuzzing, if each fuzzer can find a specific vulnerability in
any experiment, we believe the fuzzer can successfully find this vulnerability. Table 2 pro-
vides details of the vulnerabilities that each fuzzer can successfully discover. Among the
30 verified vulnerabilities, the evaluated fuzzers triggered 14, and no fuzzer triggered
more than 9 vulnerabilities. It is worth noting that, although Snipuzz found the most vul-
nerabilities, other fuzzers could still find some vulnerabilities that Snipuzz could not. For
example, Fuzzotron and Mutiny successfully discovered CVE-2020-10215, Fuzzotron suc-
cessfully discovered CVE-2018-5767 and CVE-2020-10987, Boofuzz-Reversal successfully
discovered CVE-2022-25428, and Mutiny successfully discovered CVE-2020-10216. This
shows that different fuzzers may have their own advantages in discovering vulnerabili-
ties, and a better-performance fuzzer cannot directly replace all other fuzzers of the same
type.

Table 2. Average time to discover vulnerabilities per fuzzer, in seconds.

Vulnerability Snipuzz Boofuzz Re-
versal

Mutiny Boofuzz De-
fault

T-Reqs Fuzzotron Boofuzz
Byte

CVE-2017-13772 329.3 1490.8 - - - - -
CVE-2017-17215 - - - - - - -
CVE-2018-5767 - - - - - 573.8 -
CVE-2018-14558 - - - - - - -

Figure 5. Critical difference diagram of the number of vulnerabilities found by the fuzzer in the experiment.

Due to the randomness of fuzzing, if each fuzzer can find a specific vulnerability in
any experiment, we believe the fuzzer can successfully find this vulnerability. Table 2
provides details of the vulnerabilities that each fuzzer can successfully discover. Among
the 30 verified vulnerabilities, the evaluated fuzzers triggered 14, and no fuzzer triggered
more than 9 vulnerabilities. It is worth noting that, although Snipuzz found the most
vulnerabilities, other fuzzers could still find some vulnerabilities that Snipuzz could not.
For example, Fuzzotron and Mutiny successfully discovered CVE-2020-10215, Fuzzotron
successfully discovered CVE-2018-5767 and CVE-2020-10987, Boofuzz-Reversal successfully
discovered CVE-2022-25428, and Mutiny successfully discovered CVE-2020-10216. This
shows that different fuzzers may have their own advantages in discovering vulnerabilities,
and a better-performance fuzzer cannot directly replace all other fuzzers of the same type.

4.3. Speed of Discovering Vulnerabilities

Table 2 lists the average time for the fuzzer to discover each vulnerability. The vulner-
ability detection time of each fuzzer in Table 2 varies from a few seconds to thousands of
seconds. Figure 6 visualizes the curve of the number of vulnerabilities found by each fuzzer
over time during each fuzzing task. From the experimental results, we can see the speed of
each fuzzer to discover vulnerabilities. Snipuzz quickly discovered multiple vulnerabilities
within tens of seconds after the experiment began and performed the best. However, the
speed of the discovered vulnerabilities slowed down and stopped growing after 330 s.
About 10 to 50 s after the start of the experiment, Boofuzz-Default performed the best. The
number of vulnerabilities found by Boofuzz-Default increased rapidly but then stopped
growing. In about 50 s to 100 s, Mutiny found the fastest vulnerabilities, and the number of
vulnerabilities found after more than 70 s exceeded Boofuzz-Default. Boofuzz-Default was
the fastest to discover vulnerabilities between 1000 s and 1600 s. The experimental results
show that different fuzzers significantly differ in the speed of discovering vulnerabilities
in different periods. When researchers need a fuzzer that can quickly find vulnerabilities
in a few minutes, but there is no requirement for the number of vulnerabilities found,
Snipuzz, Mutiny, and Boofuzz-Default may be better choices. Snipuzz is a better choice
when researchers need a fuzzer to find many vulnerabilities over a long time.

Electronics 2023, 12, 3010 17 of 23

Table 2. Average time to discover vulnerabilities per fuzzer, in seconds.

Vulnerability Snipuzz Boofuzz
Reversal Mutiny Boofuzz

Default T-Reqs Fuzzotron Boofuzz
Byte

CVE-2017-13772 329.3 1490.8 - - - - -
CVE-2017-17215 - - - - - - -
CVE-2018-5767 - - - - - 573.8 -

CVE-2018-14558 - - - - - - -
CVE-2018-16333 14.1 - - - - - -
CVE-2018-16334 - - - - - - -
CVE-2018-18708 - - - - - - -
CVE-2019-6989 12.4 1524.6 - - - - -
CVE-2019-7297 - - - - - - -
CVE-2019-7298 - - - - - - -

CVE-2019-10892 234.3 1666.5 73.5 33.3 78.4 666.4 643.3
CVE-2019-17510 18.3 - - - - - -
CVE-2019-17621 - - - - - - -
CVE-2020-8423 - - - - - - -

CVE-2020-10215 - - 104.7 - - 2785.8 -
CVE-2020-10216 - - 39.8 - - - -
CVE-2020-10987 - - - - - 176.8 -
CVE-2020-13390 167.4 - 89.3 36.3 - - -
CVE-2020-13782 - - - - - - -
CVE-2020-25366 - - - - - - -
CVE-2020-25367 - - - - - - -
CVE-2020-25368 - - - - - - -
CVE-2021-43474 - - - - - - -
CVE-2022-25428 - 1278.4 - - - - -
CVE-2022-25435 107.6 1186.4 69.6 34.9 - - -
CVE-2022-27016 122.4 1234.2 68.4 43.4 - - -
CVE-2022-34528 - - - - - - -
CVE-2022-35619 - - - - - - -
CVE-2022-35620 - - - - - - -
CVE-2022-46476 - - - - - - -

“-” indicates that the vulnerability was never found during the entire evaluation process.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 23

Figure 6. The number of vulnerabilities found by each fuzzer varies over time.

4.4. Stability of Discovery Process
Figure 7 shows the RSD of the number of vulnerabilities found by each fuzzer across

ten experiments. A lower RSD indicates a better stability of the fuzzer [20]. We can find
the following observations. First, all fuzzers differed in the number of vulnerabilities
found in each set of experiments. This shows that the fuzzer has randomness in the fuzz-
ing process. This also illustrates the importance of repeating fuzzing experiments multiple
times. Secondly, Snipuzz and Boofuzz-Byte had lower RSD, while Boofuzz-Reversal,
Boofuzz-Default, and Fuzzotron had higher RSD values, with little difference. Mutiny had
the highest RSD value. This shows that Snipuzz and Boofuzz-Byte have good stability,
while the stability of Mutiny’s vulnerability discovery process is relatively poor. It is im-
portant to note that the stability of discovery vulnerabilities process indicators is adjunct
to the number of discovered vulnerabilities indicators, since finding more vulnerabilities
is more critical than consistently finding fewer vulnerabilities.

Figure 7. The RSD of the number of vulnerabilities.

Figure 6. The number of vulnerabilities found by each fuzzer varies over time.

4.4. Stability of Discovery Process

Figure 7 shows the RSD of the number of vulnerabilities found by each fuzzer across
ten experiments. A lower RSD indicates a better stability of the fuzzer [20]. We can find the

Electronics 2023, 12, 3010 18 of 23

following observations. First, all fuzzers differed in the number of vulnerabilities found
in each set of experiments. This shows that the fuzzer has randomness in the fuzzing
process. This also illustrates the importance of repeating fuzzing experiments multiple
times. Secondly, Snipuzz and Boofuzz-Byte had lower RSD, while Boofuzz-Reversal,
Boofuzz-Default, and Fuzzotron had higher RSD values, with little difference. Mutiny had
the highest RSD value. This shows that Snipuzz and Boofuzz-Byte have good stability,
while the stability of Mutiny’s vulnerability discovery process is relatively poor. It is
important to note that the stability of discovery vulnerabilities process indicators is adjunct
to the number of discovered vulnerabilities indicators, since finding more vulnerabilities is
more critical than consistently finding fewer vulnerabilities.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 23

Figure 6. The number of vulnerabilities found by each fuzzer varies over time.

4.4. Stability of Discovery Process
Figure 7 shows the RSD of the number of vulnerabilities found by each fuzzer across

ten experiments. A lower RSD indicates a better stability of the fuzzer [20]. We can find
the following observations. First, all fuzzers differed in the number of vulnerabilities
found in each set of experiments. This shows that the fuzzer has randomness in the fuzz-
ing process. This also illustrates the importance of repeating fuzzing experiments multiple
times. Secondly, Snipuzz and Boofuzz-Byte had lower RSD, while Boofuzz-Reversal,
Boofuzz-Default, and Fuzzotron had higher RSD values, with little difference. Mutiny had
the highest RSD value. This shows that Snipuzz and Boofuzz-Byte have good stability,
while the stability of Mutiny’s vulnerability discovery process is relatively poor. It is im-
portant to note that the stability of discovery vulnerabilities process indicators is adjunct
to the number of discovered vulnerabilities indicators, since finding more vulnerabilities
is more critical than consistently finding fewer vulnerabilities.

Figure 7. The RSD of the number of vulnerabilities.

Figure 7. The RSD of the number of vulnerabilities.

4.5. Number of Unique Responses

Figure 8 shows the average ranking of each fuzzer for the number of triggered
responses across 10 experiments. Figure 9 shows the curve of the average number of
responses triggered by each fuzzer in the process of fuzzing some vulnerabilities in the
10 experiments. The above experimental results show that the Fuzzotron fuzzer triggered
the most significant unique number of responses and the highest average ranking, while
Boofuzz-Default and Boofuzz-Byte performed the worst. The average ranks of the rest of
the fuzzers were relatively close. The number of responses can reflect the code execution
path triggered by the fuzzer from the side. Executing more code paths means the fuzzer
is more likely to find a vulnerability. The large number of responses that Fuzzotron
and Mutiny can trigger also explains why they can find the problems related to the
denial-of-service of the target device.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 23

4.5. Number of Unique Responses
Figure 8 shows the average ranking of each fuzzer for the number of triggered re-

sponses across 10 experiments. Figure 9 shows the curve of the average number of re-
sponses triggered by each fuzzer in the process of fuzzing some vulnerabilities in the 10
experiments. The above experimental results show that the Fuzzotron fuzzer triggered the
most significant unique number of responses and the highest average ranking, while
Boofuzz-Default and Boofuzz-Byte performed the worst. The average ranks of the rest of
the fuzzers were relatively close. The number of responses can reflect the code execution
path triggered by the fuzzer from the side. Executing more code paths means the fuzzer
is more likely to find a vulnerability. The large number of responses that Fuzzotron and
Mutiny can trigger also explains why they can find the problems related to the denial-of-
service of the target device.

Figure 8. Critical difference diagram of the number of responses triggered by fuzzers in the experi-
ment.

Figure 9. The average number of unique responses found by each fuzzer over time for a subset of
typical vulnerabilities across 10 experiments, in seconds.

Figure 8. Critical difference diagram of the number of responses triggered by fuzzers in the experiment.

Electronics 2023, 12, 3010 19 of 23

Electronics 2023, 12, x FOR PEER REVIEW 19 of 23

4.5. Number of Unique Responses
Figure 8 shows the average ranking of each fuzzer for the number of triggered re-

sponses across 10 experiments. Figure 9 shows the curve of the average number of re-
sponses triggered by each fuzzer in the process of fuzzing some vulnerabilities in the 10
experiments. The above experimental results show that the Fuzzotron fuzzer triggered the
most significant unique number of responses and the highest average ranking, while
Boofuzz-Default and Boofuzz-Byte performed the worst. The average ranks of the rest of
the fuzzers were relatively close. The number of responses can reflect the code execution
path triggered by the fuzzer from the side. Executing more code paths means the fuzzer
is more likely to find a vulnerability. The large number of responses that Fuzzotron and
Mutiny can trigger also explains why they can find the problems related to the denial-of-
service of the target device.

Figure 8. Critical difference diagram of the number of responses triggered by fuzzers in the experi-
ment.

Figure 9. The average number of unique responses found by each fuzzer over time for a subset of
typical vulnerabilities across 10 experiments, in seconds.

Figure 9. The average number of unique responses found by each fuzzer over time for a subset of
typical vulnerabilities across 10 experiments, in seconds.

4.6. Runtime Overhead

Figure 10 shows the average memory consumption of each fuzzer in the process
of fuzzing different vulnerabilities. Fuzzotron averaged less memory consumption than
other fuzzers during fuzzing, but its maximum memory consumption was higher than
Boofuzz-Byte, Mutiny, and T-Reqs. The memory consumption of Boofuzz-Byte, Mutiny,
and T-Reqs was relatively close, and the memory consumption of Boofuzz-Default and
Boofuzz-Reversal was the most. Although the memory consumption of each fuzzer was
different, the average memory consumption values were within 200 MB. Compared with
the memory of several GBs or dozens of GBs in the current server, the memory consumption
of the fuzzer is not the bottleneck that limits the performance of the fuzzer to discovering
vulnerabilities. However, if researchers need to deploy dozens or even hundreds of fuzzers
with fewer computing resources, Fuzzotron, Boofuzz-Byte, Mutiny, and T-Reqs, with an
average memory consumption of less than 30 MB, may be better choices.

Electronics 2023, 12, 3010 20 of 23

Electronics 2023, 12, x FOR PEER REVIEW 20 of 23

4.6. Runtime Overhead
Figure 10 shows the average memory consumption of each fuzzer in the process of

fuzzing different vulnerabilities. Fuzzotron averaged less memory consumption than
other fuzzers during fuzzing, but its maximum memory consumption was higher than
Boofuzz-Byte, Mutiny, and T-Reqs. The memory consumption of Boofuzz-Byte, Mutiny,
and T-Reqs was relatively close, and the memory consumption of Boofuzz-Default and
Boofuzz-Reversal was the most. Although the memory consumption of each fuzzer was
different, the average memory consumption values were within 200MB. Compared with
the memory of several GBs or dozens of GBs in the current server, the memory consump-
tion of the fuzzer is not the bottleneck that limits the performance of the fuzzer to discov-
ering vulnerabilities. However, if researchers need to deploy dozens or even hundreds of
fuzzers with fewer computing resources, Fuzzotron, Boofuzz-Byte, Mutiny, and T-Reqs,
with an average memory consumption of less than 30MB, may be better choices.

Figure 10. Average and maximum memory consumption (MB) of each fuzzer.

5. Discussion and Future Work
Although IoTFuzzBench can facilitate the complete process of fuzzing evaluation of

black-box protocols for IoT smart devices, since this is the first step in an automated, com-
prehensive fuzzing evaluation, we would like to discuss current design limitations and
explore directions for future improvements.

More Benchmark Vulnerability Types: The current benchmark vulnerabilities have
room for further expansion, mainly reflected in the types of vulnerabilities in the bench-
mark firmware. The currently chosen types of vulnerabilities mainly include memory cor-
ruption and command injection vulnerabilities. Although these two types of vulnerabili-
ties account for the highest proportion of all vulnerabilities in IoT smart devices in the
vulnerability database and are highly representative, more types of vulnerabilities will
undoubtedly further reflect the differences in different types of vulnerabilities among the
performance of fuzzers. Enriching the type and number of vulnerabilities in IoT-
FuzzBench is part of our ongoing work to improve IoTFuzzBench;

Figure 10. Average and maximum memory consumption (MB) of each fuzzer.

5. Discussion and Future Work

Although IoTFuzzBench can facilitate the complete process of fuzzing evaluation
of black-box protocols for IoT smart devices, since this is the first step in an automated,
comprehensive fuzzing evaluation, we would like to discuss current design limitations and
explore directions for future improvements.

More Benchmark Vulnerability Types: The current benchmark vulnerabilities have
room for further expansion, mainly reflected in the types of vulnerabilities in the benchmark
firmware. The currently chosen types of vulnerabilities mainly include memory corruption
and command injection vulnerabilities. Although these two types of vulnerabilities account
for the highest proportion of all vulnerabilities in IoT smart devices in the vulnerability
database and are highly representative, more types of vulnerabilities will undoubtedly
further reflect the differences in different types of vulnerabilities among the performance of
fuzzers. Enriching the type and number of vulnerabilities in IoTFuzzBench is part of our
ongoing work to improve IoTFuzzBench;

More Fuzzer Types: IoTFuzzBench is currently focused on evaluating IoT black-box
protocol fuzzers. Nevertheless, the extensibility of IoTFuzzBench allows it to be further
improved for evaluating other types of IoT protocol fuzzers, such as grey-box protocol
fuzzers. The key to achieve this step is collecting the coverage of emulated firmware images
and successfully feeding it back to the target grey-box fuzzer. Meanwhile, for a single
fuzzer, repeated experiments with different fuzzing parameters can help fuzzer developers
debug and optimize their fuzzers. This will be one of our next steps;

Vulnerability Score: Most of the vulnerabilities selected in IoTFuzzBench are high-
risk or critical-risk vulnerabilities in the CVSS. Although these vulnerabilities are very
representative, the harm and value of each vulnerability are relatively close. In practice,
many vulnerabilities still vary widely in harm and value. A fuzzer that finds one high-value
bug is likely to perform better than a fuzzer that finds multiple low-value bugs. Therefore,
the quality of the vulnerabilities found by the fuzzer can also be used as a class of indicators
to further measure the performance of the fuzzer;

Comprehensive Scoring Method: IoTFuzzBench currently evaluates fuzzers on five
categories of metrics that reflect different aspects of fuzzing performance. So far, these
metrics are independent and do not provide a single score that can measure the combined
performance of individual fuzzers. However, we also recognize that some researchers may

Electronics 2023, 12, 3010 21 of 23

want to measure the combined performance of individual fuzzers using a single score. In
such cases, it may be necessary to devise a composite scoring method. A composite scoring
method could aggregate indicators of different dimensions and calculate a specific value
to evaluate the fuzzer performance quantitatively. Such a method must also consider the
priority and weight relationship between various indicators, which may vary depending
on the fuzzing objectives and scenarios. Designing a comprehensive scoring method is one
of our next steps;

Fuzzer Performance Analysis: Different fuzzers may have different performances on
various performance metrics, and analyzing the root causes of this differential performance
would help researchers to optimize and improve their fuzzers. The factors that may affect
the fuzzing performance include the fuzzing parameter setting, the test case generation
strategy, the target firmware characteristic, and the inherent randomness of fuzzing. So far,
IoTFuzzBench has focused on improving the efficiency of fuzzing evaluation for researchers
and reducing the burden of fuzzing evaluation in the IoT scenario. Providing further
analysis methods is another of our next steps;

Formal Methods: Using formal methods can help improve the accuracy, complete-
ness, scalability, and applicability of the system [44,45]. Integrating formal methods with
the IoTFuzzBench may be approached from several aspects, for example, modeling part
of IoTFuzzBench precisely, using modularity and compositionality to divide the whole
system into smaller subsystems, and considering data independence in the fuzzing
process. Integrating formal methods into the IoTFuzzBench framework is one of our
future directions.

6. Conclusions

In this paper, we present and implement IoTFuzzBench, a scalable, modular, metrics-
driven IoT black-box protocol fuzzer evaluation framework for evaluating fuzzers compre-
hensively and fairly. IoTFuzzBench implements an automated and standardized fuzzer
evaluation process, including 7 fuzzers, 14 real-world benchmark firmware images, 30 veri-
fied real-world vulnerabilities in benchmark firmware, whole seeds corresponding to each
vulnerability, and 5 categories of evaluation metrics. Using IoTFuzzBench, we comprehen-
sively compared state-of-the-art fuzzers. The experimental results show that IoTFuzzBench
can effectively evaluate the differential performance of different fuzzers on every indicator.
This demonstrates the importance of composite metrics. With the adoption of real-world
benchmark evaluation frameworks such as IoTFuzzBench, IoT black-box protocol fuzzer
evaluations will become reproducible, allowing researchers to demonstrate the actual
contribution of new fuzzing methods.

Author Contributions: Conceptualization, Y.C. and W.H.; methodology, Y.C. and W.F.; software, Y.C.
and W.C.; validation, Y.C., W.C. and G.Y.; resources, W.F.; data curation, W.C.; writing—original draft
preparation, Y.C.; writing—review and editing, Y.C., W.L. and W.H.; visualization, W.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the major project of Science and Technology Innovation 2030,
“The next generation of Artificial Intelligence”, under Grant Number 2021ZD0111400, and the
Fundamental Research Funds for the Central Universities under Grant Number 3132018XNG1814
and 3132018XNG1815.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request. The disclosed security vulnerabilities used and found in this
paper can be accessed in the CVE (https://cve.mitre.org/, accessed on 8 July 2023).

Acknowledgments: We would like to sincerely thank the reviewers for their insightful comments,
which helped us improve this work.

Conflicts of Interest: The authors declare no conflict of interest.

https://cve.mitre.org/

Electronics 2023, 12, 3010 22 of 23

References
1. Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive

Survey of Emerging Technologies. IEEE/CAA J. Autom. Sin. 2021, 8, 718–752. [CrossRef]
2. Redini, N.; Continella, A.; Das, D.; Pasquale, G.D.; Spahn, N.; Machiry, A.; Bianchi, A.; Kruegel, C.; Vigna, G. Diane: Identifying

Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices. In Proceedings of the 2021 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021; pp. 484–500.

3. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2021, with Forecasts from 2022 to 2030. Available
online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed on 18 June 2023).

4. Travel Routers, NAS Devices among Easily Hacked IoT Devices. Available online: https://threatpost.com/travel-routers-nas-
devices-among-easily-hacked-iot-devices/124877/ (accessed on 18 June 2023).

5. Lack of IoT Security Could Undermine Growth. Available online: https://www.rsaconference.com/library/blog/lack-of-iot-
security-could-undermine-growth (accessed on 18 June 2023).

6. 2020 Unit 42 IoT Threat Report. Available online: https://iotbusinessnews.com/download/white-papers/UNIT42-IoT-Threat-
Report.pdf (accessed on 18 June 2023).

7. Zhu, X.; Wen, S.; Camtepe, S.; Xiang, Y. Fuzzing: A Survey for Roadmap. ACM Comput. Surv. (CSUR) 2022, 54, 1–36. [CrossRef]
8. Feng, X.; Zhu, X.; Han, Q.L.; Zhou, W.; Wen, S.; Xiang, Y. Detecting Vulnerability on IoT Device Firmware: A Survey. IEEE/CAA J.

Autom. Sin. 2022, 10, 25–41. [CrossRef]
9. Cheng, Y.; Fan, W.; Huang, W.; Yu, G.; Han, Y.; Dong, H.; Liu, W. PDFuzzerGen: Policy-Driven Black-Box Fuzzer Generation for

Smart Devices. Secur. Commun. Netw. 2022, 2022, 9788219. [CrossRef]
10. Toolkit to Emulate Firmware and Analyse It for Security Vulnerabilities. Available online: https://github.com/attify/firmware-

analysis-toolkit (accessed on 18 June 2023).
11. Feng, X.; Sun, R.; Zhu, X.; Xue, M.; Wen, S.; Liu, D.; Nepal, S.; Xiang, Y. Snipuzz: Black-box Fuzzing of IoT Firmware via Message

Snippet Inference. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, New York,
NY, USA, 15–19 November 2021; pp. 337–350.

12. Shu, Z.; Yan, G. IoTInfer: Automated Blackbox Fuzz Testing of IoT Network Protocols Guided by Finite State Machine Inference.
IEEE Internet Things J. 2022, 9, 22737–22751. [CrossRef]

13. Chen, J.; Diao, W.; Zhao, Q.; Zuo, C.; Lin, Z.; Wang, X.; Lau, W.C.; Sun, M.; Yang, R.; Zhang, K. IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing. In Proceedings of the Network and Distributed Systems Security (NDSS)
Symposium 2018, San Diego, CA, USA, 18–21 February 2018.

14. Wang, D.; Zhang, X.; Chen, T.; Li, J. Discovering Vulnerabilities in COTS IoT Devices through Blackbox Fuzzing Web Management
Interface. Secur. Commun. Netw. 2019, 2019, 5076324. [CrossRef]

15. Zhang, Y.; Huo, W.; Jian, K.; Shi, J.; Liu, L.; Zou, Y.; Zhang, C.; Liu, B. ESRFuzzer: An enhanced fuzzing framework for physical
SOHO router devices to discover multi-Type vulnerabilities. Cybersecurity 2021, 4, 24. [CrossRef]

16. Metzman, J.; Szekeres, L.; Simon, L.; Sprabery, R.; Arya, A. Fuzzbench: An open fuzzer benchmarking platform and service. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, New York, NY, USA, 23–28 August 2021; pp. 1393–1403.

17. Klees, G.; Ruef, A.; Cooper, B.; Wei, S.; Hicks, M. Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, New York, NY, USA, 15–19 October 2018; pp. 2123–2138.

18. Peng, H.; Shoshitaishvili, Y.; Payer, M. T-Fuzz: Fuzzing by program transformation. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 697–710.

19. Li, Y.; Chen, B.; Chandramohan, M.; Lin, S.; Liu, Y.; Tiu, A. Steelix: Program-state based binary fuzzing. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, New York, NY, USA, 4–8 September 2017; pp. 627–637.

20. Li, Y.; Ji, S.; Chen, Y.; Liang, S.; Lee, W.; Chen, Y.; Lyu, C.; Wu, C.; Beyah, R.; Cheng, P.; et al. UNIFUZZ: A Holistic and Pragmatic
Metrics-Driven Platform for Evaluating Fuzzers. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21),
virtually, 11–13 August 2021; pp. 2777–2794.

21. Hazimeh, A.; Herrera, A.; Payer, M. Magma: A ground-truth fuzzing benchmark. In Proceedings of the ACM on Measurement
and Analysis of Computing Systems, New York, NY, USA, 30 November 2020; Volume 4, pp. 1–29.

22. Yun, J.; Rustamov, F.; Kim, J.; Shin, Y. Fuzzing of Embedded Systems: A Survey. ACM Comput. Surv. 2022, 55, 1–33. [CrossRef]
23. IoTFuzzBench. Available online: https://github.com/a101e-lab/IoTFuzzBench (accessed on 18 June 2023).
24. Lee, S.; Han, H.S.; Cha, S.K.; Son, S. Montage: A Neural Network Language Model-Guided JavaScript Engine Fuzzer. In

Proceedings of the 29th USENIX Conference on Security Symposium, Boston, MA, USA, 12–14 August 2020; pp. 2613–2630.
25. Han, H.S.; Oh, D.H.; Cha, S.K. CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript

Engines. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2019, San Diego, CA, USA,
24–27 February 2019.

26. Dinh, S.T.; Cho, H.; Martin, K.; Oest, A.; Zeng, K.; Kapravelos, A.; Ahn, G.; Bao, T.; Wang, R.; Doupe, A.; et al. Favocado: Fuzzing
the Binding Code of JavaScript Engines Using Semantically Correct Test Cases. In Proceedings of the Network and Distributed
Systems Security (NDSS) Symposium 2021, virtually, 21–25 February 2021.

27. Huang, H.; Yao, P.; Wu, R.; Shi, Q.; Zhang, C. Pangolin: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1613–1627.

https://doi.org/10.1109/JAS.2021.1003925
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://threatpost.com/travel-routers-nas-devices-among-easily-hacked-iot-devices/124877/
https://threatpost.com/travel-routers-nas-devices-among-easily-hacked-iot-devices/124877/
https://www.rsaconference.com/library/blog/lack-of-iot-security-could-undermine-growth
https://www.rsaconference.com/library/blog/lack-of-iot-security-could-undermine-growth
https://iotbusinessnews.com/download/white-papers/UNIT42-IoT-Threat-Report.pdf
https://iotbusinessnews.com/download/white-papers/UNIT42-IoT-Threat-Report.pdf
https://doi.org/10.1145/3512345
https://doi.org/10.1109/JAS.2022.105860
https://doi.org/10.1155/2022/9788219
https://github.com/attify/firmware-analysis-toolkit
https://github.com/attify/firmware-analysis-toolkit
https://doi.org/10.1109/JIOT.2022.3182589
https://doi.org/10.1155/2019/5076324
https://doi.org/10.1186/s42400-021-00091-9
https://doi.org/10.1145/3538644
https://github.com/a101e-lab/IoTFuzzBench

Electronics 2023, 12, 3010 23 of 23

28. Aschermann, C.; Schumilo, S.; Blazytko, T.; Gawlik, R.; Holz, T. REDQUEEN: Fuzzing with Input-to-State Correspondence. In
Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2019, San Diego, CA, USA, 24–27 February
2019; pp. 1–15.

29. Gan, S.; Zhang, C.; Qin, X.; Tu, X.; Li, K.; Pei, Z.; Chen, Z. CollAFL: Path Sensitive Fuzzing. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 679–696.

30. Zheng, Y.; Davanian, A.; Yin, H.; Song, C.; Zhu, H.; Sun, L. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA,
USA, 14–16 August 2019; pp. 1099–1114.

31. Chen, D.D.; Egele, M.; Woo, M.; Brumley, D. Towards Automated Dynamic Analysis for Linux-based Embedded Firmware.
In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2016, San Diego, CA, USA, 21–24
February 2016.

32. Zhang, Y.; Huo, W.; Jian, K.; Shi, J.; Lu, H.; Liu, L.; Wang, C.; Sun, D.; Zhang, C.; Liu, B. SRFuzzer: An automatic fuzzing
framework for physical SOHO router devices to discover multi-type vulnerabilities. In Proceedings of the 35th Annual Computer
Security Applications Conference, New York, NY, USA, 9–13 December 2019; pp. 544–556.

33. OSS-Fuzz: Continuous Fuzzing for Open Source Software. Available online: https://github.com/google/oss-fuzz (accessed on
18 June 2023).

34. Natella, R.; Pham, V.T. Profuzzbench: A benchmark for stateful protocol fuzzing. In Proceedings of the 30th ACM SIGSOFT
international symposium on software testing and analysis, New York, NY, USA, 11–17 July 2021; pp. 662–665.

35. Jabiyev, B.; Sprecher, S.; Onarlioglu, K.; Kirda, E. T-Reqs: HTTP Request Smuggling with Differential Fuzzing. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 15–19 November 2021; pp. 1805–1820.

36. Mutiny Fuzzing Framework. Available online: https://github.com/Cisco-Talos/mutiny-fuzzer (accessed on 18 June 2023).
37. Fuzzotron: A TCP/UDP Based Network Daemon Fuzzer. Available online: https://github.com/denandz/fuzzotron (accessed

on 18 June 2023).
38. Boofuzz: Network Protocol Fuzzing for Humans. Available online: https://github.com/jtpereyda/boofuzz (accessed on 18 June

2023).
39. ACM CCS 2021. Available online: https://www.sigsac.org/ccs/CCS2021/ (accessed on 18 June 2023).
40. Sulley: A Pure-Python Fully Automated and Unattended Fuzzing Framework. Available online: https://github.com/OpenRCE/

sulley (accessed on 18 June 2023).
41. KittyFuzzer: Fuzzing Framework Written in Python. Available online: https://github.com/cisco-sas/kitty (accessed on 18

June 2023).
42. Zhang, H.; Lu, K.; Zhou, X.; Yin, Q.; Wang, P.; Yue, T. SIoTFuzzer: Fuzzing Web Interface in IoT Firmware via Stateful Message

Generation. Appl. Sci. 2021, 11, 3120. [CrossRef]
43. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.
44. Krichen, M. Improving formal verification and testing techniques for internet of things and smart cities. Mob. Netw. Appl. 2019,

2019, 1–12. [CrossRef]
45. Fortas, A.; Kerkouche, E.; Chaoui, A. Formal verification of IoT applications using rewriting logic: An MDE-based approach.

Sci. Comput. Program. 2022, 222, 102859. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/google/oss-fuzz
https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/denandz/fuzzotron
https://github.com/jtpereyda/boofuzz
https://www.sigsac.org/ccs/CCS2021/
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://github.com/cisco-sas/kitty
https://doi.org/10.3390/app11073120
https://doi.org/10.1007/s11036-019-01369-6
https://doi.org/10.1016/j.scico.2022.102859

	Introduction
	Background and Related Work
	IoT Smart Device Fuzzing
	Fuzzing Evaluation

	Design
	Fuzzing Job Workflow
	Benchmark Selection Principles
	Real-World Benchmark Firmware Images
	Usable Fuzzers
	Performance Metrics

	Experiments and Results
	Experiment Settings
	Number of Discovered Vulnerabilities
	Speed of Discovering Vulnerabilities
	Stability of Discovery Process
	Number of Unique Responses
	Runtime Overhead

	Discussion and Future Work
	Conclusions
	References

