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Abstract: The limited coverage extension of mobile edge computing (MEC) necessitates explor-
ing cooperation with unmanned aerial vehicles (UAV) to leverage advanced features for future
computation-intensive and mission-critical applications. Moreover, the workflow for task offloading
in software-defined networking (SDN)-enabled 5G is significant to tackle in UAV-MEC networks.
In this paper, deep reinforcement learning (DRL) SDN control methods for improving computing
resources are proposed. DRL-based SDN controller, termed DRL-SDNC, allocates computational
resources, bandwidth, and storage based on task requirements, upper-bound tolerable delays, and
network conditions, using the UAV system architecture for task exchange between MECs. DRL-SDNC
configures rule installation based on state observations and agent evaluation indicators, such as
network congestion, user equipment computational capabilities, and energy efficiency. This paper
also proposes the training deep network architecture for the DRL-SDNC, enabling interactive and
autonomous policy enforcement. The agent learns from the UAV-MEC environment through experi-
ence gathering and updates its parameters using optimization methods. DRL-SDNC collaboratively
adjusts hyperparameters and network architecture to enhance learning efficiency. Compared with
baseline schemes, simulation results demonstrate the effectiveness of the proposed approach in
optimizing resource efficiency and achieving satisfied quality of service for efficient utilization of
computing and communication resources in UAV-assisted networking environments.

Keywords: computational resource efficiency; deep reinforcement learning; mobile edge computing;
software-defined networking; unmanned aerial vehicles

1. Introduction

Mobile cloud computing (MCC) is a highly efficient system located in central cloud;
however, the end user faces several computing inadequacies due to backbone congestion
and offloading delays. Therefore, mobile edge computing (MEC) method is proposed
which offers extraction by leveraging storage, computing, communication, and network
capacities [1–3]. The integration of networking system and cloud/edge computing brings
network cloudification which leverages existing cloud and edge computing infrastructure
to host virtual network functions. The convergence of networking and cloud/edge com-
puting necessitates a comprehensive perspective on the advancements and the delivery
of composite network-cloud/edge services, which offers advantages, such as enhanced
resource utilization, cost reduction, and emerging new prospects for stakeholders [4].

However, without mobility, the coverage extension is deficient, which further leads
numerous researchers/organizations to opt for the cooperation between unmanned aerial
vehicles (UAV) and MEC that would bring a variety of benefits. With the growing popu-
larity and deployment of UAV in various applications, there is an increasing demand for
efficient and reliable communication networks to support UAV-assisted operations [5,6].
UAV-assisted networks have the potential to enable a wide range of applications, including
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aerial surveillance, disaster management, etc. [7–9]. Nevertheless, UAVs have several
limitations in terms of energy, computation resources, etc. Moreover, the dynamic and
unpredictable nature of UAV mobility poses significant challenges in ensuring seamless
connectivity and resource efficiency in control entities, which requires a thorough proactive
and autonomous model.

Software-defined networking (SDN) has emerged as a promising paradigm for man-
aging and controlling network resources in a flexible and centralized manner, which can
be abstracted from the UAV states for intelligent flow management [10–13]. The need
for wireless communication infrastructure in critical applications is assisted by utilizing
UAVs equipped with NFV/SDN capabilities, which are crucial technologies for enabling
flexible control of UAV networks and computing [14]. By decoupling the control plane
from the data plane, SDN allows for dynamic resource allocation and efficient network
management [15]. However, the conventional SDN architectures are primarily designed
for terrestrial networks and may not be well-suited for UAV-assisted networks due to the
unique characteristics, such as mobility, limited energy, and limited processing capabilities.
Therefore, intelligent agent modeling using deep learning or deep reinforcement learning
(DRL) is suggested for integration [16,17].

In [18], authors present a state-specific environment on UAV observations, including
SINR measurement, height of UAVs, and spectral efficiency, that offer insightful context
into the agent on applied actions on (1) base station selection with transmission power
settings, and (2) UAV elevation. The proposed system evaluates the action efficiency by
rewarding joint maximization of energy and throughput until the converged policy is
obtained. Furthermore, in [19], an analytical framework is proposed to assess the coverage
probability in mobile networks assisted by UAVs, considering clustered users, varying
UAV heights, and imperfect beam alignment. Figure 1 presents the overview interactions
of unmanned aerial resource system (UARS) states gathering for agent training, action
configuration, and policy installation in SDN controller (SDNC). With the advancement
of intelligent modeling, the controlling agent can be generated in a flexible way using
complete network state observation, action-based autonomous configuration, and predic-
tion models [20–22]. By leveraging the capabilities of DRL, the proposed approach aims
to enhance the resource efficiency and adaptability of SDN-based control mechanisms in
UAV-assisted networks.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 16 
 

 

including aerial surveillance, disaster management, etc. [7–9]. Nevertheless, UAVs have 

several limitations in terms of energy, computation resources, etc. Moreover, the dynamic 

and unpredictable nature of UAV mobility poses significant challenges in ensuring seam-

less connectivity and resource efficiency in control entities, which requires a thorough 

proactive and autonomous model. 

Software-defined networking (SDN) has emerged as a promising paradigm for man-

aging and controlling network resources in a flexible and centralized manner, which can 

be abstracted from the UAV states for intelligent flow management [10–13]. The need for 

wireless communication infrastructure in critical applications is assisted by utilizing 

UAVs equipped with NFV/SDN capabilities, which are crucial technologies for enabling 

flexible control of UAV networks and computing [14]. By decoupling the control plane 

from the data plane, SDN allows for dynamic resource allocation and efficient network 

management [15]. However, the conventional SDN architectures are primarily designed 

for terrestrial networks and may not be well-suited for UAV-assisted networks due to the 

unique characteristics, such as mobility, limited energy, and limited processing capabili-

ties. Therefore, intelligent agent modeling using deep learning or deep reinforcement 

learning (DRL) is suggested for integration [16,17]. 

In [18], authors present a state-specific environment on UAV observations, including 

SINR measurement, height of UAVs, and spectral efficiency, that offer insightful context 

into the agent on applied actions on (1) base station selection with transmission power 

settings, and (2) UAV elevation. The proposed system evaluates the action efficiency by 

rewarding joint maximization of energy and throughput until the converged policy is ob-

tained. Furthermore, in [19], an analytical framework is proposed to assess the coverage 

probability in mobile networks assisted by UAVs, considering clustered users, varying 

UAV heights, and imperfect beam alignment. Figure 1 presents the overview interactions 

of unmanned aerial resource system (UARS) states gathering for agent training, action 

configuration, and policy installation in SDN controller (SDNC). With the advancement 

of intelligent modeling, the controlling agent can be generated in a flexible way using 

complete network state observation, action-based autonomous configuration, and predic-

tion models [20–22]. By leveraging the capabilities of DRL, the proposed approach aims 

to enhance the resource efficiency and adaptability of SDN-based control mechanisms in 

UAV-assisted networks. 

 

Figure 1. UARS environment for state gathering to interact with the agent controller. 

The main contribution of this paper is the development of an agent with computa-

tional resource efficiency (CRE) objective function to optimize performance metrics, such 

as throughput, latency, and energy consumption in UAV-assisted networks. The pro-

posed system utilizes DRL agents to learn the optimal control policies for handling 

Figure 1. UARS environment for state gathering to interact with the agent controller.

The main contribution of this paper is the development of an agent with computational
resource efficiency (CRE) objective function to optimize performance metrics, such as
throughput, latency, and energy consumption in UAV-assisted networks. The proposed
system utilizes DRL agents to learn the optimal control policies for handling computing
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resource, appropriate node selection, and network management tasks based on various
state observation features. Overall, we can highlight the following contributions:

• The working flow of the system architecture are given in this work by mentioning
the main interfaces, such as (1) UE-to-UAV, (2) UAV-to-MEC, (3) UAV/MEC-to-SDN,
(4) SDN-to-DRL, and (5) SDN, as a central controller to the whole network architecture.
We provide insights into the feasibility and effectiveness of DRL in optimizing UAV
states in dynamic and resource-constrained environments.

• The reward evaluation metrics are proposed to formulate the measurement of resource
efficiency and adaptability in UAV-assisted networks through intelligent network
management and SDN flow controls.

• We offer a comprehensive evaluation of the proposed system using OpenAI and
network simulation software to highlight its advantages over existing solutions in
several terms of resource utilization, latency, and energy scoring metrics.

2. Related Works
2.1. UAV-MEC for Resource Efficiency

The issue of energy-efficient resource allocation has been of note in modern networks,
and has motivated researchers towards the implementation of UAV-enabled MEC systems.
In [23], the authors aim to minimize the combined power consumption of UE and UAV. The
minimization problem is well-formulated on total power consumption while considering
latency and coverage constraints. The proposed algorithm addresses nonconvex problems
through iterative optimization of (1) user association, (2) power control, (3) computation
capacity allocation, and (4) location planning. In [24], a novel approach utilizing UAV
in a MEC-enabled VANET is proposed to deliver low latency and reliable computing
services to vehicles. The optimization objective focuses on minimizing comprehensive
task processing delay by considering transmission models, security assurance, and task
computation models. To optimize VANETs, the authors propose a network scheme that
jointly considers these 3-tuple policies, and by leveraging the MEC-enabled UAV-assisted
VANET architecture, the methods harness the communication capabilities of UAVs to
enhance VANETs’ computational abilities. An iterative algorithm based on the relax-and-
rounding method and the Lagrangian method is used, and the simulation results capture
the key performance metrics on successful task processing ratio and task processing delay.
Furthermore, in [25], authors investigated the interaction between multiple users, drones,
edge servers, and the cloud, aiming to optimize resource allocation and offloading decisions
in a multi-user scenario. The minimization of energy consumption and delay is formulated
to consider UAV offloading, edge server computing cost, and communication processing
delay, in terms of local device computing power. The authors proposed MEC architecture
for IoT devices, a drone-based edge computing layer, and edge computing server layer.
The offloading strategy to minimize energy costs and maximum delay is formulated as a
non-convex quadratic constrained quadratic program and a heuristic algorithm based on
semi-definite relaxation and adaptive adjustment is used as a solver.

2.2. DRL for UAV-MEC Control

The autonomy of DRL can be appended as a solving agent in the UAV-MEC systems
in terms of resource allocation, offloading decisions, and other optimization approaches.
In [26], authors focus on a UAV-assisted wireless IoT network and introduces a multi-agent
DRL framework combined with a round-robin resource-scheduling algorithm to optimize
joint resource management. A system model is designed to capture the dynamic and
heterogeneous nature of the environment, considering various constraints, such as user
count, channel gains, noises, and power consumption. K-means and round-robin algorithm
are used to efficiently handle service requests from IoT users in urban and sub-urban
clusters. The proposed DRL framework is applied to optimize resource management for
UAV-assisted IoT devices in the primary system model. In [27], an innovative application
scenario where a UAV operates in a complex urban environment is considered. The UAV
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receives computing tasks from clients within a specific flight range, leverages mobile edge
computing servers for task processing, and optimizes its trajectory to enhance communica-
tion quality and improve the computing rate of the MEC network. By employing DRL and
experience replay techniques to generate optimal offloading decisions and introducing a
time frame allocation algorithm for resource allocation, the problem becomes predictive and
is effectively solved [28,29]. The proposed scheme, combining UAV-assisted MEC networks,
DRL, and radio map optimization, represents a novel and systematic approach to resource
optimization. By integrating UAV and MEC, the accessibility and cost-effectiveness are
reached, and by utilizing DRL, the computation offloading in a UAV-assisted MEC network
can be optimized. The integrated approach can simplify the complexity of the original
problem, resulting in improved computational and energy efficiencies with maximized
computing rates [30].

2.3. DRL-Based SDN for Efficient Network Management

SDN enhances the scalability, flexibility, and control efficiencies of UAV-MEC net-
works by simplifying the addition or removal of UAVs and MEC servers, allowing traffic
optimization/service provisioning, and enabling automated network orchestration, pol-
icy enforcement, and real-time monitoring, thereby enhancing operational efficiency in
UAV-MEC networks [31]. To further advance SDNC in complex network environments,
DRL has been integrated in several studies. In [32], SDN-based dynamic task scheduling
and resource management approach using DRL for IoT traffic scheduling is proposed. The
objective is to achieve high network performance by minimizing latency and ensuring
energy efficiency. The proposed solution introduces an architectural design and formu-
lates a task assignment, also called a scheduling problem. The approach offers effective
trade-offs between response time constraints, model fidelity, inference accuracy, and task
schedule-ability. Furthermore, in [33], an integrated intelligent algorithm in SDN-based
QoS-routing optimization is proposed to enable more intelligent dynamic routing. Offline
training methods are used for supervised learning-based models, while DRL-based models
can be trained both online and offline. The study achieved intelligent online QoS-routing
optimization solution using SDN and asynchronous advantage actor-critic, which intro-
duces the algorithm for dynamic routing decisions and the DRL-enabled framework for
real-time data collection and strategy learning.

3. DRL-Based Backbone SDN Control Methods in UAV-Assisted Networks

This section covers the system architecture, environment modeling, and algorithm
designs with specified interfaces of the proposed framework. Throughout these sub-
sections, the proposed framework is described overall by how the agent connects and
operates for policy installation to achieve the objectives of computational resource efficiency.

3.1. System Architecture

The system architecture, as illustrated in Figure 2, emphasizes the relations of UAV-
MEC in UARS with the base stations (BS), 5G service-based architectures (SBA), UAV access
and mobility management function (U-AMF), and UAV session management function (U-
SMF), and the interactions with the agent in SDNC through user plane function (UPF).

The workflow of task offloading in SDN-enabled 5G UAV-MEC networks starts from
the task identification, where UE identifies computation-intensive tasks from resource-
intensive applications that can be offloaded to the selected MEC for processing. Task
offloading request is sent by UE to the DRL-SDNC, which includes the states on computa-
tional requirements, data size, and QoS constraints. DRL-SDNC receives the task offloading
request and analyzes it for determining the appropriate network resources and MEC allo-
cation for a complete/partial task processing. Comprehensively, DRL-SDNC allocates the
necessary resources, including computational resources in MEC, bandwidth, and storage,
based on the task requirements and network conditions. UPF is used to exchange tasks
between MEC. DRL-SDNC configures the rule installation based on state observations
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and the proposed agent evaluation indicators, such as network congestion, computational
capabilities of the UE, and energy efficiency factors. Furthermore, DRL-SDNC provides the
UE with the necessary information and interfaces to intelligentlytransmit the task data to
the designated MEC for processing. Once the task processing is complete, SDNC notifies
the UE about the completion status and provides the necessary interfaces for retrieving the
processed outputs.
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Through the access part of 5G UAV interfaces, UARS includes the radio interface
between the UAV and the ground network, which enables wireless communication between
the UAV and the 5G network infrastructure. N1 interface covers the interaction between UE
or UAV and the 5G access network by handling the wireless communication protocols and
connectivity between the UE and the access network. N2 interfaces cover the interactions
between different 5G access network nodes by handling communication and coordination,
such as base stations, in order to provide coverage and handover support for our proposed
UAV-MEC. And for C2 interface, it handles the UAV and the 5G control plane by allowing
the control and management of the UAV’s movements, configurations, and interactions
with the 5G network.

N3 handles signaling and control messages related to mobility management, session
establishment, and authentication. N9 is the interface within UPF (e.g., SGW and PGW)
which carries user data and controls messages for packet forwarding and routing purposes,
which is later used for abstracting information and state observation to DRL-SDNC. N6
and N4 offer the interactions between UPF (e.g., PGW) and the data network (DN) or
external control entities by handling the control plane signaling for mobility management
and policy installation between the 5G core network and the proposed DRL-SDNC.

In our studies, the state gathering process and action configuration are important
to collaborate with UPF, which includes the user plane data forwarding, routing, and
optimization information, by performing tasks, such as packet filtering, forwarding, and
traffic management. Moreover, 5G-SBA is also an entity to observe the states and enable
the action deployment of flexible and scalable services in UAV-MEC environment. 5G-
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SBA provides a service-based interface model for efficient communication and interaction
between network functions and services.

For U-AMF, the agent leveraged the capability for UAV to manage access and mobility-
related functions. And for U-SMF, the proposed system aims to handle the UAV session
establishment, policy enforcement, and management of data flows between the UE, UAV,
and the network infrastructure. These interfaces and entities work collaboratively for global
UAV-assisted network state abstractions, environment connectivity, agent’s action-based
control, and data management in our proposed system architecture for ensuring reliable
communication, and adequate computational resources between UE tasks and UAV-MEC
selection/placement.

3.2. Environment Modeling

From the above-mentioned system architecture, the primary entities that generate
states and configure the action rules must be modeled into softwarization for interacting
and ordering the offloading policies into uses by the agent controller. Table 1 presents the
important notations and its description used in this proposed DRL-based system.

Table 1. Key notations used in the environment initialization and the proposed agent interactions.

Notation Description

T = {1, 2, . . . , t} Set of timeslots
I = {1, 2, . . . , i} Set of UAVs

M = {1, 2, . . . , m} Set of MECs
N = {1, 2, . . . , n} Set of UEs
J = {1, 2, . . . , j} Set of offloading tasks
S = {1, 2, . . . , s} Set of small base stations

Pt
i (xt, yt, zt)

Position coordination (x-axis, y-axis, height) of UAV-i at
timeslot-t

Dt
i (dn,i, ds,i) Distance metrics of UAV-i between UE-n and BS-s
(et

i , et
n) States of remaining energy metrics of UAV-i and UE-n

(Ct
max.m, Ct

re.m)
Maximum computing and remaining resources of MEC-m

at timeslot-t
Tbw Total system bandwidth

(bwt
n→i, gt

n→i)
States of bandwidth allocation and channel gain between

UE-to-UAV

(bwt
i→s, gt

i→s)
States of bandwidth allocation and channel gain between

UAV-to-BS
(pt

n, ∀δ) Transmission power of the devices and overall noises

τt
n(ρ

t
n,γt

n, {t
n)

States of tasks from UE-n at timeslot-t with 3-tuple
information of task sizes, upper-bound tolerable delays,

and computation workload

Rt
env(rt

d, rt
e, rt

cr)
Primary reward evaluation metrics of the environment per

episode, which formulating by 3 sub-rewards on joint
delay, energy, and computational resource efficiency

et(st, at, rt, st+1)
Experience replay batches at t including the state, action,

reward, and transited next-state.

The task process can be described in 4 primary phases as follows:

1. Task offloading from UE to the selected UAV-MEC: In each timeslot-t, UE-n can of-
fload task-j to the integrated paring UAV-MEC (i − m) node. The task offloading
decision is given by action output from the proposed agent, which can be presented as
ao f f

i (t) = {nj, i, m}, indicating the index of UE-n which offloads a task-j to UAV-MEC
system composed of UAV-i and MEC-m. The communication model, denoted as data
rate Ut

n−i, between UE-to-UAV is presented in Equation (1) which is associated with
the states of allocating bandwidth bwt

n→i, channel gain gt
n→i, transmission power pt

n,
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and overall noises ∀δ, including the interference between UAVs and BSs and also
additive white Gaussian noise.

Ut
n−i = bwt

n→ilog2 (1 +
pt

ngt
n→i
∀δ

) (1)

2. UAV-MEC task processing: The integrated UAV-MEC system receives the offloaded
tasks from UEs and performs the computing to get the expected task output. The task
processing can be represented as jcomp

i−m (t) indicating the processed task, consumed
energy/resource, and executed times.

3. Task offloading from UAV-MEC to BS: The UAV-MEC system can further offload pro-
cessed tasks to BS for transmission or communication purposes. In our environment,
within small BS-s, there is a single UAV and single MEC which assists with the task
computation. The communication model of UAV-to-BS is presented in Equation (2)
by formulating uplink data rates associated with the states of allocating bandwidth
bwt

i→s, channel gain gt
i→s, transmission power pt

i , and overall noises/interference.

Ut
i−s = bwt

i→slog2 (1 +
pt

i g
t
i→s
∀δ

) (2)

4. Base Station task processing: Base stations receive tasks from the UAV-MEC system
and perform task processing or transmission. The state information from the tasks is
gathered for the DRL-SDNC agent.

For DRL environment and agent initialization, the components can be described
following Markov decision process, which primarily consists of states, actions, and reward,
which are expressed in the following sub-sections, and in Equations (3)–(5), respectively.

3.2.1. States of UAV-MEC and Tasks from UE

• Pt
i (xt, yt, zt) represents the coordination of geographical UAV positions, and its

trajectory Pt+1
i is set by the agent output in terms of distance metrics and offloading

task patterns.
• Dt

i (dn,i, ds,i) represents the distance between UAV-i to local task owner, UE-n, and its
pairing small BS-s.

• et
i and et

n represent the states of energy of UAV-i and UE-n at timeslot-t, respectively.
• Within paired MEC-m, the states of total computation workload and remaining

resources at timeslot-t are denoted as (Ct
max.m, Ct

re.m), respectively, for further re-
allocations and enhancing decision-making policies.

• In communication model, the states of total bandwidth Tbw is observed from the
environment. And the bandwidth allocation and channel gain between UE-to-UAV
and UAV-to-BS, (bwt

n→i, gt
n→i) and (bwt

i→s, gt
i→s), are gathered, respectively.

• From local UE, the states of tasks and local computational resources are observed for
formulating the offloading decision of local computation, and complete, or partial task
offloading. τt

n represents the tasks from UE-n at timeslot-t, which consists of a 3-tuple
information of task sizes, upper-bound tolerable delays, and computation workload,
denoted as ρt

n, γt
n, and {t

n, respectively.
• An experience tuple jcomp

i−m (t) from processed tasks including the consumed energy/resource,
and time spent from experiences.

st = {Pt
i , Dt

i , et
i , et

n, Ct
max.m, Ct

re.m, Tbw, bwt
n→i, gt

n→ibwt
i→s, gt

i→s, τt
n, jcomp

i−m (t)} (3)

3.2.2. Actions of DRL-SDNC

The offloading decision-maker and flow scheduling, represented by ao f f
i (t), from the

backbone SDN control methods are synchronized as an action from the agent, which have
the global views of the UAV data plane and abstraction programmability. The mechanism
of the DRL-SDNC interacts with the controllers for understanding the experience batches of
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resource allocation and performance patterns in each observed state iteration. The actions
also cover (1) the optimal MEC selection asel

m|c(t) based on computational resource and (2)

load balancing abal
∀m(t) over all the edge servers. SDN actions collaborates with the proposed

agent by optimizing flow rule installations and alleviating heavy congestions for efficient
task completion times within upper-bound tolerable delays.

at = {ao f f
i (t), asel

m|c(t), abal
∀m(t)} (4)

3.2.3. Rewards and Evaluation on Optimal Policy Selection

The evaluation of the proposed agent and SDN control methods measures the ef-
ficiency of applying action at into UAV-MEC environment state st by obtaining reward
rt before transiting to the next state st+1. In our proposed method, the primary reward,
denoted as Rt

env, is a complete formulation from sub-rewards on delay, energy, and com-
putational resources, denoted as rt

d, rt
e, and rt

cr, respectively. The critical weights ω on
computational resources rt

cr is adjusted for adapting partial of exceptional mandatory delay
and energy requirements to primarily serve the efficiency of MEC computational resource
placement and offloading decisions.

Rt
env = rt

d + rt
e + ωrt

cr (5)

The optimal policy π(t)* is the SDN backbone control policy from the overall batches
that maximize the long-term reward expectation by experiencing each rule condition, which
is presented in (6). The value function formulates the expectation of increasing reward
summation following the selected policy π from state s. Equation (7) presents the standard
optimal q-value function following the bellman equation.

π(t)∗ = argmax
π

Eπ

[
∑
t∈T

γtRt
env

]
(6)

Q ∗ (s, a) = E∼s′

[
Rt

env + γargmax
a′

Q ∗ (s′, a′)

]
(7)

3.3. Algorithm Flows

The execution phases of this proposed control method can be trained through these
four following phases:

1. Hyperparameter/parameter initialization: (1) Define the number of episodes, repre-
senting the iterations of the DRL training process. (2) Initialize the value function,
which estimates the expected return for each state–action pair in the environment. (3)
Initialize the policy function, which maps states to actions, and set the value of epsilon
for epsilon-greedy exploration, with a decaying value over each iteration.

2. State initialization: This phase includes the capturing process from data plane con-
text, such as the geographical positions of the UAVs, calculating the distance between
UAV and the local task owner, recording the energy states of the UAVs, tracking the
total computation workload and remaining resources, and evaluating the bandwidth
allocation and channel gain between UE-to-UAV and UAV-to-BS. This information is
stored as an experience tuple, as expressed in Equation (3).

3. Iterative learning: Within each episode, the system performs the eight following steps:
(1) Select an action based on the current state using the policy function. Actions can
include optimal MEC selection, load balancing across edge servers, and offloading
decision-making and flow scheduling as {ao f f

i (t), asel
m|c(t), abal

∀m(t)} tuples. (2) Execute
the selected action in the environment and observe the resulting state. (3) Calculate
the reward based on a complete formulation in Equation (5) that includes sub-rewards
related to delay rt

d, energy consumption rt
e, and computational resources ωrt

cr. (4) Up-
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date the value function and policy function using the observed state, action, reward,
and next state. (5) Store the experience tuple et(st, at, rt, st+1) in a memory buffer
for training the online and target networks (using per batch sampling). (6) Perform
gradient descent optimization on the loss function to update the model’s parame-
ters. (7) Decay the value of epsilon to reduce exploration over each iteration. The
above steps are repeated for the specified number of setting number of episodes from
phase 1.

4. Post-training completion: The DRL model can be used for decision-making in real-
time scenarios, considering the optimal learned policy for selecting optimal actions
based on observed states. The context and improved accuracy of policy selection will
be input into SDNC for flow installation and rule settings.

Figure 3 presents a single-looped schematic flows starting from (1) initializing the states
from Equation (3), (2) selecting action (whether explored or exploited) from Equation (4),
(3) calculating the total rewards from Equation (5), (4) formulating the transition probability
to next state, (5) storing the experience batches which includes et(st, at, rt, st+1), (6) feeding
(st, at, rt) to train the online network, and (st+1) to the target network, also exchanging
weights for network improvement, and finally (7) obtaining the output as the recommended
next action at+1.
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Building the neural network architecture that will serve as the online network in
the DRL-SDNC will keep the action configuration or policy enforcement interactive and
autonomous for the proposed UAV-MEC systems. Depending on the characteristics of the
state representation and the temporal dynamics of the UAV-MEC networking environment,
the weights are exchanged between online and target networks for iterative improvement.
Experience gathering enables the agent to interact with the UAV-MEC networking environ-
ment and obtain the hidden patterns. The proposed agent acts as double Q-networks and
updates the parameters of the online network using optimization methods like stochastic
gradient descent and perform the iterative learning. The UAV-MEC environment states
are gathered by the agent to gain new experiences, update the online network, and im-
prove its offloading decision-making capabilities. SDNC monitors the performance of
the agent during training and DRL-SDNC collaboratively adjusts hyperparameters or
network architecture to enhance learning efficiency and achieve the long-term computa-
tional efficiency of the offloading tasks. Therefore, the proposed DRL-SDNC can learn to
make intelligent decisions in a UAV-assisted networking environment, optimizing resource
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efficiency based on the evaluated reward function and achieving efficient utilization of
computing/communicating resources.

In the process, first, the proposed DRL agent receives input about the network state
and flow statuses from the SDNC. Neural networks are used to estimate the value or policy
function based on st. Next, the DRL-SDNC agent configures action at, which represents
a flow scheduling decision, and communicates it to the SDNC. The SDNC applies the
action by updating the flow rules through UPF. The updated UAV network state st+1 is
then fed back to the DRL-SDNC, allowing it to observe the outcome and update its neural
network parameters. This iterative process continues to refine the DRL-SDNC agent’s flow
scheduling strategies to the optima.

4. Performance Evaluation
4.1. Simulation Setup

Table 2 presents the primary parameter configuration used in this system. In this
system flows, there are five primary phases:

1. Network topology and environment settings: A simulated SDN environment is cre-
ated with a network topology consisting of switches, controllers, and hosts. Hosts
can be customized as UEs and MECs with specific requirements of resource settings.
In OpenAI, the replication of network topology is carried out as an environment
initialization (with randomness and reset every episode) following the state tuple
information as listed in Equation (3). The state presentation of UAV network is added
using OpenAI to complete the missing topology in SDN, and later collected and repre-
sented in a suitable format for the DRL-SDNC agent. The state representation serves
as input to the agent’s neural network, which constructs using TensorFlow.

2. Task offloading: A set of tasks with random requirements and capacities, such as appli-
cation complexity, latency constraints, and energy/resource consumption/requirement
are generated. Each UAV-MEC pair represents a potential offloading option for task
execution, and the flow rule is synced to central SDNC.

3. DRL agent: An instance of the DRL agent function using OpenAI libraries with Tensor-
Flow is initialized. The environment function samples the state, and action function
alters the state information into new space after every iteration action is applied. Reset
function is executed when the episode ends, or optima is reached. Immediate reward
and Q-value function is co-located with the agent function to evaluate the state–action
pair performance.

4. Training and iterative learning: The proposed agent is trained using a sampling
state matrix generated from the UAV-MEC environment. The agent’s online/target
network parameters are updated through backpropagation and gradient descent to
optimize its policy/value function. The hyperparameters and network configura-
tions are iteratively adjusted to optimize the ordering flow for task offloading in the
UAV-MEC environment.

5. Evaluation: The reward per episode can be captured within OpenAI-TensorFlow
simulation, and network configuration of sending payload task sizes based on agent
action identifies the efficient/inefficient computational resources which possibly leads
to high drop ratios.
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Table 2. Primary parameter configuration for DRL-based SDN backbone environment.

Purpose/Platform Specification

Hosting infrastructure Intel(R) Xeon(R) Silver 4280 CPU @ 2.10 GHz, 128 GB, NVIDIA
Quadro RTX 4000 GPU

Number of UAVs, MECs, and BS 5

Task generation rate, constraints, bandwidth, resource scales,
channel gain, power, UAV coordination/distances, and speed

Ratio scale (0 to 1) for agent sampling and adjusting based on
state-action forward-backward calculation

Task complexity and sizes Random set (intensive, normal, non-intensive) ranging
(256 Kbits, 512 Kbits, 1024 Kbits)

Learning rate 0.001

Discount factor 0.95

Batch size Random set (32, 64, 128, 256) by congestion states

Exploration 0.5

Number of episodes 500

Simulation times 5000 s

SDN-UE, control, and interfaces Mininet

With the integration of DRL and SDN [34,35], this simulation setup enables the DRL
agent to learn and adapt its decision-making process to schedule for computational resource
efficiency in UAV-MEC task offloading, leading to improved energy efficiency, reduced
overhead latency, and enhanced resource utilization.

4.2. Proposed and Reference Schemes

This sub-section presents the proposed and reference schemes applied in the experi-
ments to illustrate the performance differences in terms of different congestion conditions,
task complexities, and intensity level of the heavy tasks compared with the simulation
setting and episode numbers of the learning iteration.

• PDRL-SDNC-UAV indicates the proposed DRL-based SDN backbone control utilizing
double Q-network to approximate the Q-value function and collaboratively configures
the SDN flow rules for efficient scheduling and resource placement. This approach
intelligently train the function approximator to handle high-dimensional state space
observation and representation. The experience replay, network training, and SDNC
synchronization in UAV-MEC networks follow the expression in Section 3 to learn
complex policies for emphasizing the critical weights on sub-reward rt

cr, and han-
dles different congestion states from multi-diversity complex application with high
computation-intensive tasks.

• T-SDNC-UAV represents the traditional SDNC for UAV-MEC-assisted network envi-
ronment with task offloading problem handling. This baseline involves a centralized
controller that manages the network’s resources and controls the behavior of the
UAVs, which obeys the default SDN rules. The controller communicates with the
UAVs and makes decisions based on network-wide information, such as topology,
traffic conditions, and default offloading policies. T-SDNC-UAV approach focuses on
network-level optimization, ensuring efficient routing, resource allocation, and QoS
provisioning for UAV-assisted networks.

• SRL-SDNC-UAV indicates the single reinforcement learning-based SDNC approach,
in which a single Q-learning is employed to control the UAV network. The agent
learns through trial and error, optimizing its policy by iterative querying through
Q-learning processing (e.g., using Q-table).
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4.3. Results and Discussion

In this subsection, we present the results of the proposed PDRL-SDNC-UAV and refer-
ence schemes, namely SRL-SDNC-UAV and T-SDNC-UAV, in terms of rewards and task
delivery/drop ratios, primarily based on the efficient/inefficient computational resource
conditions. The simulation setup conducts on the same topology; only the controller and
agent are different for the performance metrics.

Figure 4 demonstrates the total rewards Rt
env throughout each scheme’s exploration

and exploitation within 500 episodes. In the exploration phase, the proposed scheme, PDRL-
SDNC-UAV, achieves a significantly higher Rt

env compared to other schemes, with a differ-
ence of 11 and 32 positive scores when compared to SRL-SDNC-UAV and T-SDNC-UAV,
respectively. In the exploitation phase, deep (RL)-based approaches achieve a completely
stable reward compared to traditional control, which is 60% difference. At the ending
episode, the proposed scheme reaches 34 positive scores which is 11.76% and 47.05% higher
efficiency points compared to SRL-SDNC-UAV and T-SDNC-UAV, respectively. Figure 5
illustrates the main scoring metrics, which is rt

cr. The proposed scheme configured the
emphasized weight ω for efficient computational resources, which achieves 50% of the total
rewards for this particular sub-reward, compared to 30% and 25% from SRL-SDNC-UAV
and T-SDNC-UAV, respectively. PDRL-SDNC-UAV, SRL-SDNC-UAV and T-SDNC-UAV
reached 17, 9, and 4.5, respectively, at the ending episode, which shows that the proposed
scheme highly outperforms both baseline approaches.
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The sub-rewards on energy rt
e and latency rt

d scoring points, presented in Figures 6 and 7,
are primarily used to regulate the upper-bound tolerable delays and do not exceed the
remaining energy (et

i , et
n), which leads the proposed scheme to slice only 25% for these two

sub-rewards. For T-SDNC-UAV, the result on energy sub-reward is peaked due to default
SDNC configuration following the energy limitation constraints. For result on latency sub-
reward, SRL-SDNC-UAV achieved higher immediate reward than the proposed scheme due
to the single processing compared to double network architecture; however, the efficiency of
configured action remained lower than the proposed scheme. Regarding reward efficiency
perspective, this proposed scheme handles dynamic adjustment offloading paths with
efficient computing capacities, and the selection/placement actions/decisions on UAV-
MEC pair node are highly adequate for improving the resource-constrained or computation-
intensive tasks and also for adaptability in UAV-MEC-assisted network environments.
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For task successful/failure ratios, the results are illustrated in Figures 8 and 9, where
network states are consecutively configured by increasing congestion levels and application
task complexity per 1000 simulation interval. We evaluate the agent flexibility by observing
the result fluctuation differences compared to the diversity of heavy task and conges-
tion states. The proposed scheme has the least fluctuation from 1000 to 5000 simulation
times/conditions. PDRL-SDNC-UAV achieved the successful ratios (efficient offloading to
adequate computational resources) from 99.91% to 99.98% (high to low intensity), which is
(0.5%, and 0.03%) and (0.3% and 0.02%) better than T-SDNC-UAV and SRL-SDNC-UAV,
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respectively. In high computation-intensive and task generation rates, the failure rate
of baseline approaches reached 0.59% and 0.39%, respectively. The proposed scheme
indicates the policy reliability in achieving long-term adequacy, especially for multiple
taxonomy-diversified IoT tasks. The resource-aware algorithm ensures the reliability and
transferability of scalable UAV-MEC management systems by still efficiently considering
the multi-aspect weighted sum reward on energy and delays.
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5. Conclusions and Future Work

This paper proposed a novel approach based on DRL for collaborating with SDN
backbone control in UAV-assisted networks, termed PDRL-SDNC-UAV. The main objective
was to develop an intelligent agent with primary sub-reward function on computational
resource efficiency, and partial sub-rewards to meet the requirement on energy and delays.
This paper presented the system architecture and interfaces, including the task processing
in SDN-enabled 5G network systems. The components of DRL modeling are given, includ-
ing the state observation, configurable actions in SDN policies and offloading decision,
and reward objectives. Experimental simulations using OpenAI-TensorFlow and SDN
emulator were conducted to evaluate the performance of the proposed approach compared
to reference approaches in UAV-assisted networks. The evaluation considered reward mea-
surements in terms of delay, energy, and resource. The task successful/failure is described
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to point out the stability of policy effectiveness over various network state conditions.
PDRL-SDNC-UAV scheme outperformed the SRL-SDNC-UAV and T-SDNC-UAV schemes
and achieved significantly higher rewards and more efficient resource utilization, indicating
its effectiveness in optimizing UAV-assisted networking environments. Furthermore, the
proposed scheme showed high reliability, even under varying levels of congestion and task
complexity for scalable and long-term UAV-MEC management systems.

In future studies, an integrated softwarization on OpenAI-agent and SDN policy
will be conducted and the extensive formulation on actor-critic will be used to advance
this work for heterogeneous multi-UAV multi-MEC aspects. The state enhancement and
interaction flow of each functionality will be extended for multi-objective awareness and
demonstrated on improved DRL-based edge resource management.
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