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Abstract: Website fingerprinting is valuable for many security solutions as it provides insights into
applications that are active on the network. Unfortunately, the existing techniques primarily focus on
fingerprinting individual webpages instead of webpage transitions. However, it is a common scenario
for users to follow hyperlinks to carry out their actions. In this paper, an adaptive symbolization
method based on packet distribution information is proposed to represent network traffic. The
Profile Hidden Markov Model (PHMM exploits positional information contained in network traffic
sequences and is sensitive to webpage transitional information) is used to construct users’ action
patterns. We also construct user role models to represent different kinds of users and apply them to
our web application identification framework to uncover more information. The experimental results
demonstrate that compared to the equal interval and K-means symbolization algorithms, the adaptive
symbolization method retains the maximum amount of information and is less time-consuming. The
PHMM-based user action identification method has higher accuracy than the existing traditional
classifiers do.

Keywords: network traffic; adaptive symbolization; PHMM; user action patterns; web application
identification

1. Introduction

Being able to automatically associate a portion of network traffic to a particular web
application is desired by network administrators or attackers. With the growth in the usage
of end-to-end encryption protocols (such as SSL/TLS), attackers can not inspect the content
of communications. However, traditional encryption obscures only the content but does
not hide information such as the traffic volume and direction. This allows an attacker to
exploit information leaked by the side channel, such as the packet length, timing, and order.

Recent studies have proposed a number of potential solutions to analyze encrypted
traffic. A proposed framework [1] monitors network traffic between users and network
resources to identify the associated web application. Many machine learning algorithms
(e.g., random forest) and deep learning methods, such as convolutional neural networks
(CNNs), are used to uncover what applications are running on users’ smartphones [2–4]
or what webpages/websites users are visiting [5–7]. Among them, the technology that
identifies webpages/websites from network traffic is referred to as Website Fingerprinting
Attack (WFA).

Despite many WFA methods having been proposed, previous studies primarily fo-
cused on fingerprinting individual webpages (most existing methods simply refer to
homepages as representative webpages) to identify whether users have accessed a moni-
tored website. They usually ignore sequence visits, such as webpage transitions via clicking
hyperlinks. However, for most websites, users often follow hyperlinks to carry out their
actions. For example, users follow hyperlinks to read/post blogs on a social forum. In this
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paper, we take webpage transitional information into consideration when we profile the
“user-web application” interaction (i.e., build users’ action patterns). These patterns can be
applied to determine whether a sequence of network traffic belongs to a monitored web
application (static websites are not considered in our work).

Identifying a web application via interaction patterns is practically significant. It is not
a difficult job to create a web application today since there are many ready-made templates
to choose from. A website builder named Wix [8] provides different types of templates
(ranging from e-business, and album, to social forum ones, and so on) and publicizes that
customers can create a website in just four steps without any coding skills. Reports [9]
surfaced that a police officer provided a source code seized during the investigation of a
case to other criminals to create a new gambling website and illegally obtain huge profits.
In reality, even if a gambling website is targeted by law enforcement officers, criminals may
modify its appearance (e.g., the website title and pictures) and rebuild a new one easily.
In order to block these slightly modified illegal websites, an approach that can detect a
template-based web application is needed.

Intuitively, web applications that derive from the same template may share similar
functional logic. Even if some elements, such as the titles or pictures, change due to
environmental factors, we argue that some key elements remain. These unchanged elements
can be seen as the functionality genes of those web applications. A web application is often
designed to provide users with different capabilities, i.e., users can perform certain actions.
Criminals might modify the appearance of an illegal website to avoid punishment, but they
cannot change those capabilities. Based on intuition, we can identify the modified web
application by identifying associated users’ action patterns from the network traffic, which
is an advantage in today’s model-driven engineering applications [10].

Since users usually click from one webpage to another by following a hyperlink, the
generated packet sequences are often very long and contain transitional information. Pre-
vious work has demonstrated that the Profile Hidden Markov Model (PHMM, a widely
used tool in bioinformatics for DNA sequencing analysis [11]) exploits positional infor-
mation contained in network traffic sequences and is sensitive to webpage transitional
information [12]. Thus, we used the PHMM to construct users’ action patterns in this
work. In order to utilize the PHMM, one is left with the practical problem of reducing the
complexity of modeling the original sequences while retaining the maximum amount of
information. In order to achieve this, a novel symbolization method is proposed in this
work. A symbolization approach involves partitioning the range of the original sequence
into a finite number of regions. Each region is associated with a specific symbolic value,
and each original packet is uniquely mapped to a particular symbol depending on the
region in which the packet falls.

In previous work, packet sequences were divided into equal-sized intervals [12] or
grouped into clusters [13] and then labeled with corresponding symbols. However, the
equal-sized interval method ignores the packet distribution information of the original
sequences. For example, Figure 1 depicts the packet length distribution of users’ scanning
of a social forum. It is easy to find out that a few packets fall in regions [0, 600] and [900,
1500]. If the corresponding traffic is symbolized using equal-sized intervals (e.g., 300 bytes),
some symbols in the symbol set are not often used. Leveraging the clustering algorithms
to symbolize traffic sequences is another straightforward method. However, it is very
time-consuming to cluster a huge amount of data (which is very common in network
traffic analysis). In order to solve these problems, we propose an adaptive symbolization
method, which takes packet distribution into consideration and guarantees efficiency via
mathematical proof. Adaptive models are regarded as a potential application in many
research areas. For example, in software testing, adaptive models can integrate the study of
requirements, building and executing cases [14].
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In this paper, we describe an approach to construct users’ action patterns and use
them to identify users’ actions from network traffic. An adaptive symbolization method
is proposed to represent network traffic, and a profile-hidden Markov model is utilized
to build the user action patterns. We then apply the proposed user action identification
method to identify whether a sequence of network traffic belongs to a monitored web
application.

The novelty of this work includes: (1) The proposed adaptive symbolization method
takes packet distribution information into consideration, and its efficiency outperforms
existing symbolization approaches and can be supported by mathematical proof. (2) User
role models are first considered in web application identification, which reveals more
detailed information, e.g., the type of users that carry out a certain action.

The major contributions of our paper are summarized as follows:

• A novel adaptive symbolization method is proposed to reduce the complexity of
modeling the original traffic sequences while retaining information to the maximum;

• The PHMM is used to model and identify user actions that hide in network traffic;
• A framework is proposed to identify monitored web applications in which user role

models are proposed and utilized to mine more information from network traffic;
• A website is established, and experiments are conducted to demonstrate the effective-

ness and efficiency of our proposed approach.

The remainder of this paper is organized as follows. We discuss the state of the art
around this research topic in Section 2. The definitions and identification problems are
proposed and formulated in Section 3. In Section 4, a method that constructs users’ action
patterns is presented, and all its different steps are described in detail. In Section 5, the
adaptive symbolization method is proposed. In Section 6, we introduce how our approach
can be applied to web application identification. In Section 7, we describe the experimental
experience of our approach and evaluate the experimental results. Section 8 is about the
discussion and limitations of this study. The paper is concluded in Section 9.

2. Related Work
2.1. Website Fingerprinting Attack

The purpose of a Website Fingerprinting Attack (WFA) is to infer which websites/
webpages are visited by users. This type of analysis can reveal the privacy of a user (e.g.,
interests, habits, sexual and political orientations). WFA was first carried out by Cheng and
Avnur [15] in 1998. They demonstrated that the SSL protocol can not address traffic analysis
attacks. WFA turns to be a hot research topic in recent years, and many machine-learning
techniques have been proven to be very effective.
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A work published in 2012 [16] was the first demonstration that application-level
defenses, such as HTTPOS and randomized pipe-lining, are not secure. The authors
modeled websites using Hidden Markov Models (HMMs), where each state corresponds
to a page or a class of pages of the site. To simplify the model, they created it with states
corresponding to page templates rather than individual pages. According to their approach,
an attacker can construct a HMM for each target website and use the forward algorithm to
compute the log-likelihood that a given packet trace would be generated by a user visiting
the target website. However, it is not a trivial thing to build a HMM model for a website.

Hayes and Danezis [17] did a systematic analysis of feature importance and filled
the gap of a notable absence of feature analysis in the website fingerprinting literature.
They proposed the k-fingerprinting attack based on random decision forests and enabled
attackers to infer which web page a client is browsing through encrypted or anonymized
network connections. They demonstrated that Tor hidden services are easily distinguished
from standard web pages, rendering them vulnerable to Website Fingerprinting Attacks.

FLOWPRINT [4] is a semi-supervised mobile-app fingerprinting prototype. The
authors observe that mobile apps are composed of different modules that often commu-
nicate with a relatively invariable set of network destinations. This property is leveraged
to discover patterns in the network traffic. Fingerprints are created based on temporal
correlations among network flows between monitored devices and their destinations.

Zhuo and Zhang et al. [12] proposed a website-modeling method based on PHMM;
they took advantage of the first tab and the second tab hidden relationship to improve
accuracy in identifying a particular website instead of identifying web pages separately.
Inspired by their study, we employ the PHMM for modeling user action patterns, which is
a finer granularity. We can not only detect whether a user is visiting the targeted website
but also identify his/her actions.

2.2. User Action Identification

User action identification has been extensively treated in the domain of personal
mobile devices. Apps leverage the Wi-Fi and cellular network of mobile devices to send
and receive data. Users perform several actions while interacting with apps and generate
data transmissions. The network traffic sequence of a given action typically follows a
pattern that depends on the nature of the user–app interaction of that action. These patterns
can be used to recognize specific user actions related to a particular app of interest in
generic network traces [18].

Conti and Mancini [19] proposed a framework to infer which particular actions the
user executes on some apps installed on her mobile phone. Dynamic Time Warping and
Random Forest were used to measure the similarity between traffic sequences and classify
unseen traffic traces, respectively. The authors considered seven popular apps with different
purposes from the official Android market to assess their approach’s performance and
showed that the accuracy and precision were higher than 95%.

Similar to [19], Fu and Xiong investigated how to exploit encrypted Internet traffic
for classifying in-App usages. They developed a system named CUMMA for classifying
usages of mobile messaging Apps by jointly modeling user behavioral patterns, network
traffic characteristics (packet length and time delay), and temporal dependencies [20]. In
their work, traffic flows were segmented into sessions with a number of dialogs; then, the
dialogs were classified into single-type usages or outliers. A clustering Hidden Markov
Model-based method was used to detect mixed dialogs from outliers to sub-dialogs or
single-type usage. Experiments on WhatsApp and WeChat demonstrated the effectiveness
and efficiency of their proposed method. In our paper, we not only identify user actions
from network traffic but also recognize its corresponding user type based on the constructed
user-role models.
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2.3. Other Related Works

A few previous papers are notable for using different techniques on similar problems.
He and Yang [13] selected features such as burst volumes and directions to represent the
application behaviors and leveraged PHMM to model different types of applications (Web,
FTP, P2P, and IM) on Tor. Their experimental results demonstrated that PHMM is quite
good at modeling network traffic.

Network traffic analysis technology has been extended to the mobile smart home
equipment research field. PINGPONG [21] automatically extracts the fingerprints from
network traffic generated by the smart home devices and recognizes their actions (such as
turning on or off the light). Similarly, HoMonit [22] analyzes the network traffic generated
by smart home devices to determine the actions performed on the home device applications.
Li and Feng et al. [23] proposed generating fine-grained fingerprints based on the subtle
differences between the file systems of various firmware images. They applied the natural
language processing technique to process the file content and used the document object
model to obtain the firmware fingerprint. Using this fingerprinting approach, they were
able to recognize firmware on the Internet. However, their approach has to interact actively
with the firmware, thus is easy to be detected. In this paper, we propose a passive method
to detect a particular web application of interest.

Network traffic analysis has also been extended to intelligent software testing. In
work [24], an automated penetration-testing framework is built to detect vulnerability
through traffic analysis. Pyshark is used to capture the traffic in IoT devices’ four different
states (booting, mobile application interaction, firmware mode, and offline mode). Then,
‘tshark’ is used to read the .pcap files and check for vulnerabilities such as insecure firmware,
lack of transport encryption, and insecure network services. Similar to [23], this approach
also interacts actively with the firmware.

3. Preliminaries
3.1. Definitions

In this section, we first define several definitions that will be used in this work and
then present the formal definition of our user action identification problem.

Definition 1. (User action). A user’s action, ai, is one interaction that a user carries out on a
web application. For example, a user types in his/her account and password to log in to the web
application. Users’ actions set A = {a1, a2, . . . , an} contains interactions that a user can perform on
a web application.

Definition 2. (Traffic flow). A traffic flow F is referred to as network packets generated by a series
of user actions during a certain time interval T. We present T = [tstart, tend] and F = {(pk, tk)}m

k=1,
in which pk represents a packet, tk is the corresponding timestamps of pk and tstart = t1, tend = tm.

Definition 3. (Session). A session S = ({pi, ti})n
i=1 is a series of network packets generated by

a certain user ui in a time range T = [ts
start, ts

end]. pi = ±li is a signed integer that represents the
packet length and direction, and its corresponding timestamp is ti.

Definition 4. (Burst). A burst b is a packet sequence generated by a user action; it is a section of S.
In addition, ∀(pj, tj) in b, we have ∆t = tj − tj−1 < α, where α is a predefined time interval threshold.
In agreement with the previous study [25], 95% of all packets generated by a user action arrive at
most 4.5 s after their predecessors.

Definition 5. (User role). A user role Ui is one type of user of a web application. It is modeled as a
directed and connected graph G = (V, E), where V is the set of nodes, which denotes user actions,
and E is the set of edges, which represents transitions between actions.

For example, a user performs action v1 after v0 according to some transition probability
distribution. The transition probability distribution in one step can be represented as a |V|
× |V| matrix P = (Pxy), x, y ∈ V, where Pxy denotes the probability of moving from x to y
in one step.
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Definition 6. (Web application). A web application W predefines various permissions for different
users to perform tasks. Thus, the web application model consists of two levels with respect to users
and the action transitions they can carry out.

Figure 2 is an example of a web application with two user roles, i.e., Registered Users
and Guests. As depicted in this figure, vi denotes a user action, and Pij represents the
transition probability between vi and vj.
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Definition 7. (Clickstream). A clickstream C = 〈U, A, T〉 records users’ interactions with a
certain web application over a period of time [tstart, tend]. U is the user role set. A = {a1, a2, . . . , an}
is the set of actions that different users perform. T is the set of corresponding timestamps.

Definition 8. (Click). A click c records one request and is represented as a triple c = 〈u, a, t〉,
where u is the user identity, a is the action u performs, and t is the corresponding timestamp.

The most important quantities for the work are included in Table 1.

Table 1. The definition of important quantities.

Quantity Description

T a certain time interval
pi a packet in network traffic, including the packet’s length and direction
li the length of pi
ti the timestamp of pi
∆t the time interval between two consecutive packets
α a predefined time interval threshold to split a session into bursts

Pxy the transition probability between user actions x and y

3.2. Identification Problems

We present the definition of our identification problem followed by an example.
The problem we set out to solve is:

Problem 1. Given a stream of burst b, detect whether it is generated by a certain user action, i.e.,
we can identify a user action from unknown network traffic.

Example 1. Consider users carrying out interactions with a social forum (e.g., registered users
log in to the forum, browse several posts, and leave some comments). We collect network traffic
generated by user actions performed on this forum and use PHMM to train different action patterns
(e.g., browsing a post or leaving a comment). These patterns are then used to identify corresponding
user actions from unknown network traffic.
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Problem 2. Given a traffic flow F, we try to identify its corresponding user actions and the role of
the user that performs these actions. Then, we can identify a monitored web application W or its
logically identical web application W’.

Example 2. Consider a social forum with two user roles, i.e., Registered Users and Guests. As
users of the same role often present a similar action transition pattern (e.g., registered users log in
to the forum, browse several posts, and leave some comments), models ur and ug can be built to
represent the action transitions of Registered Users and Guests, respectively. These role models can
be built from the historical clickstream data (e.g., the forum’s access log). We then collect network
traffic generated by users and use PHMM patterns to identify corresponding user action sequences
from traffic in a monitored network. The identified user action sequences are matched to ur and ug
to determine their corresponding user types.

4. User Action Identification

In this section, we describe our user action identification method in three parts. The
first part collects traffic data for training the traffic classifier. The second part constructs user
action patterns from the network traffic. The third part describes how these patterns are
used to identify user actions from unknown network traffic. We detail the traffic collection
in Section 4.1 and describe the methodology used to generate action patterns in Section 4.2,
while in Section 4.3, we identify user actions from network traffic.

Figure 3 shows our user action identification process. It is composed of offline training
and online classification. In the training phase, traffic sequences of different kinds of user
actions are captured, classification features are extracted, and user action patterns are built.
These patterns are then used to detect corresponding actions from traffic sequences in the
online classification phase.
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4.1. Traffic Collection

A desktop computer is configured as an Access Point (AP) in a controllable small-scale
network to record the network traffic of users accessing a certain web application. The
network traffic collection approach is depicted in Figure 4. We shield the traffic generated
by other behaviors other than users’ access to the target Web application and record the start
and end time of users’ interactions with the Web application so as to filter out abnormal
traffic flow as much as possible.

The captured data inevitably contains some irrelevant network traffic, such as the ACK,
ARP, and DHCP packets that do not carry payload and packets triggered by advertisements
on the webpage. These irrelevant packets are filtered at first. In addition, we assume a
traffic sequence can be attributed to a specific user by examining the IP addresses or cookies.
In the case of Network Address Translation (NAT), the proposed method in [26] can be
used to identify users. Thus, IP addresses are utilized to filter network traffic generated by
other irrelevant users that connect to the same Wi-Fi access point.
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Packet time information is easily affected by network conditions; thus, it is not as
stable as packet length. In this paper, like previous works [6,12,13], we utilize the packet
length and direction to represent a packet, i.e., a traffic sequence S = (p1, p2, . . . pn), where
pi = ±li, li is the length of the ith packet, and the sign indicates its direction. The traffic
sequences are symbolized and aligned to construct the associated action patterns. We
describe the traffic sequence symbolization and alignment in the following part.

4.2. Traffic Classifier Building

According to the previous study, the network traffic sequence of a given user action
typically follows a pattern that depends on the nature of the user–service interaction of
that action. These patterns can be used to recognize a specific user’s actions from online
network traffic. In this part, we use a machine learning method PHMM to model different
users’ actions.

4.2.1. Profile Hidden Markov Model

In computational biology, PHMM was first introduced in [27] and has been applied
to the task of evaluating a new sequence for membership in a family of sequences as
well as the construction of genetic linkage maps. Biological sequences of the same family
often have differences, but they normally maintain similar functions and structures. It is a
fact that certain positions in a family are more conserved than other positions and allow
substitutions less readily. Like biological sequences, network traffic sequences generated
by the same type of user actions (e.g., two users log in to a web application separately)
may fluctuate due to the network environment, but the essential functionality part can
still be the same. For example, each web page contains some special objects (e.g., CSS
files, pictures), and clicking on a web page will initiate packet sequences that can uniquely
characterize it.

PHMM consists of five basic types of states, i.e., a beginning state, several match states,
insert states, delete states, and an end state. Match states are the core of the model. Every
match state is represented by a set of emission probabilities for each output symbol. Insert
states are portions of sequences that do not match anything in the match states. PHMM
also provides delete states to deal with arbitrary long gaps in sequences. Since arbitrary
gaps can introduce many transitions in the model, representing them with deleted states
is one of PHMM’s advantages. From this perspective, PHMM is suitable for modeling
network traffic sequences because it can exploit positional information contained in the
sequences and is robust to sequence fluctuations (e.g., insertions and deletions).

The structure of PHMM is shown in Figure 5; the circles are delete states, the diamonds
are insert states, the rectangles are match states, and the solid arrows stand for state
transitions. In our work, match states represent the “functionality” structure of network
traffic. Insert states allow variations between the observed traffic sequences produced by
the same user actions. The delete states allow packets at a given position in a sequence
to be removed or replaced with ones that do not fit the model. In general, if an observed
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sequence can be mapped to one model, the path will be Begin→M1 → . . . →Mn → End,
but sometimes it may pass through many delete or insert states before reaching the end.
The PHMM patterns for different user actions are constructed in the training phase, which
is described in detail later.
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4.2.2. Traffic Pre-Process

In order to build the user action patterns, the collected network traffic needs to be
pre-processed. The clustering and Multiple Sequence Alignment (MSA) algorithms [28] are
utilized to accomplish this task. Since packet length and direction are used to represent
traffic sequences, the packet value range is from −1500 to 1500. In order to make the
PHMM patterns more robust, we utilize symbolization to reduce the number of observable
states. In this part, the K-means algorithm is used to cluster all the packets in sequences.
To determine a proper cluster number K, the intra-cluster distance intraK and inter-cluster
distance interK are calculated according to (1) and (2), respectively, in which Ci is the ith
cluster, and centeri is the cluster center of Ci. We choose K with the minimum intraK/interK
as the final number of clusters and assign a distinct symbol (e.g., a letter) to each cluster.
For each packet in a sequence, we find out the cluster it falls in and replace this packet with
the corresponding symbol. The symbolization algorithm is given in Algorithm 1. After the
symbolization, a packet sequence may look like ‘QRJPQNNNCBBBB . . . ’.

intraK =
1
K

K

∑
i=1

∑
x∈Ci

|x− centeri| (1)

interK = min
∣∣centeri − centerj

∣∣i, j ∈ {1, 2, . . . , K} (2)

Algorithm 1 Traffic Sequence Symbolization

Input:
A traffic sequence S
Output:
Symbolized sequence seq
1: l← 0, sign← 0, seq← null;
2: for each packet p in S do
3: l← length of p;
4: if p is an outgoing packet then
5: sign←−1;
6: else
7: sign← 1;
8: end if
9: l← l × sign;
10: seq← seq + Symbolize(l)

/* convert l into its symbolization label and add it to the symbolized sequence */
11: end for
12: return seq
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To have an intuitive sense of how symbolized sequences extract differences among
different interactions, we select four different actions that users carry out on a social forum
(i.e., login, reading, posting, and log out) and visualize their symbolized sequences in
Figure 6. We can see that the symbolized sequences show significant differences. As a
result, these symbolized sequences can be used to distinguish different users’ actions.
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Affected by the network environment, traffic sequences generated by the same user
actions may vary in length. We can build profiles from these unaligned sequences using the
Baum–Welch procedure [29], but it is easy to get stuck around a local optima [30] and much
more time-consuming. Thus, in the training phase, packet sequences of the same actions
(e.g., leaving a comment under an online post) are aligned to the same length. Here, the
Clustal Omega (the latest addition to the Clustal family, allowing thousands of sequences
to be aligned in only a few hours [31]) is used to accomplish multiple sequence alignments.
Figure 7 shows an example of multiple sequence alignment. Five sequences are aligned to
the same length (115 characters), then they are used to construct a PHMM pattern.
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4.2.3. Training the Classifier

After pre-processing the network traffic, different action patterns are constructed to
identify user behaviors from unknown network traffic. In this work, we use a tool named
HMMER to build Profile Hidden Markov Models [32]. HMMER uses a more complex
model called Plan 7. As shown in Figure 8, the Plan 7 architecture is substantially different
from the original model in Figure 5. The main model of Plan 7 consists of B, M, D, I,
and E states, and its probability parameters are generally learned from data in a multiple
sequences alignment. The other states {S, N, C, T, and J} are called special states; with the
help of these states, the Plan 7 architecture can model a complete sequence, regardless of
how much it matches the main model. Readers can refer to [33] for more information about
Plan 7.
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4.3. Traffic Identification

In the classification phase, the established patterns are used to identify the targeted
traffic. We extract features (i.e., packet length and direction) from the traffic to get packet
sequences and symbolize them in the same way as the training phase. Then, we compute
the likelihood that the target traffic sequence is generated by a specific user action. For
example, if we model N different user actions in the training phase, N PHMM patterns are
built. During the classification phase, each packet sequence will gain N probabilities. We
choose the maximum probability Pi and label this sequence as generated by the ith action.
The detailed classification process is described as follows.

We split a traffic trace into bursts and try to identify their corresponding user actions.
As depicted in Figure 3, suppose N PHMM patterns {M1, M2, . . . , MN} are built; we
symbolize each burst and compute the probabilities that it is produced by each pattern.
The maximum probability Pi indicates that the burst is generated by the ith user action.
The user action identification algorithm is given in Algorithm 2.
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Algorithm 2 User Action Identification

Input:
A network traffic trace T
PHMM patterns M1, M2, . . . , MN
Output:
User action sequence S
1: i← 1, x← 0, start← 1, burst← null, S← null;
2: α← the predefined threshold
3: for ith packet pi in T do
4: if start == 1 then

//start == 1 indicates pi is the first packet in a burst
5: burst← burst + pi;
6: start← 0;
7: else if ti − ti − 1 < α then
8: burst← burst + pi;
9: else
10: Symbolize burst with Algorithm 1;
11: x← argmax(Pr(burst|Mx), x = 1, 2, . . . , N);

//the burst is generated by the xth type of user action
12: S← S + actionx;
13: burst← null;
14: start← 1;
15: end if
16: end for
17: return S

5. Adaptive Symbolization

In Section 4.2, the K-means clustering algorithm is used to symbolize traffic sequences.
Symbolization is an important series analysis method. It converts a sequence of real
numbers into a sequence of symbols according to its numerical characteristics [34]. The
goal of symbolization is to retain as much information as possible with the smallest symbol
set. Choosing an appropriate symbolization strategy is a difficult problem.

The most common approach for coarse symbol definition involves partitioning the
range of sequences into a finite number of regions. Each region is associated with a specific
symbolic value. The original measurement is uniquely mapped to a particular symbol
depending on the region in which the measurement falls. For example, Zhuo [12] divided
the network traffic sequence into equal intervals and assigned different symbols to each
interval to form a symbolized sequence. As shown in (3), the size of the symbol set N
is adjustable, and the symbol si of measurement xi in the sequence is determined by the
interval in which xi falls. It is easy to see that different symbol sets can be obtained by
adjusting the interval division.

si =


N − 1 xi ≥ XN−1
. . . . . .
2 X3 > xi > X2
1 X2 > xi > X1
0 xi < X

(3)

Both the equal interval and the K-means clustering method used in Section 4.2 have
obvious defects. In the former method, the division of the interval is randomly speci-
fied. Even though few or no packets fall in certain intervals, the algorithm still assigns
symbols to these sparse intervals. However, for intervals that contain lots of packets, the
algorithm cannot assign more symbols to reflect the statistical distribution characteristics.
Thus, although the equal interval symbolization method is very straightforward, it cannot
describe the traffic sequence well. Similarly, the K-means algorithm clusters packet in
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traffic sequences and assign symbols to each cluster. However, it is hard to make sure the
generated symbolized sequences describe the original sequences well.

In order to tackle these problems, this paper presents an adaptive symbolization
method under the condition of limiting the size of the symbol set. Our goal is to find the
lowest information loss division method under a fixed symbol set size K. As depicted in
Figure 9, the packet length xi varies from −1500 to 1500. Then, the problem is to divide the
packet length range into K intervals and assign symbols for each of them, i.e., we need to
find out the appropriate interval length τ1, τ2, . . . , τK.
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Suppose pj is the probability of element xj in an original sequence X. The distance D
between the original and symbolized sequences can be calculated by (4), which E(Iτi ) is the
expected value of an original sequence in the ith interval. We need to find the symbolization
method that yields the minimal D.

D =
K
∑

i=1

(
E(Iτi ) · ∑

j∈τi

pj − E(X)

)2

=
K
∑

i=1

(
E(Iτi ) · ∑

j∈τi

pj − ∑
j∈Ω

xj pj

)2 (4)

The value of E(Iτi ) depends on interval length τi. Suppose there are packets that fall
in the ith interval, E(Iτi ) can be calculated with (5).

E(Iτi ) =

Nτi

∑
j=1

xj pj (5)

It is obvious that E(Iτi ) is related to ∑
j∈τi

pj, i.e., when ∑
j∈τi

pj changes, the E(Iτi ) changes

too. We set ∑
j∈τi

pj = ai, then the corresponding expected value E(Iτi ) can be represented as

a random variable Xi. Thus the distance D can be represented by (6).

D =
K

∑
i=1

(ai · Xi − E(X))2 (6)

Then, finding the minimal D turns into an efficient estimation problem, i.e., estimating

X with
K
∑

i=1
ai · Xi, where

K
∑

i=1
ai = 1.

Suppose D(X) = δ2, in order to meet (7), we define conditional extremum function (8)
based on the Lagrange multiplier.

D
(

K
∑

i=1
ai · Xi

)
=

K
∑

i=1
a2

i · D(Xi)

=
K
∑

i=1
a2

i · D(X)

=
K
∑

i=1
a2

i · δ2

(7)
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Let us set

f
(

a1, a2, . . . , aK, δ2, λ
)
=

K

∑
i=1

a2
i · δ2 + λ ·

(
K

∑
i=1

ai − 1

)
(8)

Take the partial derivative of (8) to produce

∂ f
∂a1

= 2a1 + λ = 0
∂ f
∂a2

= 2a2 + λ = 0
. . .

∂ f
∂aK

= 2aK + λ = 0
∂ f
∂λ =

K
∑

i=1
ai − 1 = 0

(9)

Solving Equation (9), one can obtain
ai = − λ

2 P1
K
∑

i=1
ai − 1 = 0 P2

(10)

Put Equation P1 into P2 to get

−K
2

λ− 1 = 0 (11)

Namely,

λ = − 2
K

(12)

Putting λ into (10), one can obtain

ai =
1
K

(13)

As mentioned earlier, ai = ∑
j∈τi

pj is set to represent the probability of measures that

fall in the ith interval. Then, we have proven that the minimal D can be obtained when
ai =

1
K . Thus, in order to retain information about the original sequence, we propose an

equal probability symbolization method, which guarantees a basically equal number of
packets falling in each interval. Namely, the traffic sequences are divided into K intervals,
and the sum of the occurrence probabilities of packets in each interval is equal to 1/K.

Suppose S = {Sa1 , Sa2 , . . . , SaN} is the collected network traffic generated by different
users’ actions, in which Sai represents traffic sequences of action ai. All the packets in S
are sorted in ascending order to get S’. The occurrence probability pi of each packet xi in is
calculated. Then, S’ is traversed sequentially. The probabilities of those traversed xi are
accumulated. When the summation is equal to 1/K, we label the latest traversed xi as a
division point. Continue to traverse S’; one can locate the remaining K − 2 interval division
points. The algorithm of the proposed symbolization method is shown in Algorithm 3.
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Algorithm 3 The Proposed Symbolization Method

Input:
The collected traffic sequence set S
Symbol set size K
Output:
Interval Sets Ψ = {τ1, τ2, . . . , τK}
1: S’←all the packets in S are sorted in ascending order;
2: N← sizeof(S’);
3: i← 1, j← 1, prev← 0, sum← 0, p← 1/N, Ψ← null;
4: for xi in S’ do
5: prev← sum;
6: sum← sum + p;
7: if prev <= 1/K and sum > 1/K then//totally K intervals
8: if |prev-1/K| < |sum-1/K|then
9: xτj = xi−1
10: i← i −1;
11: else
12: xτj = xi
13: end if
14: sum← 0, prev← 0;
15: τj ← all elements from xτj−1 to xτj

//τj contains all the elements between two adjacent interval points
16: j← j + 1;
17: end if
18: end for
19: Ψ← Ψ + τj;
20: return Ψ;

6. Web Application Identification

We have proposed a PHMM-based user action (user–web application interaction)
identification method. In this section, our proposed method is applied to a web application
identification problem. We first introduce the necessary background of modeling a web
application, then build user role models from clickstreams, and identify web applications
from network traffic at last.

6.1. Web Application Model

A web application is often designed to provide different capabilities for different types
of users. For example, most users log in, browse or leave comments on a social forum,
but there are also guests who can only browse several blogs but cannot leave comments.
Therefore, we can model a web application from the users’ perspective.

In this paper, we assume the user types are known in advance and try to build the
user role models. The user role set U represents different user types of a web application.

As described above, different types of users are allowed to perform different kinds
of actions on a web application. User roles are proposed to represent them. It is observed
that every user role u ∈ U has its distinct action transition pattern; thus, the Markov chain
models can be used to represent different roles. Markov chains are types of probabilistic
finite-state machines; they describe the probability of reaching one state to another and are
widely used in many study fields (e.g., speech recognition and bioinformatics). Applying
Markov chains to describe user roles is natural since interacting with a web application
creates a sequence of states in which each state corresponds to a kind of action. Each
Markov chain can be mathematically represented by a transition matrix. A Markov chain
and its corresponding transition matrix are presented in Figure 10 and Table 2 separately.
The intersection of row Si and column Sj denotes the transition probability from state Si to
Sj. For example, the transition probability from S1 to S2 is 0.8.
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Table 2. The corresponding transition matrix.

S1 S2

S1 0.2 0.8
S2 0.3 0.7

6.2. User Role Construction

In this step, we try to model user action transitions from clickstream data. Clickstreams
are traces of click-through events generated by online users during each web browsing
session [35] and have been used to model web traffic and user browsing patterns [36–39].
In this work, a sequence of HTTP requests made by a user on a web application is a
clickstream. As we all know, most requests correspond to the user explicitly fetching a page
by clicking a hyperlink, although some requests may be programmatically generated [40].
As mentioned in Section 4.1, we also assume a clickstream can be attributed to a specific
user by examining the IP addresses or cookies.

In this work, a session is used to represent a user’s click sequence during a single visit
to the web application. The clickstream is divided into sessions. As a matter of fact, not all
users explicitly end their sessions by logging out of the web application. According to this,
we consider two situations to indicate a session is over. A session is regarded as over if the
user logs out actively; otherwise, we assume a session is over if the user does not make
any requests in a predefined time interval threshold. According to the previous work, the
threshold is set to 20 min [41].

Since different user roles have different capabilities, their click transition probabilities
are different. In this paper, we build a Markov Chain model for each user role to characterize
the transitions between clicks during sessions. In the role model, each state is a kind of
user action, and edges are transitions between two consecutive actions. We use ENTER
and EXIT states to mark the beginning and end of a session. In the case of a traditional web
application, the LOGIN and LOG-OUT actions correspond to these two states, respectively.

We focus on calculating the corresponding transition probability matrix T of the
Markov Chain. Every entry T[i][j] represents the transition probability from state i to state
j. In order to simplify the logic, we first store the occurrence count of transitions from
state i to j in T[i][j] instead of the transition probability. After obtaining the transition
occurrence matrix, we divide each T[i][j] by the total number of row i (the total transition
occurrence from state i to other states) and convert it to the transition probability matrix.
Since the transition probabilities are changing continuously, this conversion can make our
computation much easier. The implementation of building a user role model is given in
Algorithm 4.

6.3. Web Application Discriminator

As described in 4.3, user action patterns are built based on PHMM. A traffic trace is
divided into bursts, and each burst can be associated with a specific user’s action. Then,
the traffic trace can be represented as a user’s action sequence. According to the action
transition matrices of user role models, we can calculate the likelihood that the identified
action sequence is generated by each type of user. The maximum probability determines
its corresponding user role. Then, we identify the targeted web application based on user
roles. The proposed web application identification framework is depicted in Figure 11.
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Algorithm 4 Transition Probability Matrix Calculation

Input:
a set of action sequences S
a transition occurrence matrix T’← null
Output:
a transition occurrence matrix T
1: for each sequence s in S do
2: n← length of s;
3: T’[ENTER][s [0].action]++;
4: for i← 0 to n − 1 do
5: T’[s[i].action][s[i + 1].action]++;

/* calculate the occurrence of transitions between different user actions */
6: end for
7: T’[s[n].action][EXIT]++;
8: end for
9: i← 0, j← 0, sum← 0;
10: for i← 0 to T’.length do
11: for j← 0 to T’[i].length do
12: sum← sum + T’[i][j];
13: end for
14: for j← 0 to T’[i].length do
15: T[i][j]← T’[i][j]/sum;

/* convert transition occurrence matrix into transition probability matrix */
16: end for
17: sum← 0;
18: end for
19: return T;
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7. Experiments

The first experiment compares our adaptive symbolization method with equal interval
and K-means clustering methods. Then, our PHMM-based user action identification
approach is evaluated. Finally, we build user role models from clickstreams and use the
PHMM models to complete the web application identification task.
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7.1. Traffic Symbolization

In this part, we conduct three symbolization methods, i.e., equal interval [12], K-
means clustering [13], and our proposed adaptive method on a public network traffic
dataset (https://github.com/Thijsvanede/FlowPrint/tree/master/datasets (accessed on
11 January 2023)) [4]. We run these methods on an Ali cloud ECS server2, then evaluate the
distances between the symbolized and the original sequences (D) and time consumption
separately.

Our proposed symbolization approach outperforms the K-means method from both D
and time consumption. The performance of the adaptive algorithm in reducing the distance
between the symbolized sequences and the original sequences is significantly better than
that of the equal interval and K-means clustering algorithms so that it can retain the original
information of the traffic sequences to the maximum. In terms of efficiency, the adaptive
algorithm is better than K-means, and the time consumption is similar to that of the equal
interval algorithm.

According to Figure 12a, with the increase of K, the distance between the symbolized
sequence and the original sequence gradually converges. In order to determine the optimal
value of K, the heuristic method is used to calculate the internal and external distance of the
symbolized sequence according to Formulas (1) and (2). The interval center of our adaptive
symbolization algorithm is the expected value of each interval, and Ci represents the ith
interval. According to Formula (14), K with the smallest value is selected as the interval
number after symbolization. We use our adaptive method to symbolize network traffic in
the following experiments.

K = argmin(intraK/interK) (14)
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Figure 12. The comparison of equal-interval, K-means, and our adaptive symbolization algorithms.
(a) Comparison of the distance between the symbolized and the original sequences. (b) Comparison
of the time consumption.

The time complexity of K-means is O(NKt), where N represents the number of packets
in the network traffic data set to be processed, K is the number of clusters, and t is the
number of iterations of clusters. The equal interval and adaptive symbolization methods

https://github.com/Thijsvanede/FlowPrint/tree/master/datasets
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have the same time complexity of O(N), where N is the number of packets in the network
traffic data set.

However, according to Figure 12b, we can see that the equal interval method performs
slightly better than the proposed method in terms of time-consuming. That is because the
equal interval method does not involve statistics. For example, when we use equal interval
symbolization, the interval length l is MTU/K, where MTU is the Maximum Transmission
Unit. A packet with length len will be assigned to the ith interval, where i = len/l + 1.
However, as described in Algorithm 3, the adaptive symbolization method needs to find
the occurrence probability pi of each packet xi. This involves statistical work, which takes a
little more time than the equal interval method.

7.2. Action Identification

In this section, we build a PHPWind-based (version 8.7, Hangzhou, China) web
application on an Ali cloud ECS server. PHPWind is an open-source social forum template.
Table 3 shows the actions performed by volunteers on this forum. Wireshark is used to
capture network traffic data. Similar to [12], we perform each action in the forum 50 times
and use the HMMER instruction hmmbuild to model these actions. Then, each action
is executed 100 times again and used to match the constructed models with hmmsearch
instruction. Here, bit score in the output of hmmsearch is used to help us classify actions.
Because it does not depend on the size of the sequence database, it only relates to the
PHMM and the target sequence and shows the significance of the match [32].

Table 3. Classic users’ actions on the forum.

# Action Comment

1 LOGIN A user logs into his/her account.
2 SCAN A user browsers different parts of the forum.
3 READ A user browsers blogs.
4 REPLY A user leaves comments on blogs.
5 MODIFY A user modifies his/her own blogs.
6 PREVIEW A user previews his/her own blog before posting it.
7 POST A user writes a blog and posts it.
8 LOG-OUT A user logs out his/her account actively.

Three widely used machine-learning metrics, the recall, precision, and F1 score, are
utilized to evaluate our user action identification algorithm.

recall =
TP

TP + FN
(15)

precision =
TP

TP + FP
(16)

where TP (True Positive) is the number that a user action is correctly identified as exactly
the same monitored action, and FN (False Negative) is the number that a user action is
incorrectly classified as a different action or a non-monitored action. FP is defined as the
number of non-monitored user action that is incorrectly classified as being monitored.

The F1 score is defined as the harmonic mean of recall and precision, which is calculated
as follows:

F1 =
2× Precision× Recall

Precision + Recall
(17)

Intuitively, the metric F1 with a score of 1 indicates a perfect classifier. The detailed
identification results are listed in Table 4.
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Table 4. Results of action identification.

# Action Recall Precision F1

1 Login 1 0.99 0.995
2 Scan 0.96 1 0.979
3 Read 0.95 0.98 0.964
4 Reply 0.96 0.58 0.722
5 Modify 0.98 0.95 0.965
6 Preview 0.97 0.98 0.975
7 Post 0.27 0.9 0.415
8 Log-out 1 1 1

Average 0.886 0.923 0.877

Figure 13 shows the confusion matrix of the identification results. In the confusion
matrix, the horizontal axis represents the action types in the predicted label from the output
of classifiers. In contrast, the vertical axis represents the one in a true label. Each cell along
the main diagonal describes the correct rate of one single action identification, whereas the
darker cell represents the higher correct identification rate. Accordingly, most single-action
identification results are above 0.95. However, for action POST, the correct rate is very low
(only 0.27). It is observed that 70% of the POST action is misidentified as the REPLY action.
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It is known that both POST and REPLY actions submit data to the web application.
By checking the two actions manually, we find that both POST and REPLY actions lead to
forms with the same URL path but different parameters. And these forms have similar
structures. For example, posting a new blog may lead to a link post.php?fid = 2, while
replying to this blog will jump to post.php?action = reply&fid = 2. Furthermore, POST and
REPLY actions refresh the webpages. The new webpages have the same structure. Based
on this observation, POST and REPLY actions are combined into a new type of POST action.
Then, a new POST model is built based on the previously collected traffic sequences of
POST and REPLY actions. This new PHMM model is used to identify POST/REPLY actions.
The adjusted confusion matrix of the identified actions is shown in Figure 14. The average
recall, precision, and F1 score are 0.973, 0.981, and 0.977, respectively.



Electronics 2023, 12, 2948 21 of 26Electronics 2023, 12, x FOR PEER REVIEW 23 of 27 
 

 

 
Figure 14. The adjusted confusion matrix. 

 
Figure 15. The comparison results of PHMM and Random Forest classifiers. 

7.3. User Role Models 
In this step, we investigate the feasibility of using clickstreams to model user roles. 

The study is based on detailed clickstreams (historical access log from 8 July 2018 to 7 May 
2019) of a PHPWind-based (version 8.5, Hangzhou, China) social forum. Table 5 describes 
the dataset summary. In total, our dataset includes 1,810,873 clicks from registered users. 
After discarding events with missing fields or HTTP status associated with error codes 
(e.g., 301, 302), there are 1625 valid HTTP requests. We manually analyze the clickstreams 
and characterize each click with an IP address, a Unix epoch timestamp, and the corre-
sponding user action. For example, the LOGIN action represents a user logging into 
his/her account, and the REPLY action indicates when a user leaves comments on blogs. 

Table 5. Summary of the clickstream data. 

Dataset Users Clicks Sessions 
access.log 44 1,810,873 1625 

Figure 14. The adjusted confusion matrix.

In order to verify the efficiency of the proposed method, we conduct a comparative
experiment against a Random Forest (RF) classifier. RF is a widely used ensemble learning
algorithm that can achieve good performance in most classification cases.

Motivated by the literature [42], we take the packet length and the following statistical
information for each sequence: maximum, minimum, mean, median absolute deviation,
standard deviation, variance, skewness, and kurtosis to build feature vectors. In order to
reflect the distribution information of the traffic sequences, the numbers of packets that fall
in five intervals, i.e., 0–300, 301–600, 601–900, 901–1200, and 1201–1500 are also considered
as features. Figure 15 shows the comparison results between our PHMM model and the
Random Forest classifier used in [43].
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7.3. User Role Models

In this step, we investigate the feasibility of using clickstreams to model user roles.
The study is based on detailed clickstreams (historical access log from 8 July 2018 to 7 May
2019) of a PHPWind-based (version 8.5, Hangzhou, China) social forum. Table 5 describes
the dataset summary. In total, our dataset includes 1,810,873 clicks from registered users.
After discarding events with missing fields or HTTP status associated with error codes (e.g.,
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301, 302), there are 1625 valid HTTP requests. We manually analyze the clickstreams and
characterize each click with an IP address, a Unix epoch timestamp, and the corresponding
user action. For example, the LOGIN action represents a user logging into his/her account,
and the REPLY action indicates when a user leaves comments on blogs.

Table 5. Summary of the clickstream data.

Dataset Users Clicks Sessions

access.log 44 1,810,873 1625

The possible action transitions of registered users are shown in Figure 16, which states
that LOGIN and LOG-OUT mark the beginning and end of each session, respectively. To
reduce the complexity of this figure, edges with a probability below 5% are pruned (except
for transitions to the LOG-OUT state).
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A possible user action sequence is shown in Figure 16a. A user logs in, browses, and
posts a new blog or revises blogs he/she posted before. Figure 16b represents another
possible user action sequence. A user reads several blogs and leaves comments under what
he/she is interested in. Transition probabilities of stating LOG-OUT are very low (only
0.1%), which confirms that few users exit the service actively. Other than states shown
in this figure, PREVIEW is a state whose related transition probabilities is very low (only
about 0.2%).

We also construct user roles for guests. Due to the access control strategy of the forum,
there are only SCAN and READ states in their role model.

7.4. Web Application Uncovering

In this part, we applied the proposed action identification methods to detect web ap-
plications. Volunteers are recruited to play different user roles, respectively, i.e., registered
users, guests, and those who do not access the forum.

The registered users log in, read, and leave comments under posts in the forum. While
the guests scan the forum and read several posts that they are interested in. They stay on
the forum, capture the network traffic and take notes on what actions they have performed.
The other volunteers visit the Alexa Top-50 sites’ homepages, collect traffic data and label
them with the corresponding web applications.
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The traffic traces are mixed together and segmented with a time interval threshold.
Inspired by [43], we utilized a smaller threshold (i.e., 2.5 s) to segment network traffic
into a sequence of short time bursts. These bursts can be identified with the approach we
have proposed in Section 4. In this step, traffic generated by visiting Alexa Top sites can
be identified as unknown actions. Transitions between SCAN and READ are uncovered;
however, both registered users and guests can perform this kind of transition. We can also
identify transitions between READ and REPLY, which only exist in the constructed role
model for registered users. This indicates the existence of a targeted web application.

8. Discussion and Limitations
8.1. Discussion

In this work, we address the users’ action and web application identification problems
based on PHMM since it exploits positional information contained in network traffic se-
quences and is sensitive to webpage transitional information. In order to be recognized
by PHMM, the network traffic sequences are converted into symbolized sequences. We
proposed an adaptive symbolization method, which takes packet distribution into con-
sideration and outperforms K-means and equal interval methods in terms of the distance
between the symbolized and original sequence. It is needed to be mentioned that all the
results presented in the tables and graphs above are our top-ranked results.

8.2. Limitations
8.2.1. Packet Padding

Our method relies on packet information such as packet size, direction, and times-
tamps. Thus packet padding is the most direct technique to confuse our classifier. Oppo-
nents can add dummy packets to the normal network traffic to hide the user action patterns
and make the classification more difficult. Luckily, due to the high bandwidth overhead,
packet padding is not widely deployed yet.

8.2.2. Lack of Sufficient Prior Knowledge

In this work, we assume the user types are known in advance. User role models are
built from the access log of a forum to help us uncover more information from network
traffic. However, in the real world, it is not very easy to get various users’ clickstream data
(e.g., a website’s access log) in advance and build the role models. User roles can serve as a
complementary means for web application identification. We consider identifying different
users’ actions and try to build user role models from online network traffic in future work.

8.2.3. New Trends in Web Development

Due to the convenience of our work (the authors provide technical support for China’s
public security bureaus), we have learned that most fraud websites targeted by police
officers are still developed traditionally. Thus we referred to a blog application as the
practical solution of a Web application in this paper. Traditionally, a website is built as a
collection of interlinked pages. When users follow hyperlinks to carry out their actions on
the site, a browser loads the new page as a completely new entity, including the HTML and
the resources that the HTML loads, such as CSS and JavaScript. This generates network
traffic that contains transitional information. Since PHMM exploits positional information
contained in network traffic sequences and is sensitive to webpage transitional information,
we use it to build users’ action patterns.

However, as the Internet has evolved, so have web development trends. Single-page
applications (SPAs) are JavaScript-based web applications that load a single HTML page in
users’ browsers and dynamically update content as needed without refreshing the page.
Progressive web applications (PWAs) help websites load in no time and work offline in
apps to improve user experience. In the future, we will try to construct user–application
interaction patterns from these types of Web applications.
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9. Conclusions

In this paper, we propose an adaptive symbolization algorithm to represent network
traffic and use the profile-hidden Markov model to construct user action patterns. User role
models are built to describe different user types and utilized to identify web applications
together with PHMM patterns. Compared with previous work, our equal probability
symbolization method takes packet distribution information of original sequences into
consideration. It is less time-consuming and reduces traffic sequence complexity while
retaining information. The results demonstrate that our PHMM-based user action iden-
tification method has higher accuracy than the existing traditional classifiers. Different
user types are first considered in web application identification, which helps us mine more
detailed user information (e.g., users’ actions and user types).

In the future, we will investigate the possibility of using online network traffic to build
different user role models and uncover more information during web application identi-
fication. We will also carry out a more in-depth study of new types of web applications,
such as SPAs and PWAs mentioned in Section 8.
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