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Abstract: As environmental regulations on automotive exhaust gas are gradually strengthened to
cope with climate change, internal combustion engines, including those in hybrid electric vehicles,
are continuously being downsized. Supercharging technologies are essential to compensate for the
reduced engine power. One of the supercharging technologies, the turbocharger, has a response
delay in the low-speed region, which is known as turbo lag. Various technologies have emerged to
reduce turbo lag. Recently, electric supercharging technologies capable of reducing turbo lag using
high-speed motors have been developed and commercialized. However, they are difficult to obtain
for high-speed motors because of the cost of load performance test equipment. For this reason, many
previous studies have compared analysis and experiment results under no-load conditions, or they
have estimated performance in the high-speed region from results at low speed with light loads. This
makes it difficult to know exactly how the performance of the motor is affected under loads applied
to an actual system. In this study, performance test evaluation was conducted using a high-speed
torque sensor, eddy current brake, and inertial dynamometer. Input/output power and efficiency
were calculated using the measured voltage, current and output side torque and speed, and the
results were compared.

Keywords: electric turbocharger; high-speed motor; performance test; surface mounted permanent
magnet synchronous motor

1. Introduction

Internal combustion engines (ICEs), including those in hybrid electric vehicles (HEVs),
are being downsized as environmental rules on vehicle exhaust gas become increasingly
stringent, to combat climate change. Engine downsizing involves approaches which shrink
the engine’s displacement to cut down on fuel use and carbon dioxide (CO2) emissions.
Using what are referred to as forced induction systems (FISs) [1,2], a significant amount
of fresh air is blasted into the engine to make up for insufficient performance. One of
the supercharging methods, the turbocharger, has a turbo lag, or delayed response, in the
low-speed range. Several methods have been created to reduce turbo lag, but recently,
electric supercharging technologies that use high-speed motors have been developed and
are commercially available. However, one limitation of the electric turbocharger is that it
requires a lot of power to operate, and there has been a recent trend toward applying it
to mild hybrid vehicles with 48 Vdc battery systems rather than 12 Vdc battery systems.
Figure 1 and Table 1 [1–21] present the literature and research on electric turbochargers for
automobiles with battery systems ranging from 12 to 48 Vdc for the previous 20 years.
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Figure 1. High-speed motors of electric turbocharger output power versus speed for different
machine topologies.

Table 1. High-speed machines for electric turbochargers with 12 Vdc to 48 Vdc battery systems.

No. Motor Power (kW) Speed (krpm) Voltage (Vdc) Topology Designed/Studied by

1
IM

1.4 250 12 EAT Honeywell
2 2.8 120 48 EAT Honeywell

3 1

SRM
5.0 140 12/24 EAT Loughborough Univ.

4 2.0 70 12 TEDC Valeo/CPT
5 2 7.0 70 48 TEDC Valeo/CPT

6

BLDC

1.5 80 24 TEDC WEM-PEC
7 1.7 60 12 TEDC BorgWarner

8 3 5.0 70 48 TEDC BorgWarner
9 2.0 80 48 TEDC MMT

10

BLAC

1.5 150 12 EC Nagaoka Univ.
11 3.5 120 48 EC Technische Univ.
12 2.0 140 12 EC MHI
13 2.0 140 12 EAT MHI
14 2.0 150 12 EAT IHI
15 1.5 160 12 EAT G + L innotec
16 2.0 280 12 EAT EcoMotor
17 5.0 150 48 EAT EcoMotor
18 4.0 150 48 EAT Hanyang Univ.
19 2.0 150 12 EAT Aeristech
20 14.0 150 48 EAT Aeristech
21 2.3 70 48 TEDC KERI/Keyyang
22 3.0 100 48 TEDC KERI/Keyyang

1 Applied to Caterpillar 7.01-L heavy duty vehicles diesel engine. 2 Applied to Audi SQ7 4.0-L TDI engine.
3 Applied to Mercedes-Benz 3.0-L M256 engine.

As shown in Figure 1, high-speed motors often operate at speeds above 10,000 rpm and
100,000 rpm

√
kW or more. Table 1 shows three types of high-speed motors used in electric

turbochargers, Induction motors (IM), switching reluctance motors (SRM), and permanent
magnet synchronous motors (PMSM). The IMs are appropriate as an electric motor for
electric turbochargers and are structurally sturdy even under the strong centrifugal force
produced by high-speed rotation, but their efficiency is rather low due to additional loss
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from the induced current generated by the rotor. Because the rotors do not have PMs,
SRMs are also ideal for electric turbochargers that are utilized for high-speed operation
and at high ambient temperature. However, because of their doubly prominent structure
and quick change in magneto-motive force when the switch is on or off, they have the
drawbacks of torque ripple, noise, and vibration. PMSMs are distinguished by their high
power density and efficiency due to their utilization of rare earth magnets and great energy
integration. To prevent demagnetization in high-temperature applications, such as electric
turbochargers, PMs with a high working temperature must be utilized [2].

In synchronous motors, the switching frequency typically increases along with the
number of poles. In high-speed synchronous motors, the number of poles is therefore
chosen with the switching frequency in mind. For the two poles with the fewest poles,
surface-mounted permanent magnets (SPMs) are more frequently employed than interior
permanent magnets (IPMs). To stop the PMs from being dispersed, a sleeve or a container
should be employed when an SPM-type rotor is used in a high-speed motor.

Lee et al. accurately described the topology of the following electric forced induction
systems (EFISs) according to where the electric motor is located: electric compressor
(EC), electrically assisted turbocharger (EAT), electrically split turbocharger (EST), and
turbocharger with an additional electrically driven compressor (TEDC) [1,2]. TEDC and
EAT are the two primary variables in Table 1. The demagnetization and cooling of the PMs
by the hot exhaust should be taken into account if a PMSM is utilized for the EAT topology
since the motor is positioned between the compressor wheel and the turbine. Due to an
increase in rotor inertia caused by the addition of an electric motor to the turbocharger
shaft, the response performance should also be verified.

The Korea Electrotechnology Research Institute (KERI) (Changwon, Republic of Korea)
and Keyyang Precision Co., Ltd. (Gimcheon-si, Republic of Korea) which is a manufacturer
of conventional turbochargers in South Korea, developed the electric turbocharger system.
As shown in Figure 2, it is designed to fit 1.6 L diesel automobiles and has a power output
of 3 kW at 100,000 rpm. It reduces turbo lag to within 0.4 s. For high-power density and
efficiency, we chose a high-speed surface-mounted permanent magnet synchronous motor
(SPMSM). The TEDC topology was chosen to provide thermal stability by separating the
electric motor from the traditional turbocharger. This also has the benefit of increasing
transient response performance [2,21–23].
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Figure 2. KERI and Keyyang Precision’s turbocharger with an additional electrically driven compres-
sor (TEDC).

Because of the high cost, it is challenging to build load test equipment for high-
speed motors. Instead, in many study scenarios, the observed loss values under no-
load conditions are compared to load tests and analysis values, or the performance of
high-speed regions is approximated based on performance at low speeds with modest
loads [10,11,24–29]. It is also challenging to precisely determine how the motor performs
when a load is applied to an actual system. In this study, performance tests were carried out



Electronics 2023, 12, 2937 4 of 17

by employing an inertial dynamometer, an eddy current brake, and a high-speed torque
sensor. The observed voltage, current, torque, and speed were used to determine the
input/output power and efficiency, and the results were compared.

2. High-Speed Motor for Electric Turbocharger

In previous studies [2,20–23], we proposed rotor and stator models using various
poles/slots combinations and winding methods, and we designed a 3 kW, 100,000 rpm
SPMSM through mechanical analysis as well as electromagnetic finite element analysis
(FEA). The FEA results of the designed motor at a rated speed are shown in Figure 3
and Table 2. The copper loss was calculated by multiplying the square of the current
flowing in each phase by the winding resistance. The core loss of the rotor and stator was
calculated using the Steinmetz equation with the flux density and frequency of the rated
speed. The eddy current loss in the PMs was calculated by the finite element method using
the Maxwell equations and the magnetic vector potential. Mechanical loss is usually 2–3%
of the total output, and it was assumed to be 2.5% of the total output. Then, the prototype
was fabricated and the performance of the motor was evaluated using a motor/generator
(M/G) dynamometer with a reaction torque sensor and a variable resistor, as illustrated in
Figure 4. In a typical M/G dynamometer, the torque sensor is located between the motor
and the generator, and since the allowable speed of the torque sensor must be greater
than the operating speed of the test motor, the cost of a torque sensor for a high-speed
motor is inevitably high. However, the reaction torque sensor used in Figure 4 is fixed
between the housing and the jig of the test motor and calculates the torque using the shear
stress generated when the torque is applied to the torque sensor, so it has the advantage of
measuring the torque regardless of the operating speed of the test motor. The performance
of the designed motor was verified by comparing it with FEA using the dynamometer
in Figure 4, and as shown in Figure 5, the results confirmed that the transient response
performance of 1.6 L diesel engine was improved by sufficiently reducing the turbo lag,
which is a disadvantage of conventional turbochargers, even at 70,000 rpm [20]. The
specifications for 1.6 L diesel engine is in Appendix A.
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Figure 3. Flux density distribution of the motor designed for an electric turbocharger at rated speed.

Table 2. Results of 3D electromagnetic FEA and experiment for the designed motor at rated speed.

Parameter Specification FEA Experiment

Torque (Nm) 0.2865 0.2865 0.2946
Power (kW) 3 3 3.084
Speed (rpm) 100,000 100,000 100,030

Efficiency (%) ≥93 94.0 94.10
Torque ripple (%) - 1.32 -

Rotor core loss (W) - 4.09 -
Stator core loss (W) - 51.7 -

PM loss (W) - 6.07 -
Winding loss (W) - 55.7 -

Mechanical loss (W) - 75.0 -
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Three performance tests were conducted under load conditions based on the results
performed in Figure 4 at 70,000 rpm, as shown in Figure 6, and the procedure and method
for each test are briefly introduced in the next section.
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3. Validation of Performance for High-Speed Motor via Various Experiments

The methods for the electric motors experiment were conducted according to IEC
60034-2-1, which is an international standard that specifies the methods for evaluating
the efficiency and measuring the losses of rotating electrical machines, including both
DC and AC synchronous and induction machines. This standard specifies methods for
obtaining each loss of the motor from the test and for calculating the efficiency from these
losses. For PMSMs, method 2-1-2A, a direct measurement of input and output, should be
used, and the torque can be measured using an inline torque meter between the motor and
the load or by means of a dynamometer with a cradle base construction [30]. Based on
this information, a M/G dynamometer was constructed using a high-speed torque sensor,
which is an inline torque meter type and a dynamometer with a cradle base structure
using an eddy current brake. Another international standard, IEEE Standard 115TM, speci-
fies a torque measurement method using acceleration [31], and an inertial dynamometer
was constructed based on this standard. The procedures for each experimental method
are shown in Figure 7. Before constructing the dynamometer, the stability of the dy-
namometer system was analyzed, and each dynamometer was constructed according to the
experimental method.
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3.1. M/G Dynamometer with High-Speed Torque Sensor

Inline-type torque sensors, which are commonly used, can be classified into con-
tact and non-contact types. They detect the torque applied to a rotating shaft using a
strain gauge, and the contact-type torque sensor transmits the torque data acquired by the
strain gauge through a slip ring and brush. However, this method is difficult to apply to
high-speed rotating equipment. On the other hand, the non-contact type torque sensor
transmits the torque data acquired by the strain gauge without contact, using radio fre-
quency (RF) wireless, infrared communication, magnetic induction, etc. Therefore, it is
used for high-speed rotating equipment. However, the price of non-contact type torque
sensors increases as the rotation speed increases, and it is not easy to find a specification
that allows a rotation speed of over 50,000 rpm. The high-speed torque sensor (ET004)
used in this paper is the phase shift torque sensor from Torquemeters Ltd., which has a
maximum allowable rotation speed of 120,000 rpm. It measures torque using gears and
two coils located at each end of the torque sensor shaft. A coil encircles a gear at each
end of the shaft. In the eddy current magnetic field of the coil, the gear generates a sine
wave. When there is no load, the waves are parallel. The waves become out of phase
with one another as a load is applied to the shaft. A phasemeter is then used to determine
the phase displacement of these signals. A change of phase displacement of 100% always
corresponds to the torque that twists the drive shaft through one tooth pitch [32]. Before
constructing the dynamometer, 3D modeling was performed to build the dynamometer,
and a stability analysis was performed to evaluate the structural stability of the operating
area. Two major stability analyses were carried out: a modal analysis for the test motor
and jig, and a dynamic characteristic analysis for the entire rotating system to determine
if there were resonance points in the operating area. Figure 8 shows the modal analysis
results for the test motor and jig, where the 1st natural frequency of the motor and jig was
1826.4 Hz. From the perspective of machine frequency, the maximum operating speed
of 70,000 rpm corresponds to a machine frequency of approximately 1166.67 Hz, which
indicates that the 1st natural frequency is outside the operating range. However, in a per-
manent magnet synchronous motor, the pole passing frequency caused by electromagnetic
force is twice the electrical frequency, and from this perspective, the pole passing frequency
at 54,792 rpm coincides with the 1st natural frequency of the test motor and jig. There are
two methods to avoid resonance: increasing the stiffness of the jig to increase the natural
frequency or quickly passing through the resonance point. However, there is a limit to
increasing the stiffness of the jig, so the method of accelerating quickly near the resonance
point was chosen. Additionally, since the rotor of the test motor is coupled with the rotor
of the inline torque sensor and generator, a dynamic analysis of the entire rotor system
was conducted for stability analysis. Figure 9 shows the entire rotor system of the M/G
dynamometer, and Figure 10 shows the results of the rotordynamics. 1X is the ratio of rpm
to frequency of the shaft’s rotating speed, and the backward whirl (BW) and forward whirl
(FW) modes diverge as the rotational speed rises. If the FW frequency is equal to the 1X
line, rotor resonance occurs, and this is known as the critical speed. It was determined that
the rotor’s 1st critical speed (90,404 rpm) was higher than its operating speed, as shown in
Figure 10. The separation margin, which is the difference between the critical speed and
operational speed, was around 29.15%, which was adequate to meet American Petroleum
Institute (API) standards [33] and recommended practice [34]. The structural stability of the
dynamometer was confirmed through two stability analyses, and the dynamometer was
constructed based on the 3D model, as shown in Figure 11. The dynamometer experiment
results will be discussed in the following section.
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3.2. Eddy Current Brake Dynamometer

As another method of measuring the performance of the motor, instead of using an
in-line torque sensor, the test motor was fixed to a cradle base structure, and a dynamometer
was constructed using an eddy current brake. A stator and a rotor are the two main parts
of the eddy current brake dynamometer. A magnetic field is created by a number of
electromagnets inside the stator, which is stationary. Eddy currents that are induced in
the rotor as it rotates produce an opposing magnetic field that slows the rotor down. The
eddy current brake dynamometer used in this paper was Magtrol’s 2WB43. The structural
stability was determined by conducting a modal analysis of the test motor and jig as well
as the rotordynamics of the rotor of the test motor and the rotor of the eddy current brake
dynamometer, using the same method as the stability analysis of the M/G dynamometer
previously. Figure 12 shows the modal analysis results for the test motor and jig, where the
1st natural frequency of the motor and jig was 1787 Hz. From the perspective of machine
frequency, the 1st natural frequency is higher than the frequency of maximum operating
speed. However, the pole-passing frequency at 53,610 rpm coincides with the 1st natural
frequency of the test motor and jig. Since the 1st natural frequency is below the frequency
of the maximum operating speed, it was confirmed that it must be accelerated and passed
through at 53,610 rpm to avoid resonance. Figure 13 presents the entire rotor system of the
eddy current brake dynamometer with the rotor of the test motor. Referring to Magtrol’s
data sheet, the maximum allowable speed for the eddy current brake dynamometer to be
used is 65,000 rpm. However, considering the stability, the maximum operating speed
was set to 60,000 rpm. The rotational analysis results at that speed are shown in Figure 14.
The 1st critical speed at which the bending mode of the rotary shaft system appears was
86,605 rpm, and the separation margin was 44.34%, indicating that it was more than 20%,
the separation margin value recommended by the API standard, and also confirming that it
was structurally stable. The dynamometer was constructed based on the 3D model shown
in Figure 15.
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3.3. Inertial Dynamometer

Finally, a dynamometer was constructed that uses the method that measures torque
by utilizing the moment of inertia for the motor’s rotor and angular acceleration. The
inertial dynamometer used in this paper was an inertial dynamometer from MEA Testing
System Ltd., an Israeli company. To measure the moment of inertia of the rotor, the flywheel
provided was connected to the rotor. The speed of the motor is rapidly accelerated under
no load to obtain torque and output power through the moment of inertia and angular
acceleration, allowing us to obtain the overall performance of the motor. This is a fairly
simple configuration compared to the previous two dynamometer systems, and it is known
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to be suitable for use in quality control (QC), research and development (R&D) divisions,
and the end of the production line due to its simple test procedure and short inspection
time. As with the previous two dynamometer stability analysis procedures, the inertial
dynamometer was also subjected to the same stability analysis. Figure 16 shows the modal
analysis results of the test motor and jig to be used for the inertial dynamometer. The
1st natural frequency was 3587.6 Hz, which was higher than the mechanical excitation
frequency (1166.67 Hz) and the pole-passing frequency (2333.33 Hz) at 70,000 rpm, which
is the excitation frequency of electromagnetic force, confirming the structural stability
within the operating range. As shown in Figure 17, only the motor rotor exists in the
inertial dynamometer without an additional rotor. The rotor analysis was performed with
the rotor system of the inertial dynamometer, as shown in Figure 18. The results of the
analysis showed there was no critical speed in the operating area, the 1st critical speed was
211,290 rpm, and the separation margin was 202.74%. This confirms the structural stability
during the test. The inertial dynamometer that was constructed based on the above
information is shown in Figure 19.
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4. Results of Various Experiment Methods
4.1. M/G Dynamometer with High-Speed Torque Sensor

As shown in Figure 11, the M/G dynamometer was configured using a high-speed
torque sensor, and a variable resistance load was connected to the generator. The test
motor was speed controlled. When the variable resistance value was changed, the current
produced by the generator also changed, thereby changing the torque from the generator.
In other words, when the variable resistance value is reduced, the current of the generator
increases, causing the torque to increase, and when the variable resistance value is increased,
the current decreases, causing the torque to decrease. This feature was utilized to adjust
the torque load, and the resistance value was maintained to be the same as that of the
dynamometer using the reaction torque sensor in Figure 4. The speed was tested from
10,000 rpm, which is the idle speed of the electric turbocharger, to 70,000 rpm, which
improves low-speed and transient performance, and the experiment results are shown
in Figure 20.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18 
 

 

4. Results of Various Experiment Methods 
4.1. M/G Dynamometer with High-Speed Torque Sensor 

As shown in Figure 11, the M/G dynamometer was configured using a high-speed 
torque sensor, and a variable resistance load was connected to the generator. The test mo-
tor was speed controlled. When the variable resistance value was changed, the current 
produced by the generator also changed, thereby changing the torque from the generator. 
In other words, when the variable resistance value is reduced, the current of the generator 
increases, causing the torque to increase, and when the variable resistance value is in-
creased, the current decreases, causing the torque to decrease. This feature was utilized to 
adjust the torque load, and the resistance value was maintained to be the same as that of 
the dynamometer using the reaction torque sensor in Figure 4. The speed was tested from 
10,000 rpm, which is the idle speed of the electric turbocharger, to 70,000 rpm, which im-
proves low-speed and transient performance, and the experiment results are shown in 
Figure 20. 

 
Figure 20. Experiment result of M/G dynamometer with high-speed torque sensor. 

4.2. Eddy Current Brake Dynamometer 
As shown in Figure 15, the eddy current brake dynamometer was configured, and 

after tuning the gain of the speed controller, the test motor was driven by speed control 
in the same manner as before. The torque load was created using the eddy current brake, 
and the test was conducted from 10,000 rpm, which is the idle speed of the electric turbo-
charger, to 60,000 rpm, which is below the maximum allowable speed of the eddy current 
brake dynamometer. The test results are shown in Figure 21. 
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4.2. Eddy Current Brake Dynamometer

As shown in Figure 15, the eddy current brake dynamometer was configured, and
after tuning the gain of the speed controller, the test motor was driven by speed control in
the same manner as before. The torque load was created using the eddy current brake, and
the test was conducted from 10,000 rpm, which is the idle speed of the electric turbocharger,
to 60,000 rpm, which is below the maximum allowable speed of the eddy current brake
dynamometer. The test results are shown in Figure 21.
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Figure 21. Experiment result of eddy current brake dynamometer.

4.3. Inertial Dynamometer

The moment of inertia for the rotor of the test motor was measured before configuring
the inertial dynamometer, and then, the dynamometer was constructed, as shown in
Figure 19. Since the moment of inertia of the entire rotor system of each dynamometer is
different, the gain of the speed controller must be tuned according to the dynamometers.
In particular, in the case of the inertial dynamometer, since the angular acceleration must
be obtained by accelerating in a short time period, the test motor was driven under no-load
conditions after gain tuning. In the same way as the M/G dynamometer test using the
high-speed torque sensor, the test started at 10,000 rpm and proceeded up to 70,000 rpm,
and the test results are shown in Figure 22.
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4.4. Comparison of Test Results of Three Dynamometers

Table 3 shows the test results for the high-speed motors performed on three dy-
namometers based on the test results using the reaction torque sensor in Section 2. The
output power of the M/G dynamometer using the high-speed torque sensor at
70,000 rpm in Table 3 appeared to be almost identical to the reference data when per-
formed with a resistive variable load. However, there was a difference of about 0.9% in
efficiency, which seems to be due to the difference in the inertial moment of the entire rotor
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system of the dynamometer, which requires more input current to achieve the same output
power. Compared with the inertial dynamometer and reference data at 70,000 rpm, there
was a difference of about 0.074 kW in output power. As the torque was calculated with
the rotor’s moment of inertia and angular acceleration, the torque and power seemed to
differ because of the difference in angular acceleration resulting from the gain tuning of
the controller and the rotor’s moment of inertia, and the efficiency showed an error of
0.4%. When examining the test results of the reference data and three dynamometers at
60,000 rpm, the output power of the M/G dynamometer and the eddy current brake dy-
namometer appeared to be similar, but there was a discrepancy of 0.172 kW in the inertial
dynamometer. However, this seems to have been caused by the same reason described
earlier. In terms of efficiency, the reference data, the results of the eddy current brake
dynamometer, and the results of the inertial dynamometer were almost identical, while the
M/G dynamometer showed an error of 0.7%, which was attributed to the same cause of
the error at 70,000 rpm.

Table 3. Comparison of test results of three dynamometers.

Item FEA Reference
(Figure 4) M/G Eddy

Current Brake Inertial

Output power
(kW)

70,000 rpm 1.70 1.70 1.722 - 1.626
60,000 rpm 1.30 1.30 1.327 1.321 1.472

Efficiency
(%)

70,000 rpm 93.74 94.2 93.3 - 93.8
60,000 rpm 93.68 93.7 93.0 93.7 93.8

Each dynamometer was evaluated for five categories: stability, accuracy, test time,
dynamometer configuration cost, and installation difficulty. Based on the stability analysis
results, equipment price, and test results, for each dynamometer, a radar chart was prepared,
and this is presented in Figure 23. The higher the stability and accuracy, the better, and the
lower the test time, cost, and installation difficulty, the better the characteristics. Although
it had the longest test time, the eddy current brake dynamometer was the best in terms of
stability, accuracy, cost, and installation difficulty. When considering stability, test time,
and ease of installation, the inertial dynamometer is the best option.
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5. Conclusions

Since it is not easy to construct a dynamometer to perform load performance testing
of a high-speed motor, given the price of the measuring equipment, many studies have
compared the analysis results and experimental results under no-load conditions, or they
have compared the estimated performance in the high-speed range with the low-speed,
light-load results. Unlike the above, this paper proposes three experiment methods to accu-
rately measure the performance of motors in the high-speed range under load conditions
up to the rated point, and it compares and analyzes the results. The experiment method
of the dynamometer was determined by referring to international standards such as IEC
and IEEE. Before constructing the dynamometer, stability analyses were conducted on the
dynamometer system itself to prevent safety problems during the experiment. Through
modal analysis of the test motor and the jig fixing the test motor, it was determined whether
there was a resonance point during the run-up section. For the M/G dynamometer using a
high-speed torque sensor and eddy current brake dynamometer, resonance can occur at
a specific speed. It was confirmed that resonance avoidance was necessary. In addition,
structural stability was also reviewed by evaluating the rotordynamics of the entire rotor
system of the three dynamometers. After that, an actual dynamometer was constructed and
tested, and the results were comparatively analyzed in Section 4. Since each dynamometer
has its strengths and weaknesses, it is important to select an appropriate dynamometer
according to the test environment and conditions, and it is expected that the test methods
proposed in this paper can be used for load performance tests of various speed motors as
well as high-speed motors.
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Appendix A

Table A1. 1.6-L Vehicle System Parameter.

Description Specification

Engine type Diesel
Displacement (L) 1.6

Bore × stroke (mm) 76 × 88
Maximum power (ps/rpm) 115/3400~4500

Maximum torque (kg-m/rpm) 30.3/1500~2500
Compression ratio 15.5

EGR system High pressure cooled EGR system
After treatment system LNT + DPF

Induction type Turbocharged
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