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Abstract: In order to explore complex structures and relationships hidden in data, plenty of graph-
based dimensionality reduction methods have been widely investigated and extended to the multi-
view learning field. For multi-view dimensionality reduction, the key point is extracting the comple-
mentary and compatible multi-view information to analyze the complex underlying structure of the
samples, which is still a challenging task. We propose a novel multi-view dimensionality reduction
algorithm that integrates underlying structure learning and dimensionality reduction for each view
into one framework. Because the prespecified graph derived from original noisy high-dimensional
data is usually low-quality, the subspace constructed based on such a graph is also low-quality. To ob-
tain the optimal graph for dimensionality reduction, we propose a framework that learns the affinity
based on the low-dimensional representation of all views and performs the dimensionality reduction
based on it jointly. Although original data is noisy, the local structure information of them is also
valuable. Therefore, in the graph learning process, we also introduce the information of predefined
graphs based on each view feature into the optimal graph. Moreover, assigning the weight to each
view based on its importance is essential in multi-view learning, the proposed GoMPL automatically
allocates an appropriate weight to each view in the graph learning process. The obtained optimal
graph is then adopted to learn the projection matrix for each individual view by graph embedding.
We provide an effective alternate update method for learning the optimal graph and optimal subspace
jointly for each view. We conduct many experiments on various benchmark datasets to evaluate the
effectiveness of the proposed method.

Keywords: multi-view learning; dimensionality reduction; graph learning; self-weighted learning

1. Introduction

In real-world applications, samples can usually be collected by diverse data collection
sources or various feature extraction methods, which are often represented with multiple
views. Taking images for example, one color image can be represented by multiple types of
descriptors [1–4], such as Gist [5], histogram of oriented gradient (HoG) [6], local binary
patterns (LBP) [7], SIFT [8], etc. [9–11]. Since features from different views may characterize
different specific information of one sample, complementarity among different views can
be explored for improving the performances of single-view learning algorithms.

In many fields, most constructed features are usually high-dimensional, while the
underlying structure can be described by a small number of parameters in most situa-
tions. Direct manipulations on these features are time-consuming and computationally
expensive. Dimensionality reduction (DR), therefore, has become a basic preprocessing
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technique to deal with such data in most problems. In the past few decades, plenty of di-
mensionality reduction algorithms were proposed to seek the optimal subspace for original
high-dimensional data based on different principles. One class of dimensionality reduction
algorithms is based on manifold embedding, which seeks to construct the low-dimensional
representation that maintains the graph affinity between the samples as much as possible.
The graph embedding-based methods can be divided into linear methods and nonlinear
methods. Linear methods aim to seek the appropriate projection matrix to project the
high-dimensional data onto an optimal low-dimensional subspace. One of the most famous
linear algorithms is principal component analysis (PCA) [12], which maximizes the global
variance of data to obtain the low-dimensional subspace. Linear discriminant analysis
(LDA) [13] is a supervised learning method that seeks to construct the projection matrix
that can maximize the separation between the classes. In addition, there are also many
representative and classical linear dimensionality reduction methods such as locality pre-
serving projections (LPP) [14], neighborhood preserving embedding (NPE) [15], marginal
Fisher analysis (MFA) [16], etc. [15,17,18].

Different from linear dimensionality reduction methods, nonlinear methods agree with
one famous hypothesis that the observed high-dimensional data is actually mapped from a
low-dimensional submanifold. There are many representative nonlinear dimensionality
reduction algorithms such as locally linear embedding (LLE) [19], Isomap [20], Laplacian
eigenmaps (LE) [21], etc. [22,23], that have been well studied. Moreover, these traditional
DR methods construct a graph in advance and then find an optimal subspace that can
preserve such a graph as much as possible. The graph construction and dimensionality
reduction processes are separated, which leads these methods to seek the subspace utilizing
a suboptimal graph. To address this issue, some algorithms such as graph-optimized
locality preserving projections (GoLPP) [24], dimensionality reduction with adaptive graph
(DRAG) [25] and joint graph optimization and projection learning (JGOPL) [26] are pro-
posed to introduce the graph optimization into dimensionality reduction procedure. These
methods aim to simultaneously seek an optimal graph and subspace in one objective
function.

Although plenty of dimensionality reduction methods have good performance in
dealing with high-dimensional data, most of them fail to extend to the multi-view setting
directly. As they cannot effectively explore the inherent relation among different views
features. In the past decade, multi-view learning has been well-developed in various
fields [27–31]. Canonical correlation analysis (CCA) [32] and its multi-view version multi-
view canonical correlation analysis (MCCA) [33] are famous algorithms that are widely
adopted as a regularization term for multi-view learning. Distributed spectral embedding
(DSE) [34] aims to construct one common low-dimensionality embedding based on the
smooth principle. However, since the original multi-view data are invisible to the final
learning process, it cannot well explore the complementary nature of different views. To
overcome this problem, Xia et al. propose a nonlinear dimensionality reduction algorithm
for multi-view data termed multi-view spectral embedding (MSE) [35], which effectively
explores the complementary and compatible information from different views to construct
one common low-dimensional embedding for all views. Kan et al. [36] extend LDA to
a multi-view setting and propose multi-view discriminant analysis (MvDA) to project
multi-view data to a common discriminative space. Ding et al. [37] propose a low-rank
common subspace (LRCS) to seek one common linear subspace with low-rank constraint
for each view based on a compatible principle that aims to reduce the semantic gap between
different views. However, most multi-view dimensionality reduction algorithms construct
the graph by original high-dimensional data, which is independent of subspace learning.
Therefore, such DR results of these algorithms are sensitive to the graph construction. If the
predefined graph is of low quality, the quality of the results of dimensionality reduction
may also be low.

To deal with these issues, in this paper, we incorporate graph optimization and low-
dimensional subspace learning for multi-view data into one common framework to propose
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graph optimization multi-view projections learning (GoMPL) for dimensionality reduction.
Since features from different views are exploited to describe the same sample, they usually
admit the same underlying similarity structure. Based on this hypothesis, GoMPL aims
to learn one intrinsic graph structure of samples and seek the subspace by preserving
such a graph for each view simultaneously. In the whole learning procedure, the common
graph is allowed to be adaptively adjusted based on low-dimensional representations of
each view. Moreover, the information contained in original high-dimensional data is also
important [25]. Therefore, we further regularize the target similarity graph as a centroid of
the prespecified graph of each view, which introduce information on original data into the
optimal graph. Specifically, the learned optimal graph is also employed to integrate the
information from multi-view data, which avoids co-regularizing all the views to a common
subspace [29]. Assigning an appropriate weight to each view based on some principles is
essential in multi-view learning, so our proposed GoMPL provides a self-weighted scheme
to automatically learn the weights in the graph learning process, which releases from
predefining hyperparameters experientially. We provide an effective updating algorithm
to solve the proposed GoMPL. Plenty of experiments on the various datasets evaluate the
effectiveness of our proposed GoMPL. We summarize the contributions of our work as:

1. We propose a novel multi-view dimensionality algorithm called GoMPL which can
seek one common underlying manifold structure for samples described by multi-view
features and the appropriate subspace for each view simultaneously.

2. We adopt one optimal graph to learn the projections for all views. This graph can be
further optimized based on both the low-dimensional representation of each view
and the affinity of original high-dimensional data. Therefore, GoMPL can integrate
the multi-view information by the common graph rather than co-regularize the low-
dimensional representation of each view.

3. Since the information from the original affinity of each view is also important, GoMPL
regularizes the target similarity graph as a centroid of the prespecified graph of each
view. Moreover, different views may take different contributions to understand the
underlying manifold structure; GoMPL adaptively allocates each view an appropriate
weight without predefining hyper-parameters.

2. Methods

In this section, we first review one famous multi-view learning framework termed
co-regularized multi-view spectral clustering (co-reg). Then we introduce a single-view DR
method named graph optimization for dimensionality reduction with sparsity constraints
(GODRSC) [38].

2.1. Co-Regularized Multi-View Spectral Clustering

Co-regularized multi-view spectral clustering (Co-reg) [27] is a famous multi-view
clustering algorithm that extends traditional single-view spectral clustering into the multi-
view setting. Co-reg incorporates the multi-view information to perform the spectral
clustering based on the hypothesis that the clustering results of different views should be
consistent. After giving the graph Laplacian based on each view feature, co-reg performs
the spectral embedding for them based on this graph and the proposed co-regularization
term, which is employed to regularize the embedding results of them based on clustering
hypotheses. Given multi-view data set with N samples and m views, i.e., a set of matrices{

X(v) ∈ RDv×N
}m

v=1
, the objective of co-reg can be described as follows:

max
U(1),U(2),...,U(m),U(∗)∈RN×K

m

∑
v=1

Tr
{(

U(v)
)T

L(v)U(v)
}
−∑

v
αD(U(v), U(∗))

s.t.
(

U(v)
)T

U(v) = I,
(

U(∗)
)T

U(∗) = I v = 1, 2, ..., m,

(1)
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where L(v) is the normalized graph Laplacian based on the similarity or kernel matrix of
X(v), α > 0 trades-off the embedding agreement and single-view spectral embedding term
and D(U, V) = −Tr

{
UUTVVT} is the co-regularization term which indicates disagree-

ment between the clusterings of U and V. Therefore, by maximizing Equation (1), co-reg
can make the embedding results towards the common consensus U(∗) (centroid-based
co-regularization).

2.2. Graph Optimization for Dimensionality Reduction with Sparsity Constraints

Graph optimization for dimensionality reduction with sparsity constraints (GODRSC)
is a graph-optimized-based dimensionality reduction algorithm that has attracted wide
attention recently. GODRSC integrates the dimensionality reduction process and sparse
graph construction into one common objective, which can seek an optimal sparse re-
construction relation and subspace to preserve such relation simultaneously. For given
X = [x1, x2, ..., xN ] ∈ RD×N , xi ∈ RD, GODRSC can obtain the changeable sparse recon-
structive weights and the projection matrix simultaneously by optimizing the following
objective function:

min
P,si

∑N
i=1‖P(xi − Xsi)‖2

2

∑N
i=1‖Pxi‖2

2

+ ∑ λi‖si‖1

s.t. PPT = I,

(2)

where si is the reconstruction coefficient of ith sample, and P is the projection matrix. By
optimizing Equation (2) in an alternating iteration scheme, GODRSC can learn the optimal
sparse reconstruction relation and the low-dimensional subspace simultaneously.

3. Graph Optimization Multi-View Projections Learning

In this section, we first formulate the GoMPL in Section 3.1 in detail, which aims to
learn one intrinsic graph structure and find the subspace preserving such a graph for each
view simultaneously. In Section 3.2, we introduce the details of the optimization process
of the proposed method, which employs the alternating iterative scheme to optimize the
objective function of the proposed GoMPL. We also provide the convergence analysis of
the proposed algorithm in Section 3.3.

3.1. The Proposed Method

For the given N samples with m views feature X = {X(v) ∈ RD(v)×N}m
v=1, where

D(v) is the dimensionalities of feature from vth view. GoMPL aims to fully extract the
information from multi-view features to obtain the common underlying structure of sam-
ples. Although features from different views usually locate in different spaces, they are
utilized to describe the same sample. Therefore, the affinity relation of these features is
approximately equal. Based on this hypothesis, we exploit one common target graph to
seek the optimal subspace for each view:

min
P

m

∑
v=1

N

∑
i,j=1

∥∥∥P(v)x(v)i − P(v)x(v)j

∥∥∥2
sij

s.t. P(v)X(v)
(

X(v)
)T(

P(v)
)T

= I v = 1, 2, ..., m

(3)

where P = {P(1), P(2), ..., P(m)} and P(v) ∈ Rd×D(v)
is learned projection matrix to project

vth view features into subspace, and sij describes the affinity between ith and jth samples.
For the graph-embedding-based algorithm, one of the crucial objectives is designing a
sufficiently smooth affinity on the data manifold. Therefore, it is essential to construct the
common affinity graph S by integrating the multi-view information. To address this issue,
a naive way is to take the average of the graph from each view feature as the common
affinity graph. However, this graph S only considers predefined low-quality graphs, and
the results of dimensionality reduction for each view may also be low quality. In order
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to perform dimensionality reduction based on the optimal graph, we combine the graph
embedding for dimensionality reduction with graph optimization into unified frameworks
to seek the optimal projections and the common graph jointly:

min
P ,S

m

∑
v=1

N

∑
i,j=1

∥∥∥P(v)x(v)i − P(v)x(v)j

∥∥∥2
sij

s.t.
N

∑
j=1

sij = 1, sij ≥ 0,

P(v)X(v)
(

X(v)
)T(

P(v)
)T

= I v = 1, 2, ..., m

(4)

Intuitively , this naive way completely depends on the transformed data to learn the
common similarity graph, which may result in unstable dimensionality reduction perfor-
mances. Thus, inspired by Dimensionality reduction with adaptive graph (DRAG) [25], we
employ the information of original multi-view data to constrain the target graph. For the
given predefined graph affinity A(v) based on Xv [14], the target common graph S should
approximate each of them. With this constraint, we can obtain the final objective:

min
P ,S

m

∑
v=1

N

∑
i,j=1

∥∥∥P(v)x(v)i − P(v)x(v)j

∥∥∥2
sij + λ

m

∑
v=1

∥∥∥S− A(v)
∥∥∥

F

s.t.
N

∑
j=1

sij = 1, sij ≥ 0,

P(v)X(v)
(

X(v)
)T(

P(v)
)T

= I v = 1, 2, ..., m

(5)

where λ > 0 is a hyperparameter that balances the trade-off. Although there are no
weighting factors defined in the graph co-regularization term of Equation (5), this term can
be reconstructed as a weighted average reconstruction error of different views by a self-
weighted scheme in the procedure of optimization. These weights have a desired property
that if the predefined graph A(v) approximates the target graph S the corresponding weight
for view v is large, and vice versa. This indicates that these weights are meaningful for
measuring the importance of each built similarity graph. Moreover, GoMPL can utilize
original data information by graph co-regularization term. Therefore, the learned target
graph S well reflects the common underlying similarity structure, which is crucial for
dimensionality reduction.

3.2. Optimization

In order to optimize Equation (5), we employ an alternating iterative optimiza-
tion scheme, which optimizes one variable with the others fixed. We first initialize
S = 1

m ∑m
v=1 A(v), and then the alternating iterative optimization process is as:

P problem : With S being fixed, we update P by solving:

min
P

m

∑
v=1

N

∑
i,j=1

∥∥∥P(v)x(v)i − P(v)x(v)j

∥∥∥2
sij

s.t. P(v)X(v)
(

X(v)
)T(

P(v)
)T

= I v = 1, 2, ..., m

(6)
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We can find that Equation (6) is independent for each individual P(v), so we can
optimize it separately for each view. For vth view, the problem in Equation (6) can be
reformulated by simple algebra as:

(
P(v)

)∗
= arg min

P(v)

m

∑
v=1

N

∑
i,j=1

∥∥∥P(v)x(v)i − P(v)x(v)j

∥∥∥2
sij

= arg min
P(v)

Tr
(

P(v)X(v)(D̃− S̃)
)(

X(v)
)T(

P(v)
)T
)

s.t. P(v)X(v)
(

X(v)
)T(

P(v)
)T

= I v = 1, 2, ..., m

(7)

where D̃ = diag{d̃1, d̃2, ..., d̃N} is a diag matrix with D̃i = ∑N
j=1 s̃ij and s̃ij is the ijth element

of matrix S̃ = S+ ST . This problem is a classical generalized eigenproblem, and the optimal
solution can be obtained as:

X(v)(D̃− S̃)
)(

X(v)
)T(

p(v)
)T

= λX(v)
(

X(v)
)T(

p(v)
)T

. (8)

S problem: When P are fixed, we can formulate the subproblem of Equation (5) with
respect to S as:

min
S

m

∑
v=1

N

∑
i,j=1

∥∥∥P(v)x(v)i − P(v)x(v)j

∥∥∥2
sij + λ

m

∑
v=1

∥∥∥S− A(v)
∥∥∥

F

s.t.
N

∑
j=1

sij = 1, sij ≥ 0.

(9)

To solve the optimal graph S, we first simplify Equation (9). By setting

u(v)
ij =

∥∥∥P(v)x(v)i − P(v)x(v)j

∥∥∥2
and U(v) as a matrix with ijth element being u(v)

ij , the
Equation (9) can be further reformulated as:

min
S

Tr(US) + λ
m

∑
v=1

∥∥∥S− A(v)
∥∥∥

F

s.t.
N

∑
j=1

sij = 1, sij ≥ 0,
(10)

where U = ∑m
v=1 U(v). We exploit the Lagrange multiplier algorithm to solve the problem

Equation (10). The Lagrange is formulated as:

min
S

Tr(US) + λ
m

∑
v=1

∥∥∥S− A(v)
∥∥∥

F
+ C(Λ, S) (11)

where C(Λ, S) serves as a proxy for the constraints to S, and Λ is the Lagrange multipliers.
We first take the derivative of the objective function in Equation (11) with respect to S and
set it to 0, and then we can obtain an equation about S as:

UT +
m

∑
v=1

w(v)∇S

(∥∥∥S− A(v)
∥∥∥2

F

)
+∇SC(Λ, S) = 0 (12)

where the form of w(v) is:
w(v) =

1
2
∥∥S− A(v)

∥∥
F

(13)
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We can see from Equation (13) that w(v) is dependent on the graph S. In order to
simplify this optimal problem, we set w(v) stationary. Then the solution of Equation (12)
can be reformulated as:

min
S

Tr(US) + λ
m

∑
v=1

w(v)
∥∥∥S− A(v)

∥∥∥2

F

s.t.
N

∑
j=1

sij = 1, sij ≥ 0,
(14)

which can be solved simpler. Then, the optimal S obtained from Equation (14) is further
exploited to calculate the weights factor w(v) based on Equation (13). Therefore, we solve the
original S-problem Equation (10) by alternately optimizing S and updating w(v) iteratively.
If this process converges, we can know from Equation (11) that S will finally converge to
the KKT condition of Equation (10). In practice, we usually set w(v) = 1

2
√
‖S−A(v)‖2

F+δ
to

avoid dividing by zero, where δ is a very small value.
Obviously, problem Equation (14) is independent between different columns of S.

Thus, we can reformulate Equation (14) as the following problem for each column:

min
si

m

∑
v=1

uT
i si + λ

m

∑
v=1

w(v)
∥∥∥si − a(v)i

∥∥∥2

2

s.t.
N

∑
j=1

sij = 1, sij ≥ 0.
(15)

This problem Equation (15) is a quadratic programming (QP) problem, which can be
effectively solved by the CVXOPT software package.

After S, P(1), P(2), ..., P(m) being solved, low-dimensional representations of features
from vth view can be obtained as:

Y(v) = P(v)X(v) ∈ Rd×N (16)

The self-weighted scheme of our method is as follows: in S problem, we can find that
when the iterative converges, the form of Equation (14) can be considered as the weighted
sum of the distance between the learned graph S and predefined graph A(v) of each view.
Moreover, according to Equations (13) and (14), when the distance between A(v) and S
is large, the obtained weight factor of vth view w(v) will be small, which means that the
information contained vth view feature is less important.

3.3. Convergence

We provide the convergence analysis of the GoMPL in this section. According to the
alternating process summarized in Algorithm 1, the optimization procedure is divided as
P problem in Equation (7) and S problem in Equation (10). For P problem, we can obtain
the closed optimal projections of each view directly. Therefore, after updating P in each
iteration, we can get the objective function value to decrease. So, we focus on analyzing the
convergence of S-problem.
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Algorithm 1: The optimization procedure of GoMPL.

Input:
1. The multi-view data of n samples: X = {X(v) ∈ Rdv×n}m

v=1.
2. The regularization parameter λ.
Initialization::
1. Constructing the adjacency graph A(v) based on heat kernel function:(

A(v)
)

ij
= exp

{
−
∥∥∥x(v)i − x(v)j

∥∥∥2
/2σ2

}
.

2. Initializing centered graph S = 1
m ∑m

v=1 A(v)

Optimization of GoMPL:
Repeat:

1. Update {P(v)}m
v=1:

for each v, fix P(i), i 6= v and S, update P(v) based on Equation (7) by generalized
eigenvalue decomposition.

2. Update S:
Do:

for each i, update the ith column of S by Equation (15)
update the weight factors w(v) for each view by w(v) = 1

2
√
‖S−A(v)‖2

F+δ
.

Until convergence.
3. Calculate the low-dimensional representations by Equation (16)

Output:
The projection matrices and low-dimensional representation P(v), Y(v), v = 1, 2, ..., m
for all views.

Theorem 1. In each iteration of updating S, the target equation (10) will monotonically decrease.

In order to prove Theorem 1 , we first introduce one lemma [39]:

Lemma 1. For any f > 0 and g > 0, the following relationship holds:

f − f 2

2g
≤ g− g2

2g
(17)

Proof of Theorem 1. Let Sk denote kth iteration of S problem. According to the algorithm,
we have:

Sk+1 =arg min
Sk

Tr
(

USk
)
+ λ

m

∑
v=1

w(v)
Sk

∥∥∥Sk − A(v)
∥∥∥2

F

s.t.
N

∑
j=1

sij = 1, sij ≥ 0,
(18)

By bringing w(v)
Sk = 1

2‖Sk−A(v)‖F
into Equation (18), we can obtain:

Tr
(

USk+1
)
+ λ

m

∑
v=1

∥∥∥Sk+1 − A(v)
∥∥∥2

F
2
∥∥Sk − A(v)

∥∥
F
≤ Tr

(
USk

)
+ λ

m

∑
v=1

∥∥∥Sk − A(v)
∥∥∥2

F
2
∥∥Sk − A(v)

∥∥
F

(19)

Moreover, according to Lemma 1, we have:

m

∑
v=1

∥∥∥Sk+1 − A(v)
∥∥∥

F
−

m

∑
v=1

∥∥∥Sk+1 − A(v)
∥∥∥2

F
2
∥∥Sk − A(v)

∥∥
F
≤

m

∑
v=1

∥∥∥Sk − A(v)
∥∥∥

F
−

m

∑
v=1

∥∥∥Sk − A(v)
∥∥∥2

F
2
∥∥Sk − A(v)

∥∥
F

(20)
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Since regularization parameter λ is positive, we can sum Equation (20)*λ and
Equation (19), and obtain:

Tr
(

USk+1
)
+ λ

m

∑
v=1

∥∥∥Sk+1 − A(v)
∥∥∥

F
≤ Tr

(
USk

)
+ λ

m

∑
v=1

∥∥∥Sk − A(v)
∥∥∥

F
(21)

This inequality in Equation (21) illustrates that the objective function Equation (10) for
solving S problem will monotonically decrease by iterative optimization. Therefore, the
obtained S will finally converge to the KKT condition of Equation (10), and we can get a
local optimal solution of the final objective function Equation (5).

4. Experiments
4.1. Datasets and Comparing Methods

To evaluate the effectiveness of our GoMPL, we compare our algorithm with several
representative dimensionality reduction methods using five datasets, including BBCSport,
BBC, ORL, COIL-20, and Outdoor Scene. Among these five datasets, BBCSport and BBC
are multi-view textual datasets. ORL, COIL-20 and Outdoor Scene are image datasets. The
details of employed datasets are shown in Table 1. The methods employed for comparison
are 1. Graph-optimized locality preserving projections (GoLPP) [24] with the best single
view (GoLPP_BSV), 2. Graph optimization for dimensionality reduction with sparsity
constraints (GODRSC) [38] with the best single view (GODRSC_BSV), 3. Multi-view
canonical correlation analysis (MCCA) [33], 4. Multi-view spectral embedding (MSE) [35],
5. Multi-view dimensionality co-reduction (McDR) [40], 6. CMSRE [41], 7. Our method
(GoMPL).

4.2. Text Classification

In this section, we conduct text classification experiments on two multi-view textual
datasets: BBCSport and BBC. For single-view dimensionality reduction methods, the perfor-
mances of the best single view are selected. For multi-view methods, after dimensionality
reduction, we perform classification by the low-dimensional representation of each view
and demonstrate the average performance of different views. The predefined graph of each
view is built in the same way as LPP [14]. We find the tradeoff parameter λ = 0.6 by 5 folds
cross-validation. All the features are normalized first.

For the BBCsport dataset, we randomly select 60% samples to train the models. All
algorithms are performed to find the subspaces with different dimensionalities. Then we
adopt 3NN classifier to perform the final classification. All the algorithms are conducted
20 times with different random training samples and Table 2 shows the classification
accuracies.

For BBC dataset, we randomly select 411 samples as the training ones. All algorithms
are performed to construct the optimal subspaces with different dimensionalities. All DR
methods are trained 20 times with different random training samples and Table 3 shows
the results.

From the results shown in Tables 2 and 3, we can find that the proposed GoMPL
obtains the best performances for two multi-view document datasets. Meanwhile, for
the single-view learning method, GODRSC can outperform some multi-view learning
algorithms, which means that incorporating the graph-optimized into the dimensionality
reduction framework can obtain better results.

4.3. Face Recognition

In this section, we conduct a face recognition experiment on the ORL face datasets
to evaluate the proposed GoMPL. The tradeoff parameter λ = 0.6 is obtained by 5-fold
cross-validation. For the ORL face image dataset, we extract 3 types of features: intensity,
LBP and Gabor. Seven samples of each class are selected to train the models. All algorithms
are performed to construct the optimal subspaces with different dimensionalities. We run
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these experiments 20 times with different random training samples and Table 4 shows
the results.

It can be seen that the proposed GoMPL obtains the best performances in most situa-
tions. Therefore, it is a good dimensionality reduction algorithm to deal with multi-view
features for face recognition tasks.

Table 1. The detailed information of all datasets.

Datasets BBCSport BBC ORL COIL-20 Outdoor
Scene

Sizes 554 685 400 1400 2688
Classes 5 5 40 20 8
Views 2 4 3 3 4

Table 2. Classification accuracies (%) with different dimensions on BBCsport dataset.

Method
Dim = 10 Dim = 30 Dim = 50

Mean Max Mean Max Mean Max

GoLPP_BSV 78.27 82.89 79.44 87.03 81.01 89.41
GODRSC_BSV 80.14 83.94 80.80 87.56 83.47 87.83

MCCA 79.25 84.96 81.55 88.69 81.78 86.26
MSE 79.68 83.57 80.09 87.76 84.08 86.34

McDR 80.45 85.36 81.45 88.41 83.29 90.85
CMSRE 79.96 87.41 80.53 88.95 82.76 90.34

Ours 84.60 89.41 83.76 91.12 85.76 92.88

Table 3. Classification accuracies (%) with different dimensions on BBC dataset.

Method
Dim = 10 Dim = 30 Dim = 50

Mean Max Mean Max Mean Max

GoLPP_BSV 57.69 67.44 65.72 78.48 62.78 74.13
GODRSC_BSV 60.39 67.41 63.89 77.76 64.31 78.43

MCCA 63.79 73.59 72.62 79.58 70.65 80.63
MSE 64.47 69.95 70.23 72.47 73.75 81.38

McDR 65.03 72.88 79.34 90.16 80.20 92.33
CMSRE 65.81 76.51 76.08 88.01 80.68 90.76

Ours 70.31 79.73 76.99 87.56 81.77 92.75

Table 4. Recognition accuracies (%) with different dimensions on ORL dataset.

Method
Dim = 10 Dim = 30 Dim = 50

Mean Max Mean Max Mean Max

GoLPP_BSV 60.36 67.16 63.58 75.69 63.77 76.12

GODRSC_BSV 62.31 66.58 64.13 75.84 65.27 77.78

MCCA 63.73 70.51 65.14 73.26 69.09 79.88

MSE 63.47 71.26 67.19 78.37 70.43 81.75

McDR 64.92 71.98 74.39 84.21 75.13 83.39

CMSRE 66.15 72.11 73.21 82.48 76.33 84.52

Ours 70.28 80.53 75.68 86.35 84.61 90.23
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4.4. Image Retrieval

In order to evaluate GoMPL on image retrieval, we conduct some experiments on
COIL-20 and outdoor scene datasets. For the COIL-20 dataset, we extract the same types
of features as ORL. For the outdoor scene dataset, we extract the feature using GIST, LBP,
HOG and color moment. The parameter λ is set to 0.4 and 0.3 in the experiment of COIL-20
and outdoor scene dataset respectively by 5-fold cross-validation.

For the experiment on the COIL-20 dataset, we randomly select 400 images as the query
images and the rest 1040 images are relevant ones. All these methods were conducted
to project all samples to a 60-dimensional subspace. Then we employ L1 distance to
measure the similarity between the low-dimensional representations. All the algorithms
are conducted 20 times with different queries and we show the results in Table 5.

There are 2688 color images that come from 8 categories in the outdoor scene dataset.
We randomly assign 10 images as the query images for each category. All these methods
were conducted to project all samples to a 100-dimensional subspace. Then we employ L1
distance to measure the similarity. All the algorithms are conducted 20 times with different
queries, and we show the results in Figure 1.

From the results shown in Table 5 and Figure 1, it can be seen that GoMPL obtains
the best performances in most situations. Although other multi-view learning methods
consider the correlations between different views, they adopt a predefined graph that is
constructed by original noisy data. Therefore, they can’t utilize the clear structure of the
multi-view data for dimensionality reduction.

4.5. Parameter Tuning and Convergence

In our proposed approach, λ > 0 is an essential parameter to control the strength of
utilizing original high-dimensional data information. Moreover, since GoMPL employs the
iterative scheme to solve the optimization problem, we also need to test the convergence
rate of our approach. Therefore, to show the impact of the regularization parameter
λ and analyze the convergence, we conduct another experiment on the ORL dataset
to demonstrate the performance of GoMPL. Figure 2a shows the accuracies of GoMPL
with different values of λ. From Figure 2a, we can find that the value of λ exercises
considerable influence on the performance of GoMPL. Moreover, GoMPL can obtain the
best performance when λ = 0.6 on the COIL-20 dataset. From Figure 2b, we can see that
the proposed GoMPL converges in less than 10 iterations.

Table 5. The performance of different algorithms on the COIL-20 dataset.

Method
Criteria

Precision Recall MAP F1-Score

GoLPP_BSV 71.76 56.34 83.07 31.56
GODRSC_BSV 74.21 59.94 88.27 33.15

MCCA 73.89 58.46 87.03 32.47
MSE 76.53 59.58 87.62 33.5

McDR 78.26 60.73 88.74 34.2
CMSRE 77.43 61.22 86.19 34.19

Ours 81.66 62.13 90.87 35.28
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Figure 1. The performance of different algorithms on the outdoor scene dataset. (a) Precision.
(b) Recall. (c) PR-Curve. (d) F1-Score.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y

(a) Parameter tuning

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Numbers of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

O
bj

ec
tiv

e V
al

ue

(b) Convergence

Figure 2. Results of face recognition with different λ (a); Objective function value with the number of
iterations (b).

5. Conclusions

By introducing graph optimization, we propose a novel dimensionality reduction
algorithm for multi-view data termed GoMPL, which integrates dimensionality reduction
and graph optimization into unified frameworks to construct the projection matrices for
different views and optimize the graph jointly. Therefore, the proposed GoMPL performs
dimensionality reduction based on the optimal high-quality graph for each view. Moreover,
the learned optimal graph by the proposed GoMPL can also integrate the information from
multi-view data without co-regularizing the low-dimensional representations. Further-
more, to consider the information of original high-dimensional multi-view data, GoMPL
regularizes the common target graph to approximate the predefined graphs based on them.
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Plenty of experiments demonstrate that the proposed GoMPL can effectively explore the un-
derlying intrinsic manifold structure of samples described by features from multiple views,
and find more appropriate subspace for each view features than compared algorithms.

Our proposed GoMPL can explore the complementarity among multiple views for
subspace learning. However, there are still some issues that require further clarification and
possible future investigations. First, since the dimensionality reduction is constructed based
on graph embedding it leads to computational cost on the matrix operations. Specifically,
matrix inversion and eigendecomposition exploited in our method make our algorithm with
high computational costs. However, in many practical applications, the scale of datasets
is very large. Therefore, to deal with large-scale datasets, we will utilize DeepWalk [42]
technique to accelerate the graph embedding speed for the proposed GoMPL. Second,
GoMPL learns one common graph for all views to perform dimensionality reduction,
which is not flexible enough. In future work, we will consider learning an optimal graph
for each view to explore the underlying geometric structure of samples from multi-view
data more flexibly.
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