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Abstract: Single instruction multiple data (SIMD) vector extension has become an essential feature
of high-performance processors. Architectures such as x86, ARM, MIPS, and PowerPC have spe-
cific vector extension instruction sets and SIMD micro-architectures. Using SIMD vectorization
programming can significantly improve the performance of application algorithms while keeping the
hardware overhead low. In addition, other methods can enhance algorithm performance, such as
selecting the best SIMD vectorization model for algorithms, ensuring sufficient instruction streams,
implementing reasonable and effective cache data prefetching, and aligning data access and storage
addresses according to instruction characteristics. The goal of this paper is three-fold. First, we
introduce the basic structural characteristics of a general RISC processor, Hua Rui (HR) DSP, with a
custom vector instruction set based on compatibility with an MIPS64 fixed-point and floating-point
instruction set, as well as a Fei Teng (FT) processor compatible with an ARMv8 instruction set. Second,
we summarize the fundamental principles of SIMD vectorization programming design for the HR
DSP, which provides ideas for other scholars or engineering and technical personnel to study the
algorithm performance using SIMD vectorization optimization. Third, we implement representative
typical algorithms based on the HR and FT platforms and obtain experimental results that show
improvement in algorithm SIMD vectorization optimization according to the vector programming
design principles summarized in this article can improve the single-core performance of scalar im-
plementation without vectorization, instruction streams, and cache data prefetching by 4–22 times
for mean filter, accumulation, and matrix–matrix multiplication, which is significantly better than
the performance improvement of 3–13 times for the FT platform. Moreover, the performance of
matrix–matrix multiplication using the best vectorization model on the HR platform is about 84%
higher than that of the common SIMD vectorization model.

Keywords: DSP; SIMD; algorithm; cache; instruction stream

1. Introduction

With the continuous improvement in integrated circuits, computer architecture, and
chip design and manufacturing technology, parallel computing based on SIMD [1] has
gradually become an indispensable key technology for high-performance general purpose
processors (GPPs). This has also driven research institutions and engineering technicians
to focus on improving the SIMD vectorization performance.

Since the 1990s, Intel has been the first to integrate multi-media extensions (MMX) [2,3]
on a Pentium processor, and vector calculation based on SIMD has gradually become an
important functional component of microprocessors. Subsequently, several chip vendors
have also integrated SIMD vector units on their processors, such as AMD’s 3dNow! [4];
Alpha’s MVI extension [5]; PowerPC’s AltiVec extension [6]; ARM’s NEON [7]; MIPS’s
ASE extension [8]; and Intel’s subsequent development of 128-bit wide SIMD extensions
(SSE, SSE2, SSE3, SSSE3, SSE4.1, and SSE4.2) [9], 256-bit wide advanced vector extensions
(AVX, AVX2) [10], and 512-bit wide advanced vector extensions (AVX3) [1].
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In this paper, we use the HR DSP, which is customized with a vector instruction set
extension based on the compatible MIPS64 instruction set. The processor integrates 64 256-
bit wide vector registers, which is conducive to improving the degree of parallel computing.
More registers can improve the cache line data utilization and cache hit rate, and reduce
additional data movement to the cache overhead. To demonstrate the advantages of
implementing vectorization on the HR DSP, we compared it with the FT2000+ processor,
which is compatible with the ARMv8 instruction set. The FT2000+ processor integrates 64
FTC662 processor cores, providing 32 128-bit SIMD and floating-point registers; each core
has 32 KB L1 data cache, 32 KB L1 instruction cache, and a four-core shared 2 MB L2 cache.
It adopts a four-issue out-of-order superscalar five-stage pipeline structure.

In this work, we illustrate the development of SIMD technology. We first summarize
the SIMD vector extensions provided by current processor manufacturers in the market,
and then outline the basic structure and SIMD vector extensions provided by HR DSP, as
well as the characteristics of the vector extension instruction set. Finally, we summarize
the design principles of HR DSP vectorization programming and implement three typical
algorithms for experimental verification from the perspective of performance improvement.

The organization of this paper is as follows. Section 2 describes the basic structure and
characteristics of HR DSP. The background information on the basic principles of SIMD
technology is introduced in Section 3. Section 4 outlines the basic principles of HR DSP
SIMD vectorization programming design. To verify the design principles of HR DSP SIMD
vectorization programming, Section 5 explains the SIMD vectorization of typical algorithms
on HR DSP and the implementation of different optimization methods. Section 6 compares
and analyzes the performance impact of HR DSP vectorization programming design
principles on different algorithms, demonstrating the advantages of HR vectorization
compared with the FT platform. Finally, the experimental results are analyzed and the
conclusion is drawn in Section 7.

2. HR DSP Overview

This section introduces the basic architecture of HR DSP and vector processing mi-
croarchitecture, provides an overview of the instruction set of the MIPS64 architecture
compatible with HR DSP, focuses on the description of custom extended vector instruction
set and some vector instructions, and introduces the structural characteristics of the basic
instruction pipeline stages and the out-of-order four-issue superscalar used to improve
pipeline efficiency.

2.1. Basic Structure

HR DSP (a self-developed product based on the MIPS64 architecture) is a heteroge-
neous multi-core processor designed for high-performance computing and digital signal
processing applications, which combines general-purpose CPU and DSP fusion technology.
As shown in Figure 1, HR DSP includes four HR DSP vector cores (each core has 32 KB
L1Icache, 32 KB L1Dcache, and 1 MB L2cache), four configurable dedicated processing
cores (RASP, which can be configured to achieve specialized signal processing algorithm
calculations), four channels of general DMA (responsible for data transfer and matrix
transposition), three 72-bit DDR3-1600 memory controllers, one PCIE, two RapidIO, three
gigabit Ethernet, Low-speed IO (including UART, SPI, I2C, Nor/Nand Flash, LPC, CAN,
GPIO, etc.), ACE (Cache coherence), IO_ACE (IO coherence), AXI Crossbar (interconnecting
devices that do not support Cache coherence), AXI to APB (AXI to APB protocol conversion
bridge, connecting low-speed interfaces), LODMA (low-speed device and memory data
exchange DMA controller), etc.
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Figure 1. Structure diagram of HR DSP.

Figure 2 illustrates that the HR DSP vector core features two fixed-point ALUs, one
fixed-point multiply-add unit with fixed-point ALU functionality, one branch queue unit,
and one memory access queue unit that can dispatch two instructions simultaneously. It
also includes two vector and floating-point ALUs, a fixed-point register file with 32 64-bit
fixed-point registers, a floating-point register file with 32 64-bit floating-point registers, a
renaming register file with 32 64-bit registers shared between fixed-point and floating-point
registers, and a vector register file with 64 256-bit registers. Among the vector register file,
32 registers are dedicated to vector register renaming.

The HR DSP vector core’s vector expansion is based on a vector register file, two vector
operation units (VALU0 and VALU1), and two reservation stations that correspond to the
two vector operation units. The vector register file contains a total of 64 items, each of
which is 256 bits and provides operands for vector components. Of these items, 32 are used
as renaming registers for the temporary storage of operation results. The vector operator
reads up to three source operands from the vector register and produces a single result
that is written back. In addition to the floating-point and fixed-point vector operations
described earlier, the vector operator also supports flexible shift operations.

Furthermore, the memory access unit of the HR DSP vector core is extended from the
MIPS64 instruction set by adding vector memory access instructions. These instructions
support 256, 64, and 32-bit memory access operations and can initiate two memory access
operations simultaneously per cycle.

2.2. Instruction Set

The HR DSP core comprises three coprocessors: Coprocessor 0 (CP0), Coprocessor 1
(CP1), and Coprocessor 2 (CP2). CP1 and CP2 are Vector Floating Point Units (VFPU). CP0
(system processor) manages memory and handles exceptions through the CP0 register. CP1
(floating-point coprocessor) instructions include floating-point, multimedia, and extended
fixed-point computation instructions that operate on floating-point registers. CP2 (vector
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coprocessor) instructions are vector instructions, including vector fixed-point and vector
floating-point instructions, which operate on vector registers. Vector access instructions
are executed by access tokens, but they can only be executed if CP2 is enabled and only
support 32-byte aligned address access.
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Figure 2. Basic structure of the HR DSP vector core.

The HR DSP core is compatible with the MIPS64 architecture and provides a complete
set of instructions defined by it. The instruction encoding is 32 bits, including three
instruction formats: immediate number instruction (I-type), jump instruction (J-type), and
register instruction (R-type), as shown in Figure 3 (where OP is a 6-bit operation code, RS
is a 5-bit source operation register field, RT is a 5-bit target (source/destination) operation
register or jump condition, Immediate indicates the 16-bit immediate number, Target is the
26-bit jump target address, RD is a 5-bit destination operation register field, SA is a 5-bit
shift, and FUNCT is a 6-bit functional domain).
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The fixed-point instruction set in HR DSP, which is compatible with MIPS64, includes
172 instructions for logic operations, control operations, memory access, and more. The
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floating-point instruction set includes 70 instructions for floating-point operations, floating-
point control, floating-point memory access, and more. The vector instruction set includes
455 instructions for vector fixed-point operations, vector floating-point operations, vector
mixing, vector control, vector access, and more.

The 256-bit vector floating-point SIMD operation includes instructions such as floating-
point addition (subtraction), floating-point multiplication (subtraction), floating-point divi-
sion, floating-point square root, floating-point inverse, conversion between floating-point
and fixed-point formats, floating-point precision conversion, floating-point comparison,
transfer judgment, vector trigonometric functions, and other simple logic. Additionally,
instructions to support complex multiplication and Fast Fourier Transform (FFT) are also
added, as shown in Table 1.

Table 1. Partial fixed-point vector instructions and descriptions.

OpCode Description

VADDPS Single precision floating-point addition
VMULPS Single precision floating-point multiplication

VMULADDPS Single precision floating-point multiplication–addition
VSQRTPS Single precision floating-point square root
VRCPPS Single precision floating-point reciprocal

VCMPLTPS Single-precision floating-point comparison, less than
VCSMUL1 Single precision complex multiplication first step
VCSMUL2 Single precision complex multiplication step two

VCSFFTS1L FFT first low-level operation
VCSFFTS1H FFT first level-high operation
VCSFFTS2E FFT second-level even 64-bit operation
VCSFFTS2O FFT Level 2 odd 64-bit operation

VSINPS sine
VCOSPS cosine

VLOG2PS Two base log function

The 256-bit vector fixed-point operation includes instructions such as fixed-point
addition and subtraction, parallel addition and subtraction, taking maximum or minimum
values, taking average or absolute values, fixed-point multiplication, fixed-point conversion,
displacement and mixing, mixing, packaging, shift, extraction, insertion, and more, as
shown in Table 2.

Table 2. Partial fixed-point vector instructions and descriptions.

OpCode Description

VPADDW Vector word addition
VPSUBW Vector word subtraction

VPHADDW Vector parallel words addition
VPMINSW The signed word takes the minimum value
VPMULLW Word multiplication, store low, sign
VPMULHW Word multiplication, high storage, signed
VPBLENDB Byte mixing

VPACKSDSWS Signed double words packed into words,
saturated

VPALIGNRI Take the result according to the immediate
number join right shift right alignment

VPINSRDI Implement double—word insertion as required

2.3. Instruction Stream

The HR DSP’s basic instruction stream consists of nine stages, including fetching,
pre-decoding, decoding, sending, transmitting, reading register, executing, submitting.
This nine-stage stream, which is based on a data-driven principle, is quite different from
the five-stage stream based on the instruction cycle alignment used in MIPS. The HR
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DSP’s instruction stream decodes four instructions in each clock cycle and dynamically
sends them to seven functional units. The hardware analyzes the correlation between
the instructions and controls the execution of the instruction by determining whether the
instruction operand is ready. Although instructions are executed out of order according to
their dependencies, they are delivered in the program’s original order to ensure precise
interrupt and retrieval order.

The VFPU provides an instruction stream parallel to the CPU instruction stream. It
shares the same nine-stage stream architecture as the CPU. However, depending on the vector
operation, it may require multiple beats for some more complex instruction execution phases.
Each vector instruction is executed by one of the two functional units (VALU0 or VALU1).

Each VALU unit receives one instruction per cycle and sends one result to a floating-
point register file. The floating-point addition and subtraction, floating-point multiplication,
and floating-point multiplication (subtraction) take three cycles per VALU cell. The format
conversion operation between fixed-point and floating-point takes three execution cycles.
Floating-point division takes 20/31 cycles depending on the operand, while floating-point
square roots take 20/31 cycles depending on the operand. Trigonometric functions take 39
cycles, and other floating-point operations take one cycle.

If two instructions with different execution cycles output results at the same beat
in each VALU unit, the instruction with higher priority outputs results in the bus in the
order of precedence: multiplication and addition instruction > division root instruction
> trigonometric instruction > one cycle instruction > four cycle instruction > three cycle
instruction.

2.4. Other Characteristics

In addition, HR DSP employs an out-of-order execution and innovative storage sys-
tem design to enhance stream efficiency and address the issue of instruction and data
correlation arising from the four-issue super-scalar architecture. The out-of-order execution
techniques include register renaming, dynamic scheduling, and branch prediction. Register
renaming resolves the WAR (write-after-read) and WAW (write-after-write) dependencies
to ensure accurate exception recovery and error cancellation. Dynamic scheduling executes
instructions based on operand preparation rather than program order, reducing the block-
ing caused by RAW (read-after-write). Branch prediction reduces blocking due to control
dependence by predicting whether a transition instruction will skip.

3. Single Instruction Multiple Data (SIMD)

This section briefly introduces the basic principles of SIMD and elaborates on the
commonly used vector data type definitions, vector built-in instructions, macro definitions,
and inline assembly functions in the HR DSP vector programming process.

3.1. Basic Principles of SIMD Technology

SIMD is an essential technical feature of high-performance GPPs where one instruction
processes multiple data [11]. The parallel processing of multiple units has made SIMD
technology a critical aspect of parallel technology. SIMD is a technique that involves
bundling and storing the same data type into SIMD vector registers for parallel data
processing. The SIMD vector registers can be separated into several distinct units, with the
length of the unit being determined by the specific data type stored in the SIMD register.
SIMD instructions execute the same operation simultaneously on all independent units
in the SIMD register, enabling parallel data processing. The SIMD architecture plays a
crucial role in enhancing the application performance by incorporating SIMD extensions
onto various processors, providing SIMD vector arithmetic components, vector registers,
and the SIMD instruction set. The SIMD vector operation unit organizes multiple logical
operation units in a specific manner to achieve parallel processing of multiple data groups
through the execution of a single SIMD instruction, effectively leveraging data parallelism
in the application program. SIMD extensions are widely adopted as they can substantially
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increase the vector computing capability of a processor using only many transistors and
are designed to be more cost-effective than dedicated vector computers.

3.2. HR DSP SIMD Programming

Figure 4 demonstrates that HR DSP offers various SIMD data type definitions and
pre-built instruction programming models. Employing these vector instructions for SIMD
vectorization programming, combined with macro definitions and embedded assembly
shown in Figure 5, can significantly enhance the convenience of program vectorization
programming. Moreover, it can achieve a better performance acceleration ratio, which is
the proportional relationship between the performance after vectorization optimization
and the performance of scalar implementation.
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                                          : "Z"(value), "m"(*data_ptr)

                                          : "memory");

    return;

}

 

Figure 5. Macro definition and inline assembly. 
Figure 5. Macro definition and inline assembly.

Furthermore, HR DSP’s vector load/store exclusively supports 32 bytes of address
alignment operation. For unaligned addresses, programmers must use instructions such as
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broadcast and shift to rearrange vector register data to enable vectographic programming
optimization and enhance program performance when addresses cannot be aligned.

4. Basic Principles of SIMD Vectorization Programming

This section introduces the basic principles of vector programming design based on
HR DSP, including four parts: optimal SIMD vectorization model, address alignment access
characteristics, fully pipelined instructions, and data prefetch. Among them, the section on
fully pipelined instructions provides a detailed description of several situations where the
instruction pipeline is interrupted.

4.1. Optimal SIMD Vectorization Model

Regarding algorithm ontology, the algorithm vectorization model can be categorized
into two types: explicit vectorization model and implicit vectorization model. The explicit
vectorization model is illustrated in Figure 6, where the commonly used “for” loop in
an application is depicted in Figure 6a. For this type of data, there are no dependencies
between the data before and after processing. After optimization, this is shown in Figure 6b.
As HR DSP’s vector instructions have a width of 256 bits, the example assumes a vectorized
loop increment of 4 if the data width is 64 bits. If the data width is 32 bits, then the
vectorized loop increment would be 8.
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The implicit vectorization model is illustrated in Figure 7a. It appears that the bivariate
accumulation algorithm (BSWA) b[i] = a[i] + a[i + 1] cannot be vectorized due to the depen-
dency relationship between the data in the front and back. However, the implementation
process of the analysis algorithm is shown in Figure 7b (ignoring the tail corner data). The
difference between the adjacent elements of array b is the difference between the adjacent
elements of array a, which can be calculated by the vectorization difference to obtain V3.
Then, it can be combined with b [0] to form new vectorization data newV3, followed by
cumulative vectorization. This process requires programming personnel to convert to
achieve vectorization. Furthermore, as shown in Figure 7b, the vectorization is not the
optimal model. The two “for” loops in Figure 7b can be merged to reduce one newV3 data
load operation, thereby achieving the best algorithm model.
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4.2. Address Alignment

The vector register of HR DSP is 256 bits wide and only supports vector load/store
operations with 32-byte address alignment (address alignment refers to 32-byte address
alignment, otherwise it is address misalignment). Therefore, to achieve the best perfor-
mance, input and output vector data addresses should be aligned. For row-dominated
matrix structures, if the calculation type is independent of the row, the matrix can be treated
as a vector. If the calculation type is related to rows, the starting address of each row
needs to be aligned with 32 bytes. Therefore, in this type of calculation, not only does the
data’s starting address need to be aligned with 32 bytes, but the line length must also be
a multiple of 8 (for single-precision real floating-point data type) or a multiple of 4 (for
single-precision complex floating-point data type) to ensure that the starting address of
each line from the second line also satisfies 32-byte alignment.

In addition, for address misalignment, programmers need to use instructions such as
broadcast and shift for SIMD vectographic programming design. Address misalignment
will result in a slightly reduced performance compared with the address alignment, but it
is still significantly better than the non-vectographic optimization performance.

4.3. Instruction Stream

To maximize the instruction stream and improve CPU usage, stream vacuoles should
be avoided as much as possible to reduce the CPU idle wait time. The HR DSP instruction
stream is interrupted mainly in the following cases:

• The extension of the ALU operation;

As demonstrated in Table 3, some arithmetic logic operations instructions require
multiple clock cycles to complete, including most floating-point computation instructions
in the vector instructions.

Table 3. Execution cycles of some instructions.

Type of Single-Precision Instructions Execution Cycles

Floating-point addition 3
Floating-point multiplication addition 3

Floating-point parallel addition 3
Floating-point division 20

Floating-point square root 20
Floating-point sine 39

Instructions with an execution period of 3 cycles in the table still hold the stream, but
the dependency degree of instructions before and after is longer, requiring an extension back
by 2 clock cycles. N + 2 continuous instructions (assuming that instructions with a single
clock cycle need N) are required to maintain the normal flow, while the last instructions in
the table, such as division, square root, and sine, interrupt the stream. When the current
instruction occupies the ALU unit, the ALU operation can only be performed after the
subsequent instruction is calculated. However, the HR DSP vector unit has two VALU
units that can be used simultaneously, allowing two instructions to run at the same time.

• The extension of the MEM operation.

If read/write memory variables are not in the level 1 data cache, the MEM operation
phase is prolonged, resulting in a broken stream. The prefetch instruction can be used to
prefetch data. The prefetch instruction fetches one cache line to the data cache at a time
(the size of a cache row in HR DSP is 128 bytes). Therefore, it is required to process 32
data points in a single cycle (the data type determines the size unit of data; for example, 1
point is a real number float/int, 1 complex point is a complex number float/int, and so on).
As the internal data access is much slower than the CPU calculation speed, the data after
several loops must be prefetched in advance, and the data need to be adjusted according to
the calculation time.



Electronics 2023, 12, 2922 10 of 21

• Branch Judgment.

The second half of the clock cycle of the execution of a branch instruction determines
the address of the instruction after the next. If the instruction is not in the instruction
cache, it will cause the IF operation to be prolonged, interrupting the instruction stream.
Therefore, in the code design, we should reduce the large address segment jump operation,
reduce the instruction cache miss rate, and avoid long code inside the loop body.

Based on the above considerations, taking floating-point data type as an example, 64
points can be selected to avoid stream interruption and process data in a single cycle. The
tail of the vector can be used to complete the remaining data calculation operation. For
matrix calculation related to the row, 32 points can be selected, which sacrifices a small
amount of flow and reduces the discrete data operation at the end of each row of data.

4.4. Pref Instruction

The data to be computed needed to be prefetched from the DDR to the cache in
advance by using the prefetch instructions. The specific number of levels of data to be
prefetched in advance needed to be adjusted based on the amount of data processed in a
single cycle, computational complexity, and processor core characteristics. As shown in
Table 4, the experimental tests showed that the prefetch offsets corresponding to different
input parameters and data types were also different. The table shows the single vector,
bidrectional quantity, and reference offsets corresponding to different data types, which can
be appropriately adjusted in the design of the actual algorithm. Additionally, the prefetch
offset in the table is given under the condition that the amount of data processed in a single
loop is 32 points. The basic law of data prefetch is that the more data are processed, the
larger the prefetch offset is relative to the base address. The more complex the calculation,
the smaller the prefetch offset relative to the base.

Table 4. Prefetch offsets.

Source Operand Data Type Offset (byte)

Single Vector Real Vector 768
Complex Vector 1024, 1152

Double Vector

Real Vector 1 512
Real Vector 2 640

Complex Vector 1 768, 896
Complex Vector 2 1024, 1152

5. Implementation of Typical SIMD Algorithms

To compare and analyze the performance improvement of the SIMD algorithm before
and after vectorization and to verify the effectiveness and universality of HR DSP SIMD
vectorization programming design principles, three algorithms, matrix–matrix multipli-
cation, mean filter, and accumulation, were selected, as shown in Table 5. The reasons for
choosing these three algorithms were as follows. Matrix–matrix multiplication is a typical
representative of linear algebra computation and is a computationally intensive algorithm.
It is widely used in mathematical libraries for linear algebra, such as GotoBLAS [12] and AT-
LAS [13], and has been the subject of research for automatic tuning based on Intel AVX-512
extension instructions [14]. It also has different vectorization models, making it conducive
to comparing and analyzing the performance differences between ordinary vectorization
models and optimal vectorization models. Mean filter is a typical algorithm in the field of
image processing, which can better reflect the impact of cache and SIMD vectorization on
the performance by reading discontinuous data for calculation and storing it in continuous
memory. Accumulation algorithm is a typical example of implicit vectorization, which can
effectively avoid repeated calculations to improve algorithm performance.
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Table 5. Typical algorithms.

Algorithm Name Scalar Realization

Matrix Multiplication

for (i = 0; i < n; i++){
for (j = 0; j < m; j++){

R[i][j] = 0.0;
for (k = 0; k < p; j++)

R[i][j] += A[i][k] * B[k][j];
}

}

Mean Filter

for (i = 1; i < m − 1; i++){
for (j = 1; j < n − 1; j++){

R[i][j] = (A[I − 1][j] + A[i][j − 1] + A[i][j] + A[i][j + 1] + A[i + 1][j])/5;
}

}

Accumulation
for (i = 0; i < len; i++){

R[i] = A[i + 0] + A[i + 1] + A[i + 2] + A[i + 3] + A[i + 4] + A[i + 5] + A[i + 6] + A[i + 7];
}

5.1. Matrix–Matrix Multiplication

As shown in Figure 8, taking 8 × 8 matrix–matrix multiplication as an example (other
scale matrices take 8 × 8 or 4 × 4 a block matrix for cyclic processing), the function of
matrix–matrix multiplication R = A × B is to multiply in a row of matrix A and a column
of corresponding elements of matrix B, and finally add the result into the position of the
first element of matrix R, and so on, to obtain the whole result matrix R.
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Figure 8. Matrix–matrix multiplication. Figure 8. Matrix–matrix multiplication.

There are two common vectorization models for realizing matrix–matrix multiplication.
The first is the ordinary vectorization model, which first transposes matrix B, and then
multiplies it with the corresponding element of matrix A. Finally, the result is obtained
through summation, as shown in Figure 9. The second is the optimal vectorization model,
which multiplies every element in each row of matrix A with the corresponding row of
matrix B, and then adds it and stores it to the resulting matrix R, as shown in Figure 10.
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Compared with the ordinary vectorization model, the advantage of the optimal vector-
ization model is that it does not require transpose matrix B. Instead, it multiplies the first
element of each row of matrix A with the first row of matrix B and adds the corresponding
element value of the current resulting matrix R (the initialized elements are all zero). Then,
it multiplies the second element of each row of matrix A by the second element of the
second row of matrix B and adds the corresponding element value of the current result
matrix R, and so on, until the last element of each row of matrix A is multiplied by the
last element of the last row of matrix B, and it adds the corresponding element value of
the current result matrix R to obtain the final result matrix R. The partial implementation
of the core vectorization code is shown in Figure 11. The purpose of the “multilayer pie”
approach is to avoid reading matrix B from memory, transposing it, and then storing it in
memory.
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5.2. Mean Filter

In the field of image processing, the mean filter algorithm is widely used. A common
5-point mean filter algorithm is introduced below. As shown in Figure 12, the function of
the 5-point mean filter algorithm is to reduce one layer inward of the m × n matrix (i.e.,
the second row to the (m − 1) row, the second column to the (n − 1) column) of all the
elements corresponding to the upper, lower, left, right, and the element itself as the result
of the mean value stored in the location of the element.

During the calculation process, the algorithm requires reading discontinuous data
for calculation and storing it in continuous memory. Compared with single-point scalar
processing, SIMD vectorization can efficiently utilize the parallel data processing capability
of HR DSP. The core vectorization code is partially implemented as shown in Figure 13.
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5.3. Accumulation

The accumulation algorithm is one of the commonly used algorithms in applications.
An 8-point accumulation algorithm is introduced below, as shown in Figure 14. Its function
is to obtain the result by summing every eight points from left to right.
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On the surface, the accumulation algorithm R[i] = A[i] + A[i + 1] + . . . + A[i + 7]
seems to imply that the data before and after were associated and could not be vectorized.
However, the accumulation algorithm has a hidden feature: the next accumulation result is
the previous accumulation result plus the source data sliding into the new data and minus
the old data sliding out, namely R[i + 1] = R[i] + A[i + 8] − A[i]. This is a typical implicit
vectorization algorithm.

Based on this feature, the 8-point sum can be calculated and stored in the result
address. The data source is staggered by 8 points to calculate the accumulated difference
value and stored from the second point of the result address. Finally, the accumulation and
summation from the first address of the result address can obtain the accumulated result.
The partial implementation of the core vectorization code is shown in Figure 15.
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The above vectorization model is relatively easy to implement. Additionally, there is
another vectorization model that merges vsub and vcumsum, which can reduce the process
of one-time data load and one-time store, and better improve the vectorization level and
performance. However, it also introduces the problem of address misalignment. Therefore,
it is necessary to accurately shift the data during design and avoid stepping on the data
(step out the legitimate data in memory when storing data after calculation).

6. Experimental Evaluation

All of the experiments presented in this paper were performed using the HR DSP and
FT platform, and the specifications of the experimental environment are listed in Table 6 (if
the following charts and explanations are not explicitly stated, they are assumed to be HR
by default).

Table 6. Platform specification.

Type Specification

DSP/CPU HR (800 MHz) FT2000+ (2.2 GHz)
DDR 800 MHz 2666 MHz

Vector register width 256 bits 128 bits
Cache line size 128 B 64 B

L1 cache size L1 Icache-32 KB
L1 Dcache-32 KB

L1 Icache-32 KB
L1 Dcache-32 KB

L2 cache size 1 MB 2 MB (4 cores sharing)
Compiler GCC 4.7.2 GCC 9.3.0

Optimization O2 O2
Architecture MIPS ARM

The experimental platform’s demo board is displayed in Figure 16, which includes
power supply, serial port, network port, DDR, HR DSP, and other components.
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6.1. Matrix–Matrix Multiplication

Figure 17 displays the performance bar charts of different models, from which it is evi-
dent that the performance time of the matrix–matrix multiplication algorithm followed the
order of the scalar > ordinary vectorization model > optimal vectorization model. Further-
more, when the matrix size was 256 × 256, the performance time of scalar implementation
was much longer than that of the vectorization model.

Figure 18 depicts the time consumption ratio between scalar implementation of the
matrix–matrix multiplication algorithm and the ordinary vectorization mode. It can be
observed that when the matrix size was 4 K points (the matrix size was 64 × 64) or below,
the time consumption of scalar implementation was approximately nine times that of
the ordinary vectorization model. However, when the matrix size was 16 K points (the
matrix size was 128 × 128) or above, the time consumption of scalar implementation was
approximately 13 times that of the ordinary vectorization model.
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This phenomenon can be attributed to the following: when the matrix size was 4 K
or below, the data amount calculated by the matrix–matrix multiplication algorithm was
4(K) × 3(number of matrices) × 4(Byte) = 48 KB. In this case, partial cache replacement
occurred between L1Dcache (32 KB) and L2cache (1 MB), and the prefetch operation started
to take effect. As the matrix size increased, cache replacement became more frequent, and
the data prefetch function became more effective. Consequently, the maximum performance
time ratio was increased by approximately 14 times. However, when the matrix size
decreased and became even smaller than the L1Dcache, no cache replacement occurred,
and the prefetch instruction had no effect, but increased the instruction execution overhead.
As a result, the performance time ratio decreased to about 8.8 times.

Figure 19 presents a dot plot, where it was evident that the scalar performance was
approximately 14–22 times that of the optimal vectorization model. The overall trend
of the dot plot was similar to that of the ordinary vectorization model, but when the
matrix size was 512 × 512, the time consumption ratio decreased. This phenomenon can
be attributed to the fact that when the matrix size reached a certain scale, the distance
between matrix rows and elements between rows increased, resulting in an increased cache
replacement frequency, which increased the cache miss rate and decreased the performance
ratio. As shown in Figure 19, by comparing the speedup of the optimal vectorization model
of HR and FT matrix multiplication, it can be seen that under the same conditions, the
vectorization acceleration ratio of HR DSP was 14–22, while that of FT was 6–13, indicating
that HR DSP has a significant advantage.
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Figure 20 displays that the performance of the ordinary vectorization model was approxi-
mately 1.3–1.8 times that of the optimal vectorization model, and the performance of the time
consuming ratio trend chart was consistent with that shown in Figures 18 and 19.
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Figure 20. Time consumption of the common vectorization model and optimal vectorization model.

6.2. Mean Filter

Figure 21 illustrates a bar chart where it was evident that the implementation perfor-
mance of the scalar model took much longer than that of the vectorization model, and both
of them changed linearly with the increase in data amount.

Figure 22 presents a dot plot where it can be observed that when the matrix size
was 64 K (the matrix size was 256 × 256) and below, the performance time showed a
linear change rule, and there was a turning point between 64 K points (the matrix size was
256 × 256) and 256 K (the matrix size was 512 × 512). This was because cache replacement
did not occur when the calculated data amount was less than L1Dcache (32 KB) at 64 K
points and below, and partial cache replacement started to occur when the calculated data
amount was between L1Dcache (32 KB) and L2cache (1 MB) at 256 K and above, and the
prefetch function started to take effect. As a result, the time consumption ratio increased
significantly. As shown in Figure 22, by comparing the speedup of the optimal vectorization
model of HR and FT mean filtering, it can be seen that under the same conditions, FT had a
certain advantage in vectorization speedup for sizes of 256 × 256 or less, while HR DSP
had a significant advantage in vectorization speedup for sizes of 512 × 512 or more.
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6.3. Accumulation

Figure 23 shows a bar chart where it was evident that the performance of the vector-
ization model at 64 K and below was equivalent to that of the instruction stream and was
not affected by the instruction to prefetch or not. The performance time of the vectorization
model at 128 K and above, without instruction prefetch and with instruction prefetch,
was significantly longer than that of the quantization model with instruction stream and
instruction prefetch.

Figure 24 displays a dot plot where it can be observed that when the data length was
32 K or above, the performance time ratio of the scalar implementation and vectorization
model was slightly greater than that below 32 K. As shown in Figure 24, by comparing
the acceleration ratio of the optimal vectorization model of the HR and FT accumulation
algorithm, it can be seen that under the same conditions, FT had a significant advantage
in vectorization acceleration ratio for sizes of 128 K or less, while HR DSP had a certain
advantage in vectorization acceleration ratio for sizes of 512 K.
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7. Conclusions

This paper provided an overview of SIMD stream technology and discussed the de-
velopment of the extended instruction set. It also provided a detailed description of the
structure characteristics and instruction stream of HR DSP. Furthermore, the paper intro-
duced the basic principles of vectorization optimization design based on HR DSP. Finally,
the vectorization performance comparison of the three typical algorithms on different
platforms demonstrated the advantages of the HR DSP vectorization process.

The experimental results demonstrated that the performance of the three algorithms
optimized according to SIMD vectorization programming was improved by about 4–22
times compared with the scalar without vectorization, instruction pipelining, and data
prefetch. Additionally, the optimal vectorization model of matrix–matrix multiplication
was improved by approximately 84% compared with the ordinary vectorization model
after optimization.

Moreover, the paper suggests that for small point algorithms (the data size smaller
than L1Dcache size), it was better to avoid using the pref instruction for data prefetch.
This is because the data amount was already in the cache and no additional instruction
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was needed to operate the data. Improper use of the data prefetch instructions would
destroy the automatic cache and reduce the cache hit ratio, thereby affecting the algorithm
performance.
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