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Abstract: Network protocols, as the communication rules among computer network devices, are the
foundation for the normal operation of networks. However, security issues arising from design flaws
and implementation vulnerabilities in network protocols pose significant risks to network operations
and security. Network protocol fuzzing is an effective technique for discovering and mitigating
security flaws in network protocols. It offers unparalleled advantages compared to other security
analysis techniques thanks to the minimal requirement for prior knowledge of the target and low
deployment complexity. Nevertheless, the randomness in test case generation, uncontrollable test
coverage, and unstable testing efficiency introduce challenges in ensuring the controllability of the
testing process and results. In order to comprehensively survey the development of network protocol
fuzzing techniques and analyze their advantages and existing issues, in this paper, we categorized
and summarized the protocol fuzzing and its related techniques based on the generation methods
of test cases and testing conditions. Specifically, we overviewed the development trajectory and
patterns of these techniques over the past two decades according to chronological order. Based on
this analysis, we further predict the future directions of fuzzing techniques.

Keywords: vulnerability discovery; network protocol; fuzzing; network security; network protocol
security

1. Introduction

Network protocols are the foundation of computer networks. They define the format,
meaning, order, and actions of message exchange among communication entities. With the
development of network applications, vulnerabilities in network protocols have emerged
as a critical factor threatening the security of networks.

In 2001, the “Code Red” worm exploited vulnerabilities in the HTTP protocol imple-
mentation, gaining superuser privileges on Microsoft IIS web servers. It infected approxi-
mately 360,000 servers and 1 million computers worldwide, and resulted in an estimated
global loss of around USD 2.6 billion. In 2014, the “Heartbleed” vulnerability in OpenSSL
was publicly disclosed and exploited [1]. This incident affected around 500,000 Internet
servers. In 2021, a set of vulnerabilities named “WRECK” were disclosed [2], related to the
implementation of DNS protocols, which could lead to denial of service or remote code
execution. Over 180,000 devices in the United States alone were affected.

Regarding the discovery of system vulnerabilities, the concept of fuzzing was pro-
posed by Professor Barton Miller at the University of Wisconsin in 1988 [3]. It has gradually
evolved into an effective, fast, and practical technique [4–7]. The main idea is to develop
a fuzzing tool, known as a fuzzer [8], capable of generating semi-valid data (test cases)
and submitting them to the system under test (SUT) to find if any security issues exist.
Semi-valid data refer to data that can be correctly received and processed by the target
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system, uncovering deep-seated vulnerabilities that are difficult to detect through tradi-
tional means [9–12]. The workflow of fuzzing is illustrated in Figure 1, where the initial
information is also referred to as the seed.

yes
test case

generation
record bugsfuzzing crash?

no

initial

information

Figure 1. General workflow of network protocol fuzzing techniques.

As a widely adopted vulnerability detection technique, fuzzing has found extensive
application in the field of protocol security testing. Currently, protocol fuzzing techniques
primarily focus on testing protocol implementations. For example, in the CVE-2019-16519
vulnerability, during the BGP protocol communication process, sending a close commu-
nication with a sufficiently long message length can cause a buffer overflow error in the
route daemon. In protocol fuzzing, if a fuzzer generates and sends a close communication
packet that meets the length criteria, it may trigger this vulnerability. One key difference
from traditional fuzzing techniques is that many protocols are stateful, requiring the imple-
mentation to receive a series of message requests and send appropriate responses based on
the current state. In contrast, traditional fuzzing tools do not consider the software’s state
information or the structure and order of messages to be sent.

In the past two to three years, there have been no systematic reviews specifically
focused on network protocol fuzzing techniques. If we go back a few more years, there are
existing surveys on protocol fuzzing and traditional fuzzing that mention the application
of fuzzing techniques to network protocols. Liang et al. [7] addressed the key challenges
faced by traditional fuzzing techniques at each phase and provided an overview of the
research conducted to address these challenges. The paper discusses the different applica-
tion scenarios for fuzzing techniques and briefly describes two network protocol fuzzers.
Li et al. [13] specifically emphasized coverage-based traditional fuzzing techniques and dis-
cussed technologies integrated in fuzzing. They also mentioned network protocol fuzzing
techniques within different application scenarios, highlighting only four different fuzzers.
Manes et al. [14] dissected the overall fuzzing process into several phases and explained the
design choices of each phase using relevant techniques. In the input generation phase, they
mentioned that some protocol fuzzing techniques adopt predefined models and inference-
based methods for test case generation, without providing specific introductions for these
fuzzers. Munea et al. [15] classified and compared protocol fuzzing techniques from five
different perspectives, but the survey only includes five specific fuzzers. Hu and Pan [16]
provided a summary of protocol fuzzing techniques in chronological order and introduced
machine learning techniques applied to network protocol fuzzing. However, their study
has limitations in terms of the comprehensiveness of the collected relevant techniques and
the analysis conducted.

This paper aims to fill the existing gap by conducting a survey in protocol fuzzing
area. Taking a chronological approach, we categorized and summarized approximately
fifty protocol fuzzing and related research techniques based on the generation methods
of test cases and testing conditions. This enables a clear overview of the development
trajectory and patterns at different stages since the inception of the technique. Based on the
analysis, we further predict the future directions of protocol fuzzing techniques.

The rest of this paper is structured as follows. In Section 2, we will outline our
literature search methodology. In Section 3, we will introduce the fundamental knowledge
and common classification methods related to network protocol fuzzing techniques. In
Section 4, we will comprehensively review the development and advancements in network
protocol fuzzing techniques over the past two decades, dividing them into different stages.
Section 5 will examine and analyze the techniques related to network protocol fuzzing
techniques and assess their contributions to the field. In Section 6, we will address key
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issues in protocol fuzzing and evaluate the advantages and disadvantages of the current
state-of-the-art techniques. In Section 7, we will provide a comprehensive analysis of the
existing bottlenecks in protocol fuzzing techniques and offer insights into the future trends
of the technique. Finally, we will conclude this in the Section 8.

2. Review Method

In order to conduct a comprehensive survey on network protocol fuzzing, in the
following sections, we will introduce our research methods and collected data in detail.

2.1. Research Questions

This survey mainly aims to answer the following research questions about network
protocol fuzzing.

1. RQ1: What are the key problems and the corresponding techniques in protocol fuzzing
research?

2. RQ2: What are the state-of-the-art techniques and their pros and cons?
3. RQ3: What are the future directions of protocol fuzzing and related techniques?

RQ1, which is answered in Section 6, allows us to explore an in-depth view on
protocol fuzzing. RQ2, which is answered in Section 6, is proposed to give an insight
into the comparisons and suitable scenarios of existing techniques. Finally, based on the
answer to the previous questions, we expect to identify the unresolved problems and future
opportunities of protocol fuzzing and related techniques in response to RQ3, which is
answered in Section 7.

2.2. Search Strategy

In order to provide a complete survey covering as many related papers as possible,
we conducted a search for relevant techniques through three steps. First, we searched some
main online repositories such as IEEE XPlore, ACM Digital Library, USENIX, Springer
Online Library, etc., and conducted a literature search to collect papers that utilize the terms
“fuzz testing”, “fuzzing”, or “fuzzer” in conjunction with “protocol”, as well as papers that
include “Protocol state machine”, “FSM”, or “Protocol Modeling” in their titles, abstracts,
or keywords. Second, we used abstracts of the collected papers to exclude some of them
based on the following selection criteria:

1. Not related to the network protocol field;
2. Not written in English;
3. Not accessible via the Web.

Third, we verified the references of the collected paper to determine if there were
any overlooked techniques. Table 1 presents the number of relevant techniques retrieved
from each source. It is worth noting that the “Other” category includes many significant
techniques that may not have been published in research papers, such as Peach and AFL.

It is still possible for our search to not completely cover all the related papers, but we
are confident that the overall trends in this paper are accurate and provide a fair picture of
the state-of-the-art techniques.

Table 1. Publishers and number of relevant techniques.

Publisher Relevant Techniques

IEEEXplore digital library 17
ACM digital library 5

USENIX 5
Springer online library 4
Elsevier ScienceDirect 3

Other 15
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3. Classification of Network Protocol Fuzzing Techniques
3.1. Test-Case-Generation-Methods-Based Classification

In network protocol fuzzing techniques, test cases primarily refer to protocol data
packets that are correctly formatted but contain erroneous content. Different network
protocol fuzzing techniques employ various methods to generate test cases, and test cases
are then sent to the protocol implementation under test using mechanisms such as sockets
to identify vulnerabilities. Among the classification criteria for network protocol fuzzing
techniques, the generation method of test cases is one of the most important factors. Test
case generation methods can be broadly categorized into mutation-based and generation-
based approaches, as outlined below:

1. Mutation-Based Approach: In this approach, the fuzzer initially obtains some valid
data with proper formatting and content. It then modifies these data using different
methods to create corresponding semi-valid data. The mutation process generally
involves four methods: bit flipping, arithmetic mutation, block-based mutation, and
dictionary-based mutation [14]:

• Bit flipping involves flipping specific bits within the data packet, changing 0 s to
1 s and 1 s to 0 s.

• Arithmetic mutation selects a byte sequence, treats it as an integer, performs
arithmetic operations, and generates a new integer value, which is then inserted
back into the original byte sequence.

• Block-based mutation treats a given length of byte sequence as a block, which is
considered the fundamental unit of the data packet. Operations such as adding,
deleting, replacing, and adjusting the priority of blocks are performed.

• Dictionary-based mutation focuses on specific semantic statements that contain
weighted fields. It replaces the weights or other relevant fields with predefined
numbers or strings.

2. Generation-Based Approach: In this approach, the fuzzer generates semi-valid data
based on known specifications or templates. These templates can be defined by testing
personnel themselves or are predefined within the fuzzer.

A comparison of the advantages and disadvantages of these two methods in the
context of network protocol fuzzing is given as follows:

1. The mutation-based approach faces challenges because network protocol data packets
often contain multiple data types, and different protocols or types of packets have
varying specifications. It becomes difficult to find an appropriate mutation strategy
to generate test cases that can be correctly received during the test case generation
phase. If a random mutation strategy is adopted, significant efforts are required to
verify that these test cases can be correctly received.

2. On the other hand, the generation-based approach has its challenges. One of the issues
is the cost involved in acquiring the network protocol specifications during the seed
acquisition phase. It may require significant resources and efforts to obtain the detailed
specifications of the network protocol. Furthermore, the quality of the acquired seed
can be compromised if there are deviations in the testing personnel’s understanding
of the protocol. An inaccurate or incomplete understanding of the protocol can lead to
the generation of flawed or ineffective test cases, thereby hindering the effectiveness
of the fuzzing process.

3.2. Testing-Condition-Based Classification

Based on the level of understanding of the protocol implementation (which refers to
the application/software or hardware processes that implement network protocols and
handle the sending or receiving of protocol messages), network protocol fuzzing can be
classified into three categories: black-box, white-box, and gray-box fuzzing.



Electronics 2023, 12, 2904 5 of 25

1. Black-box: Black-box fuzzing, also known as random testing, involves the fuzzing
tool having no knowledge of the internal workings of the SUT. It can only observe the
inputs and outputs of the system to infer its behavior. As a result, black-box fuzzing
tends to have lower code coverage compared to other approaches.

2. White-box: White-box fuzzing requires understanding the internal logic of the target
program [17]. The fuzzing tool collects and analyzes information about the internal
workings of the system to generate test cases. In the context of network protocol
fuzzing, this entails understanding the specific code and runtime information of the
protocol implementation. This approach was initially proposed by Godefroid et al.
in 2008 to address the limitations of black-box fuzzing in terms of blind and random
testing [18,19]. In theory, white-box fuzzing can cover all the code paths in the SUT.
However, achieving 100% code coverage is still challenging, especially for large-scale
protocol implementations.

3. Gray-box: Gray-box fuzzing falls between black-box and white-box fuzzing. It adjusts
the test case generation method based on dynamic information obtained from the SUT,
such as code coverage, branch conditions, and memory states. It aims to generate
test cases that cover more execution paths or discover errors more efficiently, without
requiring specific knowledge of the code implementation.

In the context of network protocol fuzzing, it is often challenging for testing person-
nel to access the source code of the protocol implementation. Therefore, black-box and
gray-box fuzzing techniques are more commonly used, while white-box fuzzing methods
are relatively limited. Compared to black-box fuzzing, gray-box fuzzing has the advan-
tage of adjusting the testing direction based on the obtained protocol implementation
information, thereby addressing the issues of blind and random testing encountered in
black-box fuzzing.

4. Development Timeline of Network Protocol Fuzzing Techniques

Since the application of fuzzing techniques in the field of network protocol security
testing in 2001, the development of network protocol fuzzing techniques has spanned
approximately 20 years. In this section, based on a timeline and testing conditions, we
review and analyze the development of network protocol fuzzing techniques from the
aspects of test case generation methods and testing conditions. The goal is to outline the
development trajectory and future trends of this technique. The specific analysis of relevant
work is depicted in Figure 2.

It can be observed from Figure 2 that, prior to 2017, the majority of network protocol
fuzzing techniques employed generation-based black-box fuzzing methods. However,
in the past five years, grey-box fuzzing techniques have experienced rapid development.
Additionally, considering factors such as the automation level of test case generation steps
and the target of the fuzzer, the development of network protocol fuzzing techniques can
be categorized into three stages: the initial stage (2001–2009), refinement stage (2009–2017),
and development stage (2017–present).

4.1. Initial Stage

The initial stage of network protocol fuzzing techniques began with the emergence
of these techniques in 2001 and lasted until around 2009. During this stage, the testing
tools were mainly general protocol fuzzing frameworks, and employed black-box fuzzing
techniques. These fuzzing frameworks either relied on manually constructing test cases by
testing personnel or utilized generation-based approaches guided by protocol specifications
for test case generation.
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Figure 2. Related works of network protocol fuzzing techniques.

4.1.1. Work Introduction

1. Black-box

In 2001, a protocol test suite research project named PROTOS [20] by the University of
Oulu introduced the application of fuzzing techniques in the security testing of network
protocols. Its aim is to uncover vulnerabilities such as buffer overflows and string format
errors. This approach introduces the concept of test suites, which involves manually con-
structing test messages. These messages are based on the analysis of protocol specifications,
considering the supported data structures and the range of acceptable values ranges for
each field. However, PROTOS has limitations as it does not provide an API for building
custom fuzzing and does not allow for variations in test cases without altering the protocol
syntax itself.

In 2002, the SPIKE framework [21], a general-purpose protocol fuzzing framework
based on the C language, was introduced. It provides a fuzzing database containing
various malformed characters such as long strings, strings with format specifiers, large
integers, and negative numbers. SPIKE also offers a rich set of APIs and introduces the
concept of block-based protocol fuzzing. Testing personnel using SPIKE can perform
fuzzing directly using the provided utility scripts or create their own fuzzers by leveraging
the lightweight encapsulation of APIs provided by the framework. However, SPIKE still
requires prior knowledge of the protocol for constructing test cases and relies on manual
tuning. Additionally, the provided block abstraction is relatively low-level. This makes it
difficult to model stateful protocols and complex messages easily.

In 2004, Deja vu Security released the cross-platform fuzzing framework called
Peach [22]. It consists of components such as Datamodel (including data types and mutator
interfaces), Statemodel (including Datamodel interfaces, states, and actions), proxies, a test-
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ing engine, etc. Fuzzers are created by manually writing Peach Pit configuration files. The
initial version of Peach was developed in Python and the second and third versions were
subsequently released in 2007 and 2013, respectively. The third version was redeveloped in
C# and supported the fuzzing of file formats, ActiveX, network protocols, APIs, and more.

In 2006, Greg Banks et al. developed a network protocol fuzzing tool named SNOOZE [23].
It introduces a scenario-based fuzzing approach that allows testing personnel to describe
stateful operations in the protocol and generate scenarios consisting of messages generated in
each state. The tool generates corresponding test cases based on the fuzzing scenarios, thereby
enabling stateful protocol testing. SNOOZE also provides fuzzing primitives targeting specific
attacks, thereby allowing testing personnel to focus on specific types of vulnerabilities. The tool
can discover vulnerabilities such as buffer overflows, integer overflows, and SQL injections.
However, one limitation is that the states observed in the fuzzer are not synchronized with the
states in the SUT. This requires further analysis by the testing personnel.

In 2007, H. J. Abdelnur et al. developed the tool KiF [24], which was the first SIP
fuzzer that did not solely generate random data. KiF generates test cases based on scenarios
and protocol specifications for the SIP. It is capable of automated attacks through self-
improvement and tracking the state of the target device. The implementation of KiF relies
on a learning algorithm that trains an attack automaton using real network traces. This
attack automaton can evolve and update during the fuzzing phase.

In 2008, Beyond Security released the commercial fuzzing tool beSTORM [25]. This
tool transforms the BNF used in RFC documents into an attack language, converting
protocol specifications into an automated test suite. The architecture of beSTORM consists
of two parts: the client side and the monitor side. The client side sends semi-valid packets
to the SUT, while the monitor side monitors the state of the SUT, records any exceptions,
and sends them back to the client side.

In 2009, the fuzzing framework Sulley was released on the GitHub platform [26]. It is
composed of a customizable fuzzer and multiple extensible components. Its advantages
include simplifying data transmission, representation, and target monitoring processes. The
specific features of Sulley include: (1) monitoring network communication and maintaining
relevant records, (2) detecting and monitoring the running status of the target, with the
ability to restore to normal operation using various methods, (3) detecting, tracking, and
categorizing crashes, (4) conducting fuzzing in parallel, and (5) automatically determining
the sequence of test cases that trigger errors. Sulley implements fuzzing by breaking down
the protocol requests to be fuzzed into blocks, and then linking the decomposed requests
into a session and attaching available monitoring proxies before conducting the testing.
Sulley is no longer actively maintained, and Boofuzz [27], released in 2012, is a branch and
continuation of the Sulley framework. Boofuzz fixed issues found in Sulley and improved
its scalability.

2. Gray-box

In 2006, Vuagnoux introduced Autodafe [28], a fuzzing tool designed to discover
buffer overflow vulnerabilities. Autodafe analyzes how user-controlled variables are used
by the SUT and prioritizes testing using variables that are passed as parameters to security-
sensitive functions. The advantage of Autodafe is its ability to automatically generate
protocol descriptions and conduct testing using a fuzzing database.

4.1.2. Summary

Table 2 provides an overview of representative techniques. It can be observed that, as
the technique progressed, the initial techniques were limited to testing stateless protocols,
while the later techniques supported the testing of stateful protocols. In this stage, fuzzing
techniques heavily rely on manual intervention in the process of constructing test cases
and have certain limitations in testing flexibility. However, fuzzing tools such as Peach,
Sulley, and Boofuzz are still widely used today.
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Table 2. A summary of representative techniques in the initial stage.

Tool Test Case Generation Methods Testing
Conditions

State
Support Key Contributions

PROTOS Generation Black-box Stateless First tool for network protocol fuzzing.
SPIKE Generation Black-box Stateless Introduces block-based strategy for protocol testing.
Peach Generation/Mutation Black-box Stateful Wide protocol coverage, supports testing of files.
Sulley Generation Black-box Stateful Supports parallel fuzz testing.

4.2. Refinement Stage
4.2.1. Work Introduction

1. Black-box

In 2010, Gorbunov and Rosenbloom proposed an extensible open-source framework
called AutoFuzz [29] for testing network protocol implementations. The framework cap-
tures the communication between the client and server to construct a finite-state automaton
that learns the protocol implementation. By applying knowledge from bioinformatics,
AutoFuzz learns the syntax of individual protocol messages, including message fields and
possible types. Using the finite-state automaton as a guide, the framework intelligently
mutates the communication session between the client and server to perform testing. Dur-
ing this process, AutoFuzz logs all actions for review and verification by testing personnel.
However, AutoFuzz lacks an analysis and comparison between the real feedback from pro-
tocol implementations and the ideal feedback from the protocol state machine to determine
if specific types of unexpected behavior occur. In the same year, Kitagawa et al. proposed
AspFuzz [30], a state-aware fuzzer based on the application-layer protocol specification.
Previous message-level fuzzers considered only variations within individual messages
without changing the order of message transmission. Scenario-based fuzzers such as
SNOOZE and KiF can determine the message transmission order based on scenarios to
avoid problems encountered by message-level fuzzers, but the scenario creation process
is complex. AspFuzz employs a state-aware approach that allows for selecting the order
of test case transmission after generating the test cases. Test cases can be transmitted in
the correct order or in an incorrect order. However, AspFuzz relies on a manual definition
of the tested protocol and manual determination of successful attacks during the testing
process.

In 2012, Tsankov et al. introduced the tool SecFuzz [31] to address the issue of
encrypted content in protocol messages of certain protocol implementations. SecFuzz
provides the fuzzer with the necessary keys and encryption algorithms to correctly mutate
encrypted messages based on network protocol fuzzing. By acting as a middleman between
the client and server to intercept messages, SecFuzz obtains valid inputs and classifies
them based on three custom fuzz operators before mutating them and forwarding them
to the SUT. In the same year, Rontti et al. studied the next-generation network (NGN)
fuzzer [32], which creates test cases using protocol specifications. The NGN network
refers to a network that integrates all types of services and media. The tool enhances
the protocol description using grammar rules derived from the protocol specification and
selects the appropriate level of anomalies from an existing anomaly library to generate
corresponding test cases. The experimental results demonstrate that the fuzzer is effective
in discovering vulnerabilities that can be exploited in DoS or DDoS attacks. Han et al.
proposed a relationships analysis and testing case marking (RATM) model-based fuzz
testing method for multi-domain fuzzing datasets [33]. By analyzing the relationships
between domains in the protocol, the method can directly mutate the corresponding data
packets that may trigger vulnerabilities. It can also analyze test results and modify RATM
parameters to improve the quality of test cases. This method is highly effective for fuzzing
protocols based on the MAC layer.

In 2014, Brubaker et al. designed, implemented, and applied the first large-scale
testing tool, Frankencerts [34], specifically targeting certificate verification logic in SSL/TLS
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protocol implementations. This tool addresses two main issues: generating high-quality test
cases and verifying the reasonableness of accepting/rejecting certificates. Regarding test
case generation, Frankencerts creates a corpus containing a massive number of certificates.
During test case generation, it combined manually constructed parts of certificates with
randomly combined parts of real certificates, ensuring that the generated test cases have
a well-formed syntax that can be processed by the protocol. These test cases also violate
constraints and dependencies that valid certificates must satisfy, increasing the likelihood
of triggering protocol vulnerabilities. Concerning the reasonableness of certificate results,
the tool employs differential testing, using multiple independent implementations for
joint verification to ensure that the reasons for accepting or rejecting certificates were
correct. If the results from most implementations are inconsistent, it indicates that the result
is incorrect.

Similarly focusing on TLS protocol implementation validation, in 2015, TLSFuzzer [35],
a fuzzing tool for the TLS protocol, was released on GitHub. Unlike typical fuzzers that
only check if the SUT crashes, TLSFuzzer also verifies if the system returns the correct
error messages. This tool validates the behavior of servers in the TLS protocol, checking
if the signature on TLS messages matches the certificate information sent by the server
without performing any checks on the protocol certificates. In the same year, Gascon et
al. introduced PULSAR [36], a stateful black-box fuzzing tool for proprietary network
protocols. This tool is applicable in scenarios where there are no protocol implementation
code and protocol specification available. PULSAR integrates fuzzing techniques and
automatic protocol reverse engineering to automatically infer the network protocol model
based on a set of network data packets generated by the program. The learned network
protocol model guides the fuzzing process. The drawback of PULSAR is that the learned
model from network messages may naturally lack some functionality, which may affect the
testing process of the protocol.

In 2016, Somorovsky et al. developed an open-source framework called TLS-Attacker [37]
for evaluating the security of TLS libraries. The framework was implemented using the Maven
project management tool. Building upon TLS-Attacker, the authors further proposed a two-
stage fuzzing method to evaluate TLS server behavior, automatically detecting unusual
padding oracle vulnerabilities and overflows/over-reads. They also established a test suite
related to the TLS protocol. In the same year, Ma et al. presented a method for generating
fuzzing data using rule-based state machines and stateful rule trees [38]. This method utilizes
state machines as formal descriptions of network protocol states, simplifies the state machine
by removing known secure paths using protocol rules, and describes the relationships between
states and messages using stateful rule trees. Various generation algorithms are employed to
regularly mutate initial seeds using data generation algorithms, enabling the generation of
fuzzing data.

In 2017, Blumbergs et al. introduced the tool Bbuzz for analyzing network proto-
cols [39], applied specifically in a military context. This tool operates at the bit level,
filtering and storing required packet data in files. It assists in identifying field properties
by calculating Shannon entropy, enabling an analysis of which parts can be mutated. The
reverse engineering results of binary protocols became more accurate as a result.

For representational state transfer (REST) APIs, two fuzzing tools were released on
GitHub in 2017 and 2018: TnT-Fuzzer [40] and APIFuzzer [41]. Both tools were writ-
ten in Python and utilized Swagger specifications to parse HTTP requests, guiding the
fuzzing process.

2. Gray-box

In 2013, Zalewski et al. proposed a mutation-based general fuzzing tool called Ameri-
can Fuzzy Lop (AFL) [42]. This tool introduces code coverage-guided fuzzing by utilizing
source code compilation instrumentation and QEMU mode. However, AFL is more suitable
for testing stateless projects, such as testing files, and lacks knowledge of the state informa-
tion of protocol implementations and the structure or order of messages to be sent when
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testing network protocols. The process of message mutation is random, thereby resulting
in a lower testing efficiency.

3. White-box

In 2010, Wang et al. presented TaintScope [43], a fuzzing tool that bypasses checksum
and validation. This tool employs fine-grained taint analysis to identify inputs that flow
into critical system calls or API calls. It also introduces a checksum-aware fuzzing technique
that identifies checksum-testing instructions through taint analysis and modifies the SUT
to bypass checksum validation. If the modified SUT crashes, TaintScope further repairs the
checksum field using hybrid symbolic execution and conducts testing on the original SUT.
Additionally, TaintScope monitors how the SUT accesses and uses input data and direc-
tionally mutates sensitive information. However, TaintScope has limitations in handling
security-related integrity checking schemes, such as digital signatures, and it exhibits lower
efficiency when dealing with encrypted data. Moreover, it requires high-quality inputs,
depending on both well-formed and malformed input formats.

4.2.2. Summary

Table 3 provides a summary of representative techniques in the refinement stage.
From the table, it can be observed that, in the refinement stage, fuzzing techniques address
the most significant issue present in the initial stage, which is an excessive reliance on
manual intervention. For example, Autofuzz and PULSAR could automatically generate
protocol state machines by analyzing protocol communication data packets. Additionally,
in the refinement stage, fuzzing tools gradually shift their focus from general protocols
to specific protocol families. These tools are also capable of addressing specific scenarios
during testing. For instance, tools such as Frankencerts and TLSFuzzer target SSL/TLS
protocol implementations, SecFuzz focuses on testing encrypted content, and TaintScope
bypasses the integrity testing process of the SUT.

On the other hand, during this period, AFL was released as a general fuzzing tool.
Although it does not perform well in protocol fuzzing, AFL provides a new approach
for protocol fuzzing: using gray-box fuzzing to gather coverage-guided information and
improve the efficiency of network protocol fuzzing.

Table 3. A summary of representative techniques in the refinement stage.

Tool
Test Case

Generation
Methods

Testing
Conditions

State
Support Key Contributions

AutoFuzz Mutation Black-box Stateful Automatic generation of state machines.

SecFuzz Mutation Black-box Stateful Enables fuzzing of encrypted data by providing encryption
algorithms and keys to the fuzzer.

Frankencerts Generation Black-box Stateless First fuzzer for TLS certificates.
PULSAR Generation Black-box Stateful Automatic generation of state machines.
TaintScope Mutation White-box Stateful First protocol fuzzer to adopt white-box fuzzing approach.

AFL Mutation Gray-box Stateful Adoption of coverage feedback to guide the testing process, serving
as a basis for the development of subsequent tools.

4.3. Development Stage

The development stage, spanning from 2017 to the present, is characterized by the
dominance of gray-box fuzzing techniques that leverage code coverage to improve the
efficiency of fuzzing.

4.3.1. Work Introduction

1. Black-box

In 2019, Atlidakis et al. developed the first stateful fuzzer for REST APIs, called
RESTler [44]. This tool analyzes the OpenAPI specification of cloud services to extract REST
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syntax and infer dependencies between different types of requests. RESTler employs three
different search strategies based on dynamic feedback from service responses to assist in
the generation of test cases. Additionally, RESTler introduces bucketing schemes to cluster
similar vulnerabilities and aid users in vulnerability analysis.

In 2020, for the Datagram Transport Layer Security (DTLS) protocol, Brostean et
al. extended the TLS-Attacker framework and built a stateful fuzzing framework for
DTLS servers [45]. The tool used model learning with the TTT algorithm to infer Mealy
machines and performed comprehensive protocol state fuzzing on DTLS. The experiments
analyzed Mealy state machine models of 13 DTLS implementations, revealing 4 severe
security vulnerabilities.

2. Gray-box

In 2017, Petsios et al. modified the LibFuzzer framework [46] and proposed an
efficient differential testing tool called NEZHA [47]. NEZHA introduces the concept of
δ-diversity to capture behavioral inconsistencies among multiple SUTs. NEZHA consists of
runtime components and a core engine: the runtime components collect and transmit all
necessary information for δ-diversity guidance to the core engine, which generates new
inputs through mutation to uncover differences between SUTs and update the seed corpus
guided by δ-diversity. During testing, NEZHA determines whether to employ black-box or
gray-box methods based on whether the SUT supports instrumentation or binary rewriting.

In 2019, Song et al. proposed SPFuzz [48], a stateful protocol fuzzing framework that
aims to build a flexible and coverage-guided approach. SPFuzz combines the language
specification from Boofuzz to describe protocol specifications, state transitions, and de-
pendencies for generating valuable test cases. It maintains correct messages in the session
state and handles protocol dependencies by updating message data in a timely manner.
SPFuzz employs a three-level mutation strategy (headers, content, and sequences) and
incorporates a random allocation of messages and weights for mutation strategies to cover
more paths during the fuzzing process. One limitation of SPFuzz is that it requires the
source code and specification of the protocol, with the protocol specification relying on
manual construction. In the same year, in order to achieve higher code coverage in testing
network communication protocols, Chen et al. designed a stateful protocol fuzzing strategy
and demonstrated the limitations of stateless gray-box fuzzers in protocol testing [49]. The
stateful fuzzing strategy consists of a state transition engine and a multi-state fork server.
It performs a search on different fuzzing states using a depth-first search algorithm and
determines the progression and regression of states flexibly through energy scheduling.
This strategy allows for the flexible fuzzing of different states in protocol programs.

In 2020, Pham et al. developed AFLNET [50], which uses response codes as states
for network protocol programs. AFLNET accurately fuzzes the actual states of network
protocol programs and utilizes state feedback to guide the fuzzing process. AFLNET uses a
mutation-based approach and uses the message exchange sequence between clients and
servers as initial seeds. During testing, AFLNET acts as a client and replays variants of
request message sequences. It also applies coverage-guided techniques to retain variants
that effectively improve code or state coverage. AFLNET shows significant improvements
compared to coverage-guided stateless testing tools such as AFLnwe (a network-enabled
version of AFL) and the generation-based testing tool Boofuzz. However, AFLNET is not
suitable for protocols without state codes, and the extraction of state information relies on
manually written protocol specifications.

In 2021, Zou et al. designed TCP-Fuzz [51], a novel fuzzing framework for effectively
testing TCP stacks and detecting errors within them. TCP-Fuzz adopts a dependency-based
strategy to generate effective test cases by considering dependencies between system calls
and packets to generate sequences of system calls. To achieve an efficient coverage of state
transitions, TCP-Fuzz employs a transition-guided fuzzing method that utilizes a new
code metric called branch transition as program feedback instead of code coverage. The
branch transition is represented as a vector that stores the branch coverage of the current
input (packet or system call) and the changes in branch coverage between the current
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input and previous inputs. This approach not only describes states but also captures state
transitions between adjacent inputs. Lastly, in order to detect semantic errors, TCP-Fuzz
uses a differential checker that compares the outputs of multiple TCP stacks with the same
input. Since different TCP stacks should adhere to many of the same semantic rules (most of
which are defined in RFC documents), inconsistencies in output indicate possible semantic
errors in some TCP stacks.

In 2022, Natella developed StateAFL [52], a gray-box fuzzer for network servers.
StateAFL performs compile-time instrumentation to detect the target server and insert
probes for memory allocation and network I/O operations. At runtime, the fuzzer captures
snapshots of long-lived memory regions and applies a locality-sensitive hashing algorithm
to map the memory content to unique state identifiers. This allows StateAFL to infer the
current protocol state of the SUT and gradually build a protocol state machine to guide the
fuzzing process. Qualitative analysis shows that inferring states from memory provides a
better reflection of server behavior than relying solely on response codes. In the same year,
Li et al. proposed another fast gray-box fuzzer called SNPSFuzzer [53], which also uses
snapshots. SNPSFuzzer builds upon AFLNET and introduces three main components: a
snapshot-based instance generator, a snapshotter, and a message chain analyzer. When the
network protocol program reaches a specific state, contextual information is stored, and it
can be restored when needed. Additionally, Li et al. designed a message chain analysis
algorithm that splits the message chain into prefix, infix, and suffix information using two
variables for analysis. This approach explores deeper network protocol states. Compared to
AFLNET, SNPSFuzzer achieved a 112.0% to 168.9% speed improvement in network protocol
fuzzing within 24 hours and increased path coverage by 21.4% to 27.5%. In addition, in
2022, na et al. developed SGFuzz [54], a tool that automatically analyzes protocol states and
performs stateful testing by leveraging the regularity between variable names in protocol
implementations. SGFuzz uses pattern matching to identify state variables using enums.
When a state variable is assigned a new value, the tool sends a corresponding notification
and adds the new state to the constructed state transition tree (STT). SGFuzz also adds
generated inputs to the seed library for training the STT and focuses on nodes that are
rarely visited and have descendants that are more likely to traverse different paths, thereby
improving the coverage of the state space. SGFuzz achieves significant improvements in
generating state sequences, achieving the same branch coverage and discovering stateful
errors in the absence of explicit protocol specifications or manual annotations. However,
SGFuzz requires the protocol implementation’s source code for analyzing protocol states
during the testing process, and the analysis of vulnerabilities triggered by hidden states
still requires manual analysis.

3. White-box

In 2020, Alshmrany et al. proposed a verification method that combines fuzzing with
symbolic execution techniques [55]. The approach is based on AFL and utilizes fuzzing
for the initial exploration of network protocols. Simultaneously, symbolic execution is
employed to explore program paths and protocol states. By combining these techniques,
high-coverage test case data packets can be automatically generated for network protocol
implementations. The symbolic execution is implemented using both path exploration and
bounded model checking (BMC) methods.

4.3.2. Summary

Table 4 summarizes the representative techniques in the development stage. In this
stage, several gray-box fuzzing techniques were developed based on AFL, adapting AFL’s
stateless fuzzing to stateful fuzzing suitable for protocols. AFLNET, StateAFL, SNPSFuzzer,
and SGFuzz all utilize state feedback to guide the fuzzing process. They achieve this by
recording message response codes, capturing memory snapshots, storing contextual infor-
mation, and analyzing protocol source code to identify specific data types and determine
protocol states. Alshmrany et al. [55]employed symbolic execution techniques to analyze
program paths and explore protocol states.
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In general, during this stage, the focus is on fuzzing stateful protocols, and the main
goal of these fuzzing tools is to uncover vulnerabilities in deeper protocol states.

Table 4. A summary of representative techniques in the development stage.

Tool Test Case
Generation Methods

Testing
Conditions

State
Support Key Contributions

NEZHA Mutation Gray-box Stateless Guides seed library updates using δ-diversity.

SPFuzz Mutation Gray-box Stateful Uses code coverage as feedback to improve
fuzzing efficiency.

AFLNET Mutation Gray-box Stateful First fuzzer to use state-aware feedback.
StateAFL Mutation Gray-box Stateful Represents protocol state through memory snapshots.

SGFuzz Mutation Gray-box Stateful Exploits the tendency of existing protocol implementations
to name states with specific names.

5. Related Methods of Network Protocol Fuzzing Techniques

In addition to the network protocol fuzzing tools/frameworks mentioned above, there
are other related tools and methods that contribute to the automation and evaluation of
network protocol fuzzing.

5.1. Automatic Generation Techniques of Protocol State Machines

Finite state machines (FSMs) are often used in the field of network protocol research
to model the message exchange process of network protocols in order to describe the state
transitions of protocol entities. In order to construct fuzzy test cases for unknown protocols,
it is necessary to utilize the protocol specifications extracted through protocol reverse
engineering. For stateless protocols, test cases can be generated based on the protocol
format to ensure that each field breaks through the verification of the target program.
However, for stateful protocols, it is necessary to send test message sequences that can
be accepted by the protocol state machine in a targeted manner in order to avoid a large
number of invalid test cases due to state mismatches and to ensure the depth and efficiency
of testing. Traditional fuzz testing does not include context information and all states in the
message sequence, so the test data generated for each state are discrete and may not cover
the entire state trajectory. Therefore, vulnerabilities in state transitions may go undetected,
and there may be a large amount of redundant test data. Test data are randomly generated
and lack rules. Furthermore, protocol fuzzing techniques based on generation can utilize
protocol state machines to construct protocol templates. Therefore, combining finite state
machine generation technology can make protocol fuzz testing more targeted and efficient,
providing better test coverage.

Next, we will introduce the development history of automatic protocol state machine
generation technology.

5.1.1. Passive Inference-Based Approaches

Passive inference refers to the process of inferring the state machine from a given set
of finite samples without relying on guidance from the protocol entity. It primarily involves
two phases: state labeling and state machine simplification. In the state labeling phase,
classification labels can be assigned based on features such as message types, lengths, and
positions in the sample data, resulting in different states. In the state machine simplification
phase, the labeled states can be further simplified to generate a concise state machine for
subsequent analysis and applications.

In 2004, the first analysis tool designed to infer protocol state machines from network
data streams, called ScriptGen [56], was proposed. This tool uses the Needleman–Wunsch
sequence alignment algorithm similar to the PI project, as well as the micro-clustering and
macro-clustering of captured network traffic to construct protocol state machines. However,
this tool has certain limitations, such as its inability to handle different message sessions
with causal correlations and its reliance on TCP packet identifiers (e.g., ACK, SYN, FIN) as
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priors to address issues related to TCP packet reassembly, retransmission, and out-of-order
packets. As a result, it can only analyze a few specific protocols and is not a robust and
widely applicable solution for inferring protocol states.

In 2007, Shevertalov et al. initially proposed the solution named PEXT [57], which is
based on packet clustering for automatic protocol state machine inference. This solution
calculates the distance measure D(a,b) between packets a and b based on the length of
their longest common subsequence. It then clusters packets based on D(a,b) and annotates
packets with the same source and destination addresses as initial state transition sequences.
It subsequently merges state pairs with common prefixes and no sibling nodes to obtain
the state machines for the entire sample set. However, PEXT has two limitations: (1) it does
not fully consider the role of keyword fields in state machine transitions, leading to less
accurate and precise state labeling, and (2) the merging process is too simple, resulting in
less concise inferred state machines.

In 2009, Comparetti et al. proposed Prospex [58], a solution that infers protocol states
based on binary executable code. This tool improves upon their previous work [59] on
behavior-based message format extraction. It introduces message structures and the impact
of messages on server behavior. During the session analysis phase, Prospex uses dynamic
taint analysis to track all operations involving data reads from protocol messages. It splits
the session into messages, considering the first input byte received by the server as the
start of a message and treating all subsequent inputs as part of that message until the
server sends a reply. This process is repeated until all tracked data packets are segmented
into messages. This approach is more accurate than treating each packet as a message,
particularly for interaction-based protocols where a message may span multiple data
packets. It then extracts features from sample packets, clusters them to obtain a set of
message types (M), represents session samples (S) as message-type sequences (MTSs), and
constructs the augmented prefix tree acceptor (APTA) using S. In the APTA, nodes represent
states, and edges represent inputs ai ∈ M causing state transitions. The predecessor types
Pi for each type mi ∈ M are also deduced. Finally, the Ex-bar algorithm is used to merge
identical states and extract a minimal deterministic finite automaton (DFA). However,
according to research [60], inferring an accurate minimal state machine solely based on
positive samples captured from the network is difficult.

5.1.2. Active-Inference-Based Approaches

Passive inference algorithms rely on the completeness of the sample set. To address
this limitation, research on active inference began with the introduction of the L* algorithm
by Angluin et al. [61]. In active inference, the goal is to expand the original sample set
using a manual learning system to iteratively infer the state machine.

The L* algorithm divides input–output examples into two sets: positive samples and
negative samples. Positive samples are input sequences that the automaton can handle
correctly, while negative samples are input sequences that the automaton cannot handle
correctly. The L* algorithm assumes the existence of an Oracle that can provide accurate
answers. There are two types of queries: member query and equivalence query. This
algorithm uses these examples to construct a hypothesis set OT and generates all candidate
state machines M. As the algorithm progresses, M is evaluated against the true state
machine using equivalence queries to gradually narrow down the hypothesis set and find
the minimized state automaton. The L* algorithm ensures that a complete minimal state
machine can be inferred in polynomial time, but the key challenge is how to accurately
answer the queries.

In 2011, Cho et al. proposed the tool MACE based on the L* algorithm [62]. MACE
relies on dynamic symbolic execution to discover protocol messages and uses a special
filtering component to select messages for learning models. It guides the further search
using the learning model and refines it when new messages are discovered. These three
components alternate until the process converges, automatically inferring the protocol
state machine and exploring the program’s state space. MACE can infer protocol models
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and explore the search space of programs, generating tests automatically. In an experi-
mental analysis on four programs, MACE discovered seven vulnerabilities and achieved
good results.

In 2012, Bossert et al. introduced the open-source project Netzob [63], which consists
of three modules: lexical inference module, syntactic inference module, and simulation
module. The lexical inference module adopts the multiple sequence alignment algorithm
from PI [64] and improves upon the L* algorithm. It uses the feature information in
message formats to infer Mealy machines. The inferred lexical and syntactic specifications
are then used in the simulation module to simulate communication between protocol
entities, enabling intelligent fuzzing for unknown protocols.

In 2013, Wang et al. proposed and designed the Veritas system [65]. Veritas builds a
probabilistic protocol state machine by using a set of protocol state information obtained
through cluster analysis. For each protocol state information, Veritas measures its frequency
of occurrence and the transition probability between it and other protocol state information.
Veritas then constructs a labeled directed graph to represent the protocol state machine us-
ing these statistical results, with state transitions and transition probability values as labels
on the directed edges. Finally, Veritas transforms the directed graph into a probabilistic
protocol state machine. To reduce the complexity of the protocol state machine, Veritas
uses the Hopcroft–Karp algorithm to perform minimization operations on the protocol
state machine. The Hopcroft–Karp algorithm merges equivalent states in the protocol state
machine into a single state, reducing the number of states and improving the efficiency and
readability of the protocol state machine.

In 2015, De Ruiter et al. proposed a method to describe protocols using state ma-
chines [66]. They employed an improved version of the L* model learning algorithm to
infer the state machine through LearnLib, which provides an abstract input message list
(also known as an input alphabet). De Ruiter et al. used a testing tool to transform the input
message list into concrete messages sent to the SUT and received responses that were then
transformed into abstract message types. LearnLib analyzed the returned message types
and made hypotheses about the protocol state machine. Analyzing different TLS imple-
mentations produces unique and distinct state machines, indicating that this technique can
also be used for TLS fingerprinting. The problem with this approach is that, after obtaining
the protocol state machine, De Ruiter et al. manually analyzed the state machine to find
logic vulnerabilities in specific implementations and then analyzed the implementation
source code to identify corresponding issues, rather than using an automated method to
test protocol entities.

In 2017, Liu et al. proposed a technique to address the problem of the excessive gener-
alization of state machines caused by errors in merging labeled states when constructing
the APTA tree [67]. They utilized a dynamic taint analysis technique, relying on DECAF to
analyze network applications and construct an APTA tree. By using semantic information
to differentiate states and merging similar states, they improved the accuracy of labeling
states in the APTA tree. The method was tested with TCP and the Agobot control protocol,
and it achieved good results.

In 2019, Pacheco et al. studied the automatic learning of protocol rules from textual
specifications (i.e., RFC) and applied the automatically extracted protocol rules to a fuzzer
for evaluating the learned rules [68]. The evaluation showed that this approach could
discover the same attacks as manually specified systems with fewer test cases. In 2022,
Pacheco et al. further proposed a more comprehensive method [69]. The method included
three key steps: (1) a large-scale word representation learning of technical languages, (2) a
zero-shot learning mapping of protocol text to an intermediate language, and (3) rule-based
mapping from the intermediate language to specific protocol finite-state machines. They
extracted protocol state machines from protocol specifications of TCP, DCCP, BGPv4, and
other protocols, achieving good results.

In 2020, LI et al. proposed a protocol state inference method called ReFSM [70],
which improved upon existing protocol state inference methods by taking into account
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the real-time packet capture feature. This method is based on the extended finite-state
machine (EFSM) and consists of three steps: (1) message type identification, which uses
the a priori keyword analysis to extract protocol keywords and the K-means algorithm to
group messages to determine the number of clusters, with each group being treated as a
different message type. (2) EFSM construction and semantic inference, which constructs a
tree of protocol transition automata (PTAs) that accepts all protocol sessions and uses the
K-tail merge algorithm to simplify the protocol state machine. (3) Sub-data set extraction,
which extracts sub-data sets containing message field values observed in the messages, for
further analysis to search for correlations between fields in the messages. The accuracy of
the extracted state-related fields has been greatly improved by combining the state-related
field method with the clustering method. Then, the information of these state-related
fields is used to compare each transition in the EFSM, and the merge operation of the state
machine is completed by determining whether the generated A and B trees have the same
structure. Although the ReFSM method has achieved some improvement in the extraction
of state-related fields, there is still a problem of state explosion, which affects the efficiency
and accuracy of state machine inference due to a large number of states in the protocol
state machine.

In 2021, building on previous research on the L+
M algorithm for inferring Mealy

machines, Goo et al. proposed a new algorithm and a novel solution for inferring protocol
states [71]. They modeled the Mealy machine of client–server-type protocols through input
and equivalence queries on the input character sequence. In feasibility tests, the tool was
tested on the Modbus and MQTT protocols, yielding good results.

5.1.3. Summary

In summary, protocol state machines can systematically describe the behavior and
state transitions of a system or network protocol, providing clear testing directions for
fuzz testing and making fuzz testing more targeted and efficient. By utilizing protocol
state machines, designed fuzz testing cases can cover all states and transitions of the tested
system or network protocol in terms of structure, thus improving testing coverage.

Currently, it is the most fundamental and important research direction in this field to
automatically extract protocol state machines from protocol implementations or network
traffic, or directly map protocol behavior to state machines with well-defined states and state
transitions. One important development direction is based on active inference, which uses
artificial learning systems to continuously expand the original sample set and repeatedly
infer state machines, thereby reducing the dependence on sample set completeness and
improving the accuracy and efficiency of state machine inference.

5.2. Evaluation of Network Protocol Fuzzing Techniques

The number of network protocol fuzzing tools is increasing, and each tool focuses on
different testing targets and problem domains. Therefore, to determine which testing tool
provides the best results, it is necessary to evaluate network protocol fuzzing techniques.

In 2021, Natella et al. introduced a benchmark test suite for stateful network protocol
fuzzing called ProFuzzBench [72]. The benchmark test suite includes a set of representative
open-source network servers for popular protocols and automated experimental tools
such as AFLNET and StateAFL. The test suite is implemented using Docker to achieve
reproducible experiments and supports the comparative analysis of different fuzzing
techniques under controlled conditions.

Since not all states in a stateful protocol are equally important, and fuzzing techniques
have time limitations, an effective state selection algorithm is needed to filter out good states
with higher priority. In 2022, Liu et al. evaluated a set of state selection algorithms using
the AFLNET tool on the ProFuzzBench benchmark test suite and proposed an improved
state selection algorithm called AFLNETLegion [73].
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5.3. Summary

In conclusion, when choosing fuzzing tools that require the manual construction
of protocol specifications, such as Peach and SNOOZE, automated tools can be selected
based on existing protocol-related information to generate protocol state machines and
reduce manual effort. On the other hand, when testing personnel need to figure out which
methods and fuzzing tools are more effective in specific scenarios, ProFuzzBench supports
the testing of representative tools and enables the comparative analysis of different fuzzing
techniques under controlled conditions.

6. State-of-the-Art Techniques

According to the general process of protocol fuzzing and the difference between
traditional fuzzing and protocol fuzzing described in Section 1 and the related methods
of protocol fuzzing techniques introduced in Section 5, the following questions should
be considered:

1. How to generate or select test cases;
2. How to validate those inputs against the specification of the SUT;
3. How to direct SUT to conduct tests for deeper protocol states;
4. How to improve the automation level of protocol fuzzing.

In this section, we address RQ1 and RQ2 by summarizing and comparing the main
contributions to the above issues of protocol fuzzing in today’s baseline and state-of-the-
art techniques.

6.1. Test Cases Generation and Selection

In the test case generation phase, two main approaches can be distinguished: generation-
based methods represented by Peach and Boofuzz, and mutation-based methods represented
by AFLNet.

In the generation-based approach, such as Peach and Boofuzz, a protocol template
is required, which defines the desired packet format for the protocol. Manual effort is
involved in obtaining the protocol template, which specifies the structure and expected
behavior of the protocol’s data packets. Test cases are then generated based on this template,
incorporating variations and mutations to explore different input scenarios.

On the other hand, mutation-based methods, such as AFLNet, StateAFL, SNPSFuzzer,
and SGFuzz, rely on real network traffic to generate test cases. By capturing and analyzing
actual network packets, predefined techniques are applied to mutate the captured packets
and generate desired test cases. This approach leverages the existing network traffic to
explore potential vulnerabilities and test the robustness of the protocol implementation.

As discussed in Section 3, one of the major challenges with generation-based meth-
ods is the reliance on testing personnel possessing prior knowledge of the protocol. It
requires manual effort to gather information about the protocol specification, including
the states and transition conditions. This approach can result in significant research costs
and expertise requirements. In the case of mutation-based methods, a notable challenge
is that the current test case generation strategies can be quite random, where many test
cases generated through mutation may fail to pass the protocol’s validation, leading to a
significant impact on the efficiency of mutation-based fuzzing techniques.

6.2. Input Validation

The ability of automatically generating numerous test cases to trigger unexpected
behaviors of the SUT is a significant advantage of fuzzing. However, if the SUT has an
input validation mechanism, these test cases are quite likely to be rejected in the early
phase of execution. In the field of protocol fuzzing, checksum and encryption techniques
are commonly employed to ensure the integrity and confidentiality of input data packets.

TaintScope first uses dynamic taint analysis and predefined rules to detect potential
checksum points, and then mutates bytes to create new test cases and changes the checksum
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points to let all created test cases pass the integrity validation. When some test cases can
make the SUT crash, it uses symbolic execution and constraint solving to fix the checksum
value of these test cases. One of the major challenge with TaintScope is that it requires
extensive information about the inputs, including both well-formed and malformed inputs.
The quality of the inputs significantly impacts the identification of checkpoints. Therefore,
it is crucial to provide a diverse and comprehensive range of inputs, including various
formats and error conditions, to ensure thorough testing and an accurate identification of
checkpoints by TaintScope.

SecFuzz first address the issue of encrypted content in protocol messages. It provides
the fuzzer with necessary keys and encryption algorithms, and mutates encrypted messages
by acting as a middleman between the client and server. Currently, SecFuzz is capable of
addressing only certain symmetric encryption issues and does not support mutation for
all fields.

6.3. Stateful Protocol Fuzzing

In the context of protocol implementation in a server–client mode, a server is stateful
and message-driven. It takes a sequence of messages from client, handles the messages,
and sends appropriate responses, and the server’s response depends on both the current
message and the current internal server state, which is controlled by earlier messages.

In stateful protocol fuzzing, generation-based and mutation-based methods employ
different approaches.

In generation-based methods, the protocol template contains relevant information
about the protocol’s states. The fuzzer not only generates test cases but also constructs
corresponding state machines. In Peach, the protocol state machine is represented using
the StateModel format, while, in Boofuzz, it is represented using sessions. A noteble
challenge is that manual effort is involved in obtaining the protocol template in both Peach
and Boofuzz.

In mutation-based methods, AFLNET pioneered stateful coverage-based graybox
fuzzing, integrating automated state model inference and coverage-guided fuzzing. Subse-
quently, StateAFL, SNPSFuzzer, and SGFuzz have further explored state-feedback-based
protocol fuzzing. AFLNET constructs the protocol state machine using status code feed-
back. During seed generation, if a generated test sequence triggers a new state transition,
it is added to the seed corpus, and the new state is incorporated into the state machine.
AFLNET faces limitations when protocols do not provide status codes, rendering it ineffec-
tive. StateAFL and SNPSFuzzer infer the protocol’s state by taking snapshots of the target
server and gradually build the protocol state machine to guide the fuzzing process. They
maintain interesting seeds and states based on feedback metrics such as state coverage.
However, their granularity is at the process level, which may result in state machine dis-
crepancies with the actual protocol state. SGFuzz automatically identifies state variables in
program code and captures protocol state changes by constructing a state transition tree.
This approach relies on the protocol’s source code and is not suitable for the security testing
of closed-source or proprietary protocols.

6.4. Automated Testing

Section 6.1 mentions that generation-based protocol fuzzing techniques, represented
by Peach and Boofuzz, require manual assistance in obtaining protocol templates, and
their level of automation is relatively low. Therefore, natural language processing (NLP)
techniques can be employed to aid in the extraction of protocol state machines during the
protocol templates extraction phase.

In the protocol state machine extraction phase, there are two types of approaches:
passive inference and active inference. Passive inference, represented by PEXT, is based on
message clustering for protocol state machine inference. Active inference research is mainly
based on the L* (learning algorithm) algorithm, such as tools such as LearnLib, Netzob,
MACE, etc., assuming the existence of an Oracle that can provide accurate answers to
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membership queries and equivalence queries. Firstly, a closed and continuous observation
table (OT) is constructed based on membership queries, and then the corresponding
candidate state machine M is generated. Afterwards, equivalence queries are used to
determine whether M is consistent with the actual state machine. If yes, the inference
is terminated; otherwise, a counter example is generated to re-infer. One of the main
challenges of the generation-based approach is that its efficiency depends on the number of
generated queries and the response speed of the Oracle to the queries. Active inference
based on the L* algorithm requires the generation of a large number of queries, resulting in
low efficiency.

In recent years, research on protocol state inference has also focused on methods
based on deep learning and machine learning techniques [70,74]. However, these methods
still have limitations and shortcomings. For example, a large amount of training data is
required to train the model, and it may be difficult to obtain sufficient training data for
some protocols, making them only suitable for simple protocols.

7. Technique Development Context and Future Directions

In this section, we answer RQ3 by discussing some of the possible future directions
of the protocol fuzzing and related techniques. Although we cannot accurately predict
the future directions that the study of protocol fuzzing will follow, it is possible for us to
identify and summarize some trends based on the reviewed papers.

7.1. Development Context

As mentioned earlier, AFL has discovered numerous zero-day vulnerabilities in main-
stream open-source software since its release in 2013, and it has been widely used and extended
for testing different targets. Its success has demonstrated the value of code coverage-guided
techniques in practical fuzzing and represents an important role in the development of fuzzing
techniques. Analyzing the development trends, we can observe that AFL has had a significant
impact on the research focus of network protocol fuzzing techniques.

Referring to Figure 3, we can see that, before the release of AFL, the research focus of
testing personnel was on black-box fuzzing techniques. However, after AFL was released,
gray-box fuzzing techniques gradually gained attention. Based on these findings, we can
speculate on the following development trends for network protocol fuzzing techniques:

1. As time develops, testing personnel would capture relevant information about proto-
col implementations more easily and improve testing efficiency based on feedback
such as state coverage and code coverage. Consequently, the number of newly released
black-box fuzzing tools is likely to decrease gradually, while the number of gray-box
fuzzing tools will increase and dominate the network protocol fuzzing landscape.

2. The number of white-box fuzzing tools may increase because, as general network
protocol fuzzing techniques become more mature, specific requirements for network
protocol fuzzing will also emerge; for example, fuzzing techniques that bypass en-
cryption keys or integrity checks. Accomplishing these specific testing requirements
requires a more comprehensive understanding of the relevant information about
protocol implementations, hence the need for white-box fuzzing techniques.
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Figure 3. The percentage of techniques before and after the release of AFL.

7.2. Future Directions
7.2.1. Automation in Generation-Based Fuzzing Techniques

As mentioned before, the analysis of protocol formats in network protocol fuzzing
requires significant effort, distinguishing it from other fuzzing approaches. The manual
analysis of network protocol formats improves the effectiveness of test cases to some extent,
but it incurs substantial research costs. Additionally, analysis needs to be performed again
for different protocols, resulting in high manual effort. Consequently, the practical value of
manual access to network protocol formats is greatly diminished. Feasible solutions to this
problem include:

1. Utilizing NLP and other AI techniques to automatically analyze protocol specification
documents and network traces, thereby enhancing the automation level of protocol
format analysis and overall fuzzing automation. However, the current implementation
of this approach is not yet optimal, and there are still many unresolved issues. For
instance, prior to automatic analysis using AI techniques, the manual annotation of
protocol documents is required to assist in protocol state machine generation.

2. Large language models (LLMs) are currently a trending area in AI research, as they
can better comprehend and generate high-quality text. In the field of network protocol
fuzzing, it is worth considering training dedicated LLMs to generate malformed
protocol packets. This approach can help to overcome the significant manual effort
involved in existing generation-based fuzzing techniques.

7.2.2. Efficiency Improvement in Fuzzing Techniques

In network protocol fuzzing, the effectiveness of test cases is crucial for discovering
unknown vulnerabilities. Efficient test cases exhibit high mutation rates, acceptance rates,
and code coverage. Optimizing test case selection strategies and ensuring the use of
minimal test case sets to uncover as many potential vulnerabilities as possible are hot topics
in future research on network protocol fuzzing. Possible solutions to consider include:

1. By altering the mutation strategy, the mutation-based protocol fuzzing technique can
generate test cases that better conform to the characteristics of protocol data packets,
thereby enhancing the success rate of validation. Mutation strategies encompass
various approaches, such as the three-level mutation strategy employed in SPFuzz,
context-aware structured mutation strategies, etc.

2. Combining neural network models with network protocol fuzzing techniques to
extract rules and knowledge from massive data. The neural network model can
automatically filter out invalid test cases, thereby improving the efficiency of fuzzing.
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3. Applying directed fuzzing principles and imposing certain constraints during the test
case generation phase to generate test cases that cover target code/state. These target
code/state segments are more likely to trigger security events in the protocol. Testing
these code/state segments can lead to a higher testing efficiency.

7.2.3. Variety of Test Targets in Network Protocol Fuzzing

In current network protocol fuzzing techniques, the test targets mostly adhere to a
client/server architecture. The entire testing process involves communication between the
fuzzer and the protocol implementation, with the fuzzer sending test cases to the protocol
implementation. There is limited support for multi-party protocols or protocols where
users have relatively equal positions. Additionally, in terms of network hierarchy, there is a
greater focus on testing a simple application-layer protocol such as a file transfer protocol
(FTP) and less emphasis on lower-level and more complex protocols.

For lower-level protocols, the corresponding protocol implementations may be non-
existent. It is challenging for the fuzzer to observe abnormal behaviors such as crashes in the
protocol implementation to determine the discovery of new vulnerabilities. However, for
different protocols, specific security events can be defined, and the success of the testing can
be assessed indirectly through other network metrics. For example, changes in throughput
or modifications in the routing table can be observed to determine whether the fuzzer has
discovered vulnerabilities.

7.2.4. Related Techniques of Network Protocol Fuzzing

The active learning method based on the L* algorithm is currently widely applied to
protocol state machine inference, but it still faces several challenges. One major issue is
excessive membership queries, which may lead to incomplete counterexample sample sets
and potentially affect the accuracy of the inferred protocol state machine. Additionally, this
method may suffer from generalization problems when dealing with complex protocols,
meaning it may fail to correctly infer certain behaviors of the protocol state machine. To
address these challenges, future research could explore the following areas for expansion
and improvement.

First, incorporating the sequential constraint relationships between messages into
protocol state machine inference can better reflect the actual behavior of the protocol since
messages in a protocol often have a certain degree of temporal order. Second, exploring
the structural correlations between counterexamples and positive examples may help
to generate counterexamples more effectively and reduce the number of membership
queries. Furthermore, optimizing the generation process of queries and counterexamples
can improve the performance of the method, such as using more efficient algorithms or
strategies to generate queries and counterexamples. Finally, combining the active learning
method with other formal methods can improve the accuracy and reliability of protocol
state machine inference; for example, using model checking to verify the inferred protocol
state machine’s correctness or combining the active learning method with other machine
learning techniques to improve the efficiency and accuracy of inference.

For the evaluation of protocol fuzzing techniques, Profuzzbench currently only sup-
ports code coverage as a metric for comparison, and the included fuzzers do not encompass
generation-based fuzzing techniques. In future benchmark test suites, it is recommended to
incorporate test suites that involve generation-based fuzzing techniques and evaluate proto-
col fuzzing techniques based on multiple metrics, including the number of bugs discovered,
time required to test the same bug, state coverage, and other relevant indicators.

8. Conclusions

Network protocol vulnerability discovery techniques are essential for ensuring secure
network communication. Among various vulnerability discovery techniques, fuzzing
attracts wide attention thanks to its low deployment complexity and minimal prior knowl-
edge requirements about the SUT.
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This paper reviews and summarizes the generation, development, and application of
various network protocol fuzzing and related techniques based on a timeline. Starting with
the introduction of the background, analysis of the working principles, and classification
methods of network protocol fuzzing techniques, we provide an overview of the research
progress in this field from the perspectives of white-box, gray-box, and black-box fuzzing
techniques. Each of these perspectives includes the introduction of typical tools and
methods. Based on the analysis of approximately fifty related papers over the past two
decades, the paper summarizes the development patterns and existing issues in network
protocol fuzzing techniques, and introduces NLP techniques that can be combined with
protocol fuzzing techniques. Furthermore, the paper provides prospects for future research
directions in this field, aiming to contribute to the efficient development of research work
in this area.
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