
Citation: Gurčinas, V.; Dautartas, J.;

Janulevičius, J.; Goranin, N.; Čenys,

A. A Deep-Learning-Based Approach

to Keystroke-Injection Payload

Generation. Electronics 2023, 12, 2894.

https://doi.org/10.3390/

electronics12132894

Academic Editors: Younho Lee and

Huy Kang Kim

Received: 7 June 2023

Revised: 26 June 2023

Accepted: 28 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Deep-Learning-Based Approach to Keystroke-Injection
Payload Generation
Vitalijus Gurčinas , Juozas Dautartas, Justinas Janulevičius, Nikolaj Goranin and Antanas Čenys *

Department of Information Systems, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University,
LT-10223 Vilnius, Lithuania
* Correspondence: antanas.cenys@vilniustech.lt

Abstract: Investigation and detection of cybercrimes has been in the spotlight of cybersecurity
research for as long as the topic has existed. Modern methods are required to keep up with the
pace of the technology and toolset used to facilitate these crimes. Keystroke-injection attacks have
been an issue due to the limitations of hardware and software up until recently. This paper presents
comprehensive research on keystroke-injection payload generation that proposes the use of deep
learning to bypass the security of keystroke-based authentication systems focusing on both fixed-text
and free-text scenarios. In addition, it specifies the potential risks associated with keystroke-injection
attacks. To ensure the legitimacy of the investigation, a model is proposed and implemented within
this context. The results of the implemented implant model inside the keyboard indicate that deep
learning can significantly improve the accuracy of keystroke dynamics recognition as well as help
to generate effective payload from a locally collected dataset. The results demonstrate favorable
accuracy rates, with reported performance of 93–96% for fixed-text scenarios and 75–92% for free-
text. Accuracy across different text scenarios was achieved using a small dataset collected with the
proposed implant model. This dataset enabled the generation of synthetic keystrokes directly within
a low-computation-power device. This approach offers efficient and almost real-time keystroke
replication. The results obtained show that the proposed model is sufficient not only to bypass
the fixed-text keystroke dynamics system, but also to remotely control the victim’s device at the
appropriate time. However, such a method poses high security risks when deploying adaptive
keystroke injection with impersonated payload in real-world scenarios.

Keywords: keystroke dynamics; machine learning; deep learning; behavioral biometrics; keystroke
recognition

1. Introduction

Cybercrime is a challenging topic to deal with, requiring a technically advanced toolset
and high-competence staff operating it to be able to detect, mitigate, and perform forensic
analysis on a plethora of available technologies and scenarios to achieve it. However, in
some cases, performing a forensic investigation becomes very challenging. Among these
cases are keystroke-injection attacks. Because machines typically trust the input devices
plugged into them, such as keyboards and mice, it is hard to distinguish between legitimate
user input and input emulated by a rogue device. If an attacker gains physical access to the
computer using social engineering and installs such malicious hardware without leaving
any physical trace, detecting such change can be challenging, if not next to impossible.

Upon connecting a malicious USB device to a machine, the system detects and rec-
ognizes the device by relying on the information presented by the malicious USB device.
Subsequently, the system determines the claimed identity of the device and assigns it a
high initial trust level as the default setting. In such scenarios, malicious devices are often
detected and categorized as input devices (e.g., keyboard, mouse, ethernet adapter, etc.). If
no protective tools are used, the machine will trust these devices by default. Even with the

Electronics 2023, 12, 2894. https://doi.org/10.3390/electronics12132894 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12132894
https://doi.org/10.3390/electronics12132894
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5956-8923
https://orcid.org/0000-0002-2263-3947
https://orcid.org/0000-0002-0208-7176
https://doi.org/10.3390/electronics12132894
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12132894?type=check_update&version=1

Electronics 2023, 12, 2894 2 of 29

current USB Type-C specification and its insecurity, it is possible to pretend that the USB
device is an ethernet adapter or a device with even more functionality, as well as obtaining
the status of the user interface [1,2]. Malicious payloads of these devices will be injected as
keystrokes or mouse clicks at high speed, gaining the objective of the attack.

Such attacks have resulted in the development of defensive methods to protect against
them. Some of them are based on hardware solutions, such as adapters, that block HID
(human interface device) input from USB devices. Software solutions vary from basic
solutions that follow a rule-based routine to more advanced ones that provide reasoning
based on neural networks. Basic systems usually block any USB devices with an unknown
signature since they can be identified by their vendor_id and product_id fields in the
device descriptor. More complex and advanced systems use reasoning mechanisms that
can identify a person behind a keyboard by their typing patterns. When these systems are
installed, the user must define the action a system should take in the case of triggering
of an intrusion alert. USB ports may be blocked temporarily or until a legitimate user
authenticates itself with a password, etc.

Some forensic tools have been developed to address this issue. A good example of
such a tool is the DuckHunt tool, which uses post-mortem memory dumps on Windows
10 machines. After Hak5’s rubber ducky attack, traces of PowerShell scripts can be located
in the memory as part of the DOS command [3].

This paper aims to implement deep-learning methods to generate payloads for keystroke
injection from small datasets by utilizing a low-computational-power device implanted
inside the keyboard. Furthermore, this paper points out how to enhance the security of
keystroke-based authentication systems, while addressing the potential risks of keystroke-
injection attacks. To ensure the legitimacy of the investigation, a working hardware-based
model of dataset collection and payload generation is proposed and realized within this
context. The working model includes a physical keyboard with an implant to collect a
user’s biometric typing data with functionality to inject later-generated payload according
to the requirements of the threat actor and a tool for generating payload to impersonate
a user’s biometric typing pattern. The research shows good performance with 93–96%
accuracy in fixed-text scenarios and 75–92% accuracy in free-text scenarios. In addition,
the payload was successfully generated and validated. These results demonstrate the
precision of the proposed approach to predicting and producing payloads in fixed- and
free-text contexts. On the other hand, the proposed model could be used for second- or
multi-factor authentication with slight modifications. The results of this research raise a
discussion about the positive effects of machine-learning techniques for keystroke dynamics
recognition and the negative side of malicious devices which use similar machine-learning
techniques to bypass keystroke dynamics security.

The second chapter of this research includes a review of related work concerning
keystroke-injection attacks and the methods employed. This chapter explores various
approaches, techniques, and strategies utilized by researchers in the realm of keystroke-
injection attacks and detection methods. The third chapter presents our proposed model
along with its distinctive characteristics, and understanding of its architecture and function-
ality. The fourth chapter focuses on the results and discussions derived from the research
conducted, providing analysis and interpretations of the findings.

2. Related Work

USB-based keystroke-injection attacks involve manipulating USB devices to inject
malicious keystrokes into the target system. These attacks exploit the trust of USB devices
and can bypass traditional security measures if they are taken into account and adapted
to the systems designed to prevent such attacks. By impersonating a keyboard or using
programmable USB devices, attackers can execute unauthorized commands or gain unau-
thorized access to sensitive information mimicking legitimate user keystrokes. Different
attack vectors, such as BadUSB [2,4] and rogue device [5] attacks, have drawn attention
to the potential risks and ramifications involved in these types of attacks. However, the

Electronics 2023, 12, 2894 3 of 29

emergence of advanced attack methods necessitates the development of more sophisticated
countermeasures. These attacks pose a significant security risk and highlight the impor-
tance of implementing strong defenses to mitigate the potential impact of such exploits,
especially those that can bypass keystroke dynamics systems using rogue USB devices
with implants.

The related work paragraph adopts a four-part structured approach that addresses
each specific aspect of keystroke dynamics and provides key elements of this work. The
first part focuses on hardware solutions, especially USB imperfections. The second part
refers to possible attacks that exploit USB imperfections. The third part discusses keystroke
dynamics solutions and the techniques employed to circumvent them. The fourth part is
aimed at data requirements for keystroke-related research collection and analysis.

2.1. USB Imperfections

Infrastructure security is a natural starting point for a data security plan [6]. Most
USB hardware attacks are closely associated with social-engineering tactics, as these types
of attacks often necessitate a compromise of physical security measures. In 1998, the
first widely supported USB protocol USB 1.0 was released with a data-transfer rate of
1.5 Mbit/s. There was an updated version—USB 1.1 supported two data-transfer rates,
low-speed 1.5 Mbit/s and full-speed 12 Mbit/s. Due to the limitations imposed on transfer
speeds, the standard in question only supported a restricted range of devices, such as
keyboards and mice. Then, in 2000, the USB 2.0 specification was introduced. High-
speed (480 Mbit/s) mode meant that devices such as cameras, external storage devices,
printers, and network cards were also supported. The convenience of the high data-transfer
rate provided the momentum for the popularity of USB flash drives. Although various
peripherals are supported in USB 2.0, there is no reliable way to identify the type of device
by ‘vendor_id’ or ‘product_id’ [7,8]. The absence of robust identification mechanisms
creates a vulnerability that can be exploited by keystroke-injection attacks. USB 3.0 and
its 2013 update USB 3.1 introduced the USB Type-C connector. This provided a unified
connector type for power, HDMI, display port, and Thunderbolt. For example, USB type-C
can transfer video stream data, and USB 3.1 cables can deliver 4K (UltraHD) video and
audio. This can potentially enhance keystroke-injection attacks as it provides the attacker
with visual access to the victim’s machine, enabling them to observe the ongoing activities,
choose the best time for the attack or even extract a greater amount of data from the victim
within a limited timeframe [2]. However, no improvements in the field of security were
introduced in these revisions. This allows even more possibilities for successful attacks
via the USB interface [1,2]. Utilization of USB for malicious intents should not be solely
understood in terms of USB versions and direct physical connections. USB attacks should
be comprehended in a broader context. If there are means for directly detecting harmful
USB devices, even with moderate difficulty, the attack surface significantly expands when
malicious USB devices are connected through intermediate circuits such as USB hubs or
other commonly used expansion devices. To demonstrate this weakness, research has been
conducted on the creation of a malicious USB device to bypass USB blocking mechanisms
by manipulating USB protocol and spoofing data to trusted USB hubs [9]. This shows a
diverse range of offensive attack capabilities, as well as the corresponding countermeasures
in both direct and side-channel scenarios.

More than 400 vulnerabilities related to USB peripherals are listed on the CVE (com-
mon vulnerabilities and exposures) list. As a result, it has become a standard practice for an
attacker to use these vulnerabilities and exploit the trust-by-default characteristics of USB
to conduct attacks. And this is a security risk for the private, government, and personal
sectors [2]. New and more advanced USB technologies offer more features which are used
by mobile devices and tablets, as well as computers.

A taxonomy of USB-based attacks has been developed by categorizing them into three
main categories: programmable microcontrollers, USB peripherals, and electrical [10]. This

Electronics 2023, 12, 2894 4 of 29

classification is used to analyze USB hardware attacks and gain a deeper understanding of
each type of attack in this paper.

1. Electrical attacks are related by nature to the denial-of-service (DoS) attack. As an
example, there is a hardware device called the ‘USB killer’. It is an electrical discharger
disguised as a simple USB device. Once this device is plugged into the USB port, the
capacitors will charge up and discharge a critical amount of current back to the USB
port in intervals, making computer hardware components unusable;

2. USB peripheral attacks utilize flash-drive firmware or driver to deliver malicious
payloads. These types of attacks can perform buffer overflows, DNS overrides, and
even keystroke injection and, in some cases, launch an executable;

3. Microcontroller attacks use microcontrollers that emulate keyboards and can inject
keyboard input at high. They belong to a class of HID attacks that has evolved over
the years and became much more sophisticated [11].

Other researchers proposed a USB-based attacks taxonomy with a more granular
approach by creating different bases that cover adversary intentions, object of impact, attack
mechanism, level of secrecy, level of complexity, assets, and so forth [12]. A recent study
discusses attacks on keyboard-firmware attacks in the banking sector, where vulnerable
software inside keyboard controllers is used to sniff sensitive data [13]. As follows, this
highlighted the need for secure USB protocols and firmware-verification mechanisms. The
keyboard has become a more security concern over the years due to the sensitive nature of
its use.

2.2. USB Attacks

USB attacks encompass a variety of techniques that exploit vulnerabilities in the USB
interface to gain unauthorized access or compromise system security. Keystroke injection,
as a specific type of USB attack, involves injecting malicious commands or keystrokes
into a target system to perform unauthorized actions or gain elevated privileges. The
USB keystroke-injection attack is also known as the keypress-injection attack and the
keyboard-injection attack [14–16]. It is an attack method where by connecting a malicious
USB device it is possible to enter predetermined keystrokes in the terminal, enter and
execute scripts, use keyboard shortcuts to control the device, and, thus, maliciously affect
the computer [17–19].

The significance and feasibility of keystroke-injection attack are derived from several
factors. One factor is USB device detection, or what happens before a malicious USB device
begins to perform malicious activity; it is essential as further options of keystroke injection
will depend on the level of trust gained. When a USB device is plugged into the USB
port, the host detects that a new device was connected and waits for 100 milliseconds to
ensure, that the new device has the time to be powered properly. The host then issues
a reset command to place the device in its default state and allow it to respond. The
host will ask the device for the first 64 bytes of its device descriptor. This step is very
important to conduct a successful keystroke-injection attack. The device descriptor contains
information about the product, its vendor, required power levels, the number of interfaces,
endpoint information, etc. Once these are established, the host will communicate with the
USB device using the appropriate drivers [20]. The utilization of replacement descriptors
and static device information in USB penetration testing has been used for some time in
automated platforms to prepare such devices [21]. Merely pretending that the device is
highly trustworthy will not be sufficient to bypass protected systems without implementing
additional measures. A USB storage device is completely unsuitable for this type of attack,
as a simple device-protection tool can identify it as a threat or authenticate every USB flash
drive [22,23].

The vast majority of researchers who researched keystroke-injection-hardware-based
solutions used microcontrollers [15,24–27]. In addition to microcontrollers, some research
used more powerful small-factor computers that offer additional capabilities [14,28]. Ac-
cordingly, first and foremost, in order to inject keystrokes, a microcontroller must identify

Electronics 2023, 12, 2894 5 of 29

itself as a HID (human interface device). Researchers recently engaged in developing a
model that establishes a correlation between HIDs and vulnerability categories, thereby
aligning them with specific types of attacks [29].

2.3. Keystroke Dynamics and Its Circumvention

When such HID- and BadUSB-type attacks emerged, serious concerns were raised
regarding the security of USB devices. Consequently, over the past four years, the research
on protective solutions has increased, but also the number of researchers investigating
how to circumvent these measures. One of the commonly discussed keystroke-injection-
attack-detection solutions outlined in scientific papers is rule-based. Rule-based keystroke-
injection protection is a straightforward and widely adopted method that involves logging
and monitoring keyboard input for detection. On the contrary, an alternative approach
entails analyzing the USB packet traffic to identify and mitigate potential malicious activ-
ities [30]. Typically, it is beyond human capacity to type at an extremely high speed of
thousands of words per minute. Therefore, when the system detects abnormal keypress
speeds, it can trigger various protective measures, such as disabling the keyboard, requiring
password input, or logging the activity for further analysis [17].

Certain rule-based systems rely on white-listing known vendors by USB ID and not
allowing other HID devices to function unless the user explicitly confirms and authorizes
them [4]. Another approach involves employing contextual analysis tools that utilize a
combination of contextual events. These tools take advantage of a heuristic approach
by executing a USB drive within a sandboxed or isolated environment for a brief period,
typically, a few seconds. During this time, the system monitors the processes and actions
initiated by the USB drive. Subsequently, an evaluation phase is performed to determine
whether the observed actions exhibit malicious behavior [31].

Another advanced method employed to detect and mitigate keystroke-injection attacks
involves the utilization of behavioral biometrics, particularly keystroke dynamics. The
concept of keystroke dynamics originated in the 1970s, primarily focusing on analyzing
fixed-text data.

Keystroke-dynamics-based systems identify users based on their interaction with a
computer via input devices. Therefore, in some literature, keystroke dynamics can also be
referred to as keystroke biometrics. These systems typically use neural networks that are
trained using user interactions with computers. Systems that use this for identification may
be prompted to enter their password multiple times or type a paragraph of text, allowing the
system to train and learn from these inputs. Alternatively, the system can train itself in the
background while the user performs its daily tasks, continuously refining its understanding
of the user’s keystroke dynamics. Some of these systems may be vulnerable to what is called
a frog-boiling attack [32]. This implies that the dataset used for identification purposes
can be poisoned with small packets containing false data and these would lead to false
identification. Such poisoning attacks can have two different objectives: to reduce the
performance of the model and to manipulate the model by injecting false data [33]. Within
the context of keystroke injection, our research and test results obtained show that malicious
devices can accurately mimic the input of legitimate users.

Keystroke dynamics does not require any additional hardware as required by other
biometric authentication methods, such as fingerprints or facial recognition. Personal
keystroke biometrics is difficult to forge and could be used for authentication [34,35]. For
example, the online learning platform Coursera applies this method to authenticate online
students [36]. It is worth mentioning that legitimate users may be blocked by the system
in cases where training patterns will not match the input patterns in cases like nervous
emotional state, hand injury, or, simply, a different keyboard or software update. Other
scientists use certain characteristics and behaviors that impede accurate recognition as
specific indicators when determining Parkinson’s disease using fixed- and free-text writing
habits [37]. This shows us that for accurate recognition behavioral patterns need to be

Electronics 2023, 12, 2894 6 of 29

updated regularly. However, these problems can be solved, and it is very likely that
keystroke biometrics will gain more popularity in the near future [38].

There exist a limited number of approaches to implement keystroke analysis which
vary depending on the intended purpose. In general, keystroke dynamics can be divided
into two main steps: training neural networks from collected user data and performing
authentication. Moreover, keystroke dynamics can be classified into two distinct types:
fixed-text and free-text. The key difference between these two methods is the dataset
that is used to authenticate a user [39,40]. Fixed-text authentication is mostly used as a
second-factor or multi-factor authentication. One of the leaders in commercial keystroke
dynamics authentication systems is a company called TypingDNA. And, according to
this company, the average fixed-text login credentials (email and password) contain about
30 characters [41].

Compared to fixed-text, free-text is a continuous type of authentication rather than
second- or multi-factor. The user’s computer interaction is continuously monitored and
compared to existing user data for analysis and comparison. If a predetermined threshold
of deviance from typical user behavior is passed, then a user might be blocked, logged out,
or asked to authenticate himself based on system settings [42]. Other researchers consider
analyzing both keystroke and mouse usage behavior patterns to prevent a situation where
an attacker avoids detection by restricting to one input device because the system only
checks the other input device [43]. Conversely, alternative proposals state that mouse
dynamics requires simpler hardware to capture the biometric data without using sensitive
user data from the users and propose a method based on mouse dynamics based on deep-
learning for continuous and silent user authentication [44]. In our case, the collection of
sensitive data is a limitation of our proposed method while we collect actual data inputs.

Free-text is more dynamic and uses a self-adaptive dataset. Typically, users are asked
to type a few paragraphs of text or the required data could be collected simply by monitor-
ing how the user interacts with a keyboard on a daily basis [45]. These systems are used
for continuous authentication and are often used to defend against keystroke-injection
attacks. The evaluation of accuracy and performance in free-text keystroke dynamics is an
ongoing area of investigation; researchers are actively developing methods to minimize
error rates in this domain [46], while other researchers have explored the application of
cGAN networks to generate fake keystroke dynamics patterns with the intention of deceiv-
ing keystroke-authentication systems [47]. Given the growing need for remote learning,
continuous authentication with keystroke dynamics was implemented and performed very
effectively [48], although keystroke dynamics has significant inaccuracies when applied to
RDP (remote desktop protocol) and VNC (virtual network computing) systems, resulting
in poor or non-functioning operation.

In modern approaches for fixed- or free-text keystroke dynamics, different types of
neural networks are being used in conjunction. As an example, Siamese neural networks
are used [49]. In this model, two neural networks are trained using the same parameters
and weights and work in conjunction with one another. One neural network receives
original legitimate user data and another receives data that should be verified. Later, these
results are compared. In contrast, generative adversarial neural networks are also gaining
momentum for attacks against user identification systems [47,50]. In this architecture, two
neural networks work against each other. One is trained as a discriminator and tries to
identify the user while the generator receives random noise input at the beginning and
tries to generate output that would fool the discriminator. Despite the aforementioned, in
certain scenarios statistical algorithms have demonstrated superior performance compared
to deep-learning approaches, particularly when dealing with large volumes of unlabeled
data [51].

In subsequent years, Bayesian classifiers based on the mean and variance of time
intervals between two or three consecutive keypresses were applied to the problem. The
results claim a classification accuracy of 92% on a dataset with 63 users [38]. In situations
where we only want to implement this as a 2FA (password—what we know and keystroke

Electronics 2023, 12, 2894 7 of 29

biometrics—what we are) dataset for training needs to contain data about the parameters
of how a user enters his username and password. This means that analyzed text is usually
short (in average 8–20 characters long) and that the user will be asked to enter the same
text (in this case, his password) for a set number of times. There are several drawbacks
associated with the use of keystroke dynamics for continuous authentication. One limitation
is that the data collected from user input often consists of a limited set of characters, such
as letters, numbers, or symbols. Therefore, if a user changes his password (which is
recommended for security purposes), the model would need to be retrained to adapt to
the new input patterns. This retraining process can be time-consuming and may introduce
delays in the authentication process. Additionally, reliance on fixed-text input may not
capture the full range of user behavior and typing patterns, limiting the overall accuracy
and effectiveness of the system.

Recently, research in keystroke dynamics has been heavily focused on machine-
learning techniques, including random forests, fuzzy logic, RNN (recursive neural network),
CNN (convolutional neural network), Gaussian mixture models, k-nearest neighbours
(k-NN), K-means clustering, and many other approaches [51,52].

The two main ideas used to make a convolutional neural network particularly success-
ful are sparse connections and weight sharing. According to the study, activation functions
(ReLu, Maxout), loss functions (SoftMax, hinge), regularization technique (dropout), opti-
mization method (data augmentation, batch normalization), and fast processing (sparse
convolution) were used in conjunction with CNN [53]. As an alternative there are long
short-term memory (LSTM) networks and a variation of the LSTM, called a gated recurrent
unit (GRU). GRUs have a simpler design with fewer parameters, which allows for quicker
training due to the reduced number of operations. On the other hand, convolutional neural
networks (CNNs) are predominantly used for image-related tasks like processing, classifi-
cation, segmentation, and pattern identification. However, they have also demonstrated
impressive results in various other classification tasks.

Depending on the machine-learning model and algorithms used, the data from the
user has to be modified to fit the algorithm accordingly. A good example could be RNN
(recurrent neural network). This automatically learns time series and has shown good
performance in applications such as speech recognition, document abstraction, and NLP
(natural language processing). However, if RNN is used, the keystroke data must be
vectorized [36].

In a typical implementation, keystrokes or keystroke pairs are converted into vectors,
and neural network weights are adjusted by backpropagation during the model-training
phase. The trained model is then used during the authentication phase to assign a proba-
bility to the observed typing pattern for a specific user. The typing pattern is periodically
compared to the stored user data, and, based on a predefined threshold, the model deter-
mines whether the observed pattern belongs to the legitimate user or not.

2.4. User Keypress Data and Their Minimum

To identify the user hiding behind the keyboard, a dataset with a collection of user
keypresses is required. When collecting data solely based on the dynamics of key-presses
without additional information, only a limited number of parameters are necessary and
collected. Depending on the algorithm and system, some parameters may differ, but Dwell
time and Down-to-down time are being used frequently. Dwell time (Dt) is a duration in
which a key is pressed down (H.time). And Down-to-down time (DD.time) measures the
duration between one keypress to another, Up-to-down time (UD.time) is the time from
the release of one key and the press of another (in some literature, called flight time) [34].
The data-collection and training phase of keystroke dynamics can be categorized based on
the length and type of the text [54]. Fixed-length models use a limited dataset that consist
of username and password. In other words, the analyzed text is replicated in a concise
manner and iterated until a sufficient amount of data are collected for training purposes.
However, some datasets are available for testing purposes, including the Carnegie Mellon

Electronics 2023, 12, 2894 8 of 29

University (CMU) fixed-text dataset [55]. It is often used as a reference to test techniques in
keystroke dynamics research. This dataset consists of 51 participants’ keystroke dynamics
information, where each participant typed password ‘.tie5Roanl’ a total of about 400 times.
Participants had to wait at least one day after certain typing sessions, so that variations of
each subject’s typing would be captured daily. Furthermore, this password was chosen
as an example of a strong 10-character password, which meets common requirements
for password security. The dataset compiled by Gonzalez comprises a combination of
publicly accessible keystroke datasets [56–58]. It encompasses both authentic human-
generated keystrokes and synthesized forgeries [59]. Researchers can utilize this dataset to
evaluate the efficacy of liveness-detection techniques for keystroke dynamics, specifically
compared to a diverse range of state-of-the-art methods for synthesizing samples. The
first dataset included in the dataset collection was from CMU [56]. The second dataset
was collected from individuals performing daily tasks in an enterprise setup and was used
for evaluation of free-text keystroke dynamics for authentication [57]. The third dataset,
obtained from anonymous subjects through a crowd-sourcing platform, was aimed at
identifying indicators of fraudulent intent by analyzing variations in typing patterns [58].
It is important to note that the datasets referenced in the literature sources do not contain
recorded click values.

The minimum number of data needed for fixed-text and free-text keystroke dynamics
varies depending on factors such as the complexity of the analysis model, desired accuracy,
and specific characteristics of users and their typing behavior as there could be many users
with similar typing biometrics. Considering the focus of this research on small datasets
and drawing insights from the existing literature, we can conclude that the minimum
requirement for fixed-text keystroke data ranges from 10 to 30 samples, while for free-text
keystroke data it ranges from 50 to 150 samples. It is important to highlight that the datasets
referenced in the literature sources do not contain recorded keypress values, except those
used to collect specific fixed-text data, such as the password mention in the CMU dataset.

A trend has started to emerge recently wherein facial recognition is combined with
keystroke dynamics (fixed-text) as a MFA (multi-factor authentication) system [60]. This
solution, although seeming promising, needs to take into consideration that not all devices
have cameras and there are various types of keyboards and their layouts. An alternative
approach suggested by the researchers was to propose a defense in depth strategy by
implementing a three-factor authentication system. This multi-layered approach involves
utilizing a passcode as the first factor of authentication, a password as the second factor,
and keystroke dynamics as the third factor [61]. Such an approach requires the use of even
more diverse datasets to increase the reliability of results.

In summary, comparative studies, including machine-learning-based methods and
rule-based methods to evaluate the effectiveness of different keystroke-injection-detection
and -prevention mechanisms, demonstrate that injection methods can be accurate enough to
bypass both fixed-text and continuous authentication systems where the level of biometric
accuracy does not need to be as precise as physical biometric data. Keystroke dynamics
system armoring, which uses fake keypress data in order to distinguish between artificial
keystrokes and real ones, and methods which follow the patterns of keypresses along with
the timings have shown good results in recent years, but require a big collection of user
data and come with a high false-rejection rate. Furthermore, the evolving landscape of
keyboard-injection attacks requires ongoing research to eliminate emerging threats and
to develop effective countermeasures. Keystroke-injection attacks are capable of jumping
the air gap of secured infrastructures that have a high security level with the help of social
engineering. Therefore, the demand for tools that will help defend against these types of
attacks is growing over the years. The reliability of these tools should be tested regularly.
And these systems may not always work because new attack methods emerge and adapt to
increased security standards.

With this in mind, this study focuses on a more complex situation, i.e., using small
datasets when generating payload and injecting them with a low-power device to bypass

Electronics 2023, 12, 2894 9 of 29

both fixed- and free-text keystroke dynamics systems. A small dataset is essential for
integrating an accurate deep-learning solution into a compact device, such as a keyboard
implant, as exemplified in this research.

3. Method for Keystroke-Injection Detection and Payload Generation

To achieve the objectives of the study, an approach has been devised to detect keystroke
injection and to generate keystroke payloads. The evaluation of the results obtained will
ascertain the accuracy of keystroke dynamics authentication systems and the usability of
the generated payloads.

3.1. Keystroke-Injection Detection

To elucidate and prepare for keystroke-payload generation, an analysis of the fixed-text
injection solution was conducted. For empirical experiments concerning the authentication
of fixed-text keystroke biometrics, TypingDNA API for web applications is used [62].

This integration uses JavaScript in the backend to collect user keystroke dynamics data
during the sign-up and login phases. During sign-up (see Figure 1), the user is required to
enter his username or email and password a few times. This procedure yields sufficient
data to establish a user’s keystroke biometric profile, which can then be employed as a
reference for comparison with the keystroke data gathered during the login process.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 29

these types of attacks is growing over the years. The reliability of these tools should be
tested regularly. And these systems may not always work because new attack methods
emerge and adapt to increased security standards.

With this in mind, this study focuses on a more complex situation, i.e., using small
datasets when generating payload and injecting them with a low-power device to bypass
both fixed- and free-text keystroke dynamics systems. A small dataset is essential for in-
tegrating an accurate deep-learning solution into a compact device, such as a keyboard
implant, as exemplified in this research.

3. Method for Keystroke-Injection Detection and Payload Generation
To achieve the objectives of the study, an approach has been devised to detect key-

stroke injection and to generate keystroke payloads. The evaluation of the results obtained
will ascertain the accuracy of keystroke dynamics authentication systems and the usabil-
ity of the generated payloads.

3.1. Keystroke-Injection Detection
To elucidate and prepare for keystroke-payload generation, an analysis of the fixed-

text injection solution was conducted. For empirical experiments concerning the authen-
tication of fixed-text keystroke biometrics, TypingDNA API for web applications is used
[62].

This integration uses JavaScript in the backend to collect user keystroke dynamics
data during the sign-up and login phases. During sign-up (see Figure 1), the user is re-
quired to enter his username or email and password a few times. This procedure yields
sufficient data to establish a user’s keystroke biometric profile, which can then be em-
ployed as a reference for comparison with the keystroke data gathered during the login
process.

Figure 1. TypingDNA registration and login processes.

After acquiring the keystroke data and constructing the user profile, a login attempt
can be initiated. During this phase, the user must enter his login credentials (fixed-text)
and if they are correct then a second factor authentication will commence (see Figure 1).
Vectorized keystroke data are sent in JSON format to be verified by TypingDNA. Follow-
ing this process, a response will be received indicating the degree of confidence that the

Figure 1. TypingDNA registration and login processes.

After acquiring the keystroke data and constructing the user profile, a login attempt
can be initiated. During this phase, the user must enter his login credentials (fixed-text)
and if they are correct then a second factor authentication will commence (see Figure 1).
Vectorized keystroke data are sent in JSON format to be verified by TypingDNA. Following
this process, a response will be received indicating the degree of confidence that the
TypingDNA API assigns to the legitimacy of the user, based on the response generated by
the neural network [62,63].

Electronics 2023, 12, 2894 10 of 29

To evaluate the accuracy of keystroke data as a form of two-factor authentication (2FA),
a test was conducted involving the creation of 10 user accounts. Each user was assigned
a unique username but shared the same password. During the sign-up process, distinct
keystroke data were recorded for each user. The TypingDNA test application successfully
recognized and authenticated all 10 users based on their individual keystroke patterns.

The choice to employ LSTM in this research is supported by a range of significant
factors identified in previous researches and some are provided below. Behavioral authen-
tication utilizing HID devices, such as a keyboard and/or a mouse in conjunction with
artificial neural networks, is becoming increasingly popular. There are various ways and
architectures of neural networks that are being used for specific tasks [64]. Convolutional
and recurrent networks are often used for the purpose of authenticating users by the way
in which they interact with a computer. Manny research indicates that the best error-rate
values achieved for the preceding experiments regarding CNN and LSTM (a type of RNN)
are as follows: CNN, 2.3% and 6.5% (with and without data augmentation); LSTM, 13.6%;
and CNN + LSTM, 2.36% or 5.97%, depending on the dataset utilized [65]. Furthermore,
the benefits of combining various neural networks can be seen in other fields as well.
The combination of CNN and long short-term memory (LSTM) can be used for medical
purposes as well [66].

Since scientific research shows that efficient and accurate results regarding keystroke
dynamics can be achieved by combining CNN and RNN (in particular, LSTM), it was
chosen to implement these types of neural networks in our proposed keystroke-injection-
attack model. Figure 2 illustrates a standard LSTM architecture [67]. Information is stored
in the cells and memory manipulation is performed through gates. LSTM is highly effective
in tasks that involve complex sequential patterns and long-term dependencies or trends in
data. Given that LSTM is classified as a recurrent neural network (RNN) and known for its
ability to capture and analyzing sequential data, it is particularly suitable for modeling and
predicting keystroke dynamics.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 29

TypingDNA API assigns to the legitimacy of the user, based on the response generated
by the neural network [62,63].

To evaluate the accuracy of keystroke data as a form of two-factor authentication
(2FA), a test was conducted involving the creation of 10 user accounts. Each user was as-
signed a unique username but shared the same password. During the sign-up process,
distinct keystroke data were recorded for each user. The TypingDNA test application suc-
cessfully recognized and authenticated all 10 users based on their individual keystroke
patterns.

The choice to employ LSTM in this research is supported by a range of significant
factors identified in previous researches and some are provided below. Behavioral au-
thentication utilizing HID devices, such as a keyboard and/or a mouse in conjunction with
artificial neural networks, is becoming increasingly popular. There are various ways and
architectures of neural networks that are being used for specific tasks [64]. Convolutional
and recurrent networks are often used for the purpose of authenticating users by the way
in which they interact with a computer. Manny research indicates that the best error-rate
values achieved for the preceding experiments regarding CNN and LSTM (a type of RNN)
are as follows: CNN, 2.3% and 6.5% (with and without data augmentation); LSTM, 13.6%;
and CNN + LSTM, 2.36% or 5.97%, depending on the dataset utilized [65]. Furthermore,
the benefits of combining various neural networks can be seen in other fields as well. The
combination of CNN and long short-term memory (LSTM) can be used for medical pur-
poses as well [66].

Since scientific research shows that efficient and accurate results regarding keystroke
dynamics can be achieved by combining CNN and RNN (in particular, LSTM), it was
chosen to implement these types of neural networks in our proposed keystroke-injection-
attack model. Figure 2 illustrates a standard LSTM architecture [67]. Information is stored
in the cells and memory manipulation is performed through gates. LSTM is highly effec-
tive in tasks that involve complex sequential patterns and long-term dependencies or
trends in data. Given that LSTM is classified as a recurrent neural network (RNN) and
known for its ability to capture and analyzing sequential data, it is particularly suitable
for modeling and predicting keystroke dynamics.

To test the LSTM model with a fixed-text dataset a “Comparing Anomaly-Detection
Algorithms for Keystroke Dynamics” (DSN-2009) was used along the Python deep-learn-
ing library TensorFlow. A preliminary evaluation revealed that the error rate of the test
set exceeded the anticipated level, indicating a potential case of overfitting. To mitigate
this issue, the implementation of the Gaussian dropout technique proved to be effective
in preventing overfitting of our model.

SoftMax activation function is used in output layers to achieve a final prediction of
which user is behind the keyboard and, for example, if blocking should occur. This func-
tion calculates the probability of output neurons to each defined class. However, the neu-
rons in the output layer should be equal to the number of total classes. 𝑓(𝑦) = ∑ (1)

Figure 2. Architecture of LSTM [67].

To test the LSTM model with a fixed-text dataset a “Comparing Anomaly-Detection
Algorithms for Keystroke Dynamics” (DSN-2009) was used along the Python deep-learning
library TensorFlow. A preliminary evaluation revealed that the error rate of the test set
exceeded the anticipated level, indicating a potential case of overfitting. To mitigate this
issue, the implementation of the Gaussian dropout technique proved to be effective in
preventing overfitting of our model.

SoftMax activation function is used in output layers to achieve a final prediction of
which user is behind the keyboard and, for example, if blocking should occur. This function
calculates the probability of output neurons to each defined class. However, the neurons in
the output layer should be equal to the number of total classes.

f (yi) =
eyi

∑k eyk
(1)

Electronics 2023, 12, 2894 11 of 29

The model used for the DNS-2009 tests had five layers, each containing 136 neurons.
Tanh activation functions were used for all layers except the output layer.

tanh(x) =
ex − e−x

ex − e−x (2)

The output layer of the neural network employed the SoftMax activation function
for user classification. A batch size of 16, representing the number of samples fed to the
neural network simultaneously, was utilized in the experiment. Adam (adaptive moment
estimation) optimizer was used. Optimizers update the model in response to the output of
the loss function, and they assist in minimizing the loss function. And Adam optimizer
is well suited for large datasets. It minimizes the training epochs needed to train our
model. In this model, 50 epochs were used (see Figure 3), however, similar results could be
achieved with about 40 epochs, and having more than 50 could lead to overfitting.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 29

Figure 2. Architecture of LSTM [67].

The model used for the DNS-2009 tests had five layers, each containing 136 neurons.
Tanh activation functions were used for all layers except the output layer. tanh(𝑥) = (2)

The output layer of the neural network employed the SoftMax activation function for
user classification. A batch size of 16, representing the number of samples fed to the neural
network simultaneously, was utilized in the experiment. Adam (adaptive moment esti-
mation) optimizer was used. Optimizers update the model in response to the output of
the loss function, and they assist in minimizing the loss function. And Adam optimizer is
well suited for large datasets. It minimizes the training epochs needed to train our model.
In this model, 50 epochs were used (see Figure 3), however, similar results could be
achieved with about 40 epochs, and having more than 50 could lead to overfitting.

Figure 3. Optimal epoch number for the analyzed dataset using the tanh function.

The trained model with the DSN-2009 dataset managed to reach about 89% accuracy
for validating users with the provided data. These findings demonstrate results compara-
ble to those observed in enterprise products. Further experimentation was conducted by
substituting the tanh activation function with ReLU (rectified linear unit). However, the
86% accuracy achieved after 50 epochs was consistent with the previous results.

The ReLu activation function can be mathematically defined as follows: 𝑓(𝑥) = max (0, 𝑥) (3)

This function transforms the output of the neuron to be either 0 or the given value.
In essence, it activates the neuron more strongly when the input value is positive.

We can see from Figure 4 that maximum accuracy of ReLu was not reached in 50
epochs. Therefore, we can assume that tanh activation function is more optimal for our
model. A similar accuracy (88.9%) was reached after 80 epochs.

Figure 3. Optimal epoch number for the analyzed dataset using the tanh function.

The trained model with the DSN-2009 dataset managed to reach about 89% accuracy
for validating users with the provided data. These findings demonstrate results comparable
to those observed in enterprise products. Further experimentation was conducted by
substituting the tanh activation function with ReLU (rectified linear unit). However, the
86% accuracy achieved after 50 epochs was consistent with the previous results.

The ReLu activation function can be mathematically defined as follows:

f (x) = max(0, x) (3)

This function transforms the output of the neuron to be either 0 or the given value. In
essence, it activates the neuron more strongly when the input value is positive.

We can see from Figure 4 that maximum accuracy of ReLu was not reached in 50 epochs.
Therefore, we can assume that tanh activation function is more optimal for our model. A
similar accuracy (88.9%) was reached after 80 epochs.

To implement the proposed keystroke-dataset collection and keystroke-injection pay-
load generation method, a combination of Raspberry PI Zero 2W and Teensy 3.5 is used.
The purpose of using multiple hardware devices is to collect precise keystroke data from
the target and establish communication with the command-and-control (C2) centre, where
collected data are subsequently transmitted for the purpose of training the neural network,
if training, and payload generation requires more computational power.

Electronics 2023, 12, 2894 12 of 29

Electronics 2023, 12, x FOR PEER REVIEW 11 of 29

Figure 2. Architecture of LSTM [67].

The model used for the DNS-2009 tests had five layers, each containing 136 neurons.
Tanh activation functions were used for all layers except the output layer. tanh(𝑥) = (2)

The output layer of the neural network employed the SoftMax activation function for
user classification. A batch size of 16, representing the number of samples fed to the neural
network simultaneously, was utilized in the experiment. Adam (adaptive moment esti-
mation) optimizer was used. Optimizers update the model in response to the output of
the loss function, and they assist in minimizing the loss function. And Adam optimizer is
well suited for large datasets. It minimizes the training epochs needed to train our model.
In this model, 50 epochs were used (see Figure 3), however, similar results could be
achieved with about 40 epochs, and having more than 50 could lead to overfitting.

Figure 3. Optimal epoch number for the analyzed dataset using the tanh function.

The trained model with the DSN-2009 dataset managed to reach about 89% accuracy
for validating users with the provided data. These findings demonstrate results compara-
ble to those observed in enterprise products. Further experimentation was conducted by
substituting the tanh activation function with ReLU (rectified linear unit). However, the
86% accuracy achieved after 50 epochs was consistent with the previous results.

The ReLu activation function can be mathematically defined as follows: 𝑓(𝑥) = max (0, 𝑥) (3)

This function transforms the output of the neuron to be either 0 or the given value.
In essence, it activates the neuron more strongly when the input value is positive.

We can see from Figure 4 that maximum accuracy of ReLu was not reached in 50
epochs. Therefore, we can assume that tanh activation function is more optimal for our
model. A similar accuracy (88.9%) was reached after 80 epochs.

Figure 4. Optimal epoch number for the analyzed dataset using the ReLu function.

If the scenario is consistent with the circumstances, when sufficient data are collected,
a payload can be generated that corresponds to the biometrics of the victims’ keyboard
keystrokes. The payload is sent to the device as a keypress-injection attack using a keyboard.
One of the rationales behind adopting such an implant architecture is the ability to receive
all input data, irrespective of intended actions, including exceptional stealth capabilities,
and present significant challenges in terms of detection. This design decision also enables
the testing of data-poisoning scenarios by incorporating predetermined noise into the
user’s typed inputs.

The Raspberry PI unit receives the input directly from the keyboard. It collects and
stores the keystrokes alongside the keystroke biometric data. A dedicated microcontroller
is also in place to mimic the HID device and inject payloads. Teensy communicates with the
Raspberry Pi unit via a serial communication link and directly relays all keystrokes to the
computer. When the attacker wants to launch a keystroke-injection attack, the Raspberry
PI sends a payload to Teensy and injects it into the victim’s computer. Furthermore, while
the attack is being conducted, the physical keyboard is disabled so that if a victim sees this
attack taking place, he cannot interfere with it.

An important characteristic of our proposed implant is its ability to emulate the USB
vendor and product identifiers. In our research, this capability was employed to target a
specific Dell keyboard model for the implant’s integration with VENDOR_ID—0 × 413c
and PRODUCT_ID—0 × 2106, respectively.

An additional objective of the implant was to integrate remote-control functionality for
the keystroke-injection device through a 4G or Wi-Fi network. This would grant enhanced
control to the attacker, allowing real-time adjustments via an SSH connection. This capabil-
ity represents an advance over using microcontrollers alone, as it allows functionality to
be changed without physical access to the device in any stage of data collection or attack.
In our experimental setup, communication between the threat actor and the implant was
established through a virtual private network node. However, the listed functionality may
change depending on the size of the camouflage and power requirements.

The primary objective of the proposed model is to bypass fixed-text systems using
limited datasets, with secondary emphasis placed on free-text scenarios, that are highly
dependent on the system’s actual accuracy. The limitations of this proposed model were
intentionally created by the researchers. These limitations include the implementation
of a stealth mode for the implant to minimize detection, ensuring that the device does
not appear conspicuous and separate, avoiding the need for additional software and
minimizing the storage of data inside the model. In addition, the device would incorporate
a secure data-erasure feature to minimize the number of data exposed in the event of
detection and forensics. Furthermore, it would possess local capabilities to bypass fixed-text
keystroke dynamics solutions when disconnected from the control server by disabling the

Electronics 2023, 12, 2894 13 of 29

external communication module. Moreover, the proposed device would be designed to be
universally compatible, allowing for implantation on various keyboards. It would operate
with minimal power consumption and offer remote interchangeability of functionalities.
Additionally, the device would effectively operate with a small dataset, closely resembling
real attack scenarios.

The flexibility of our proposed model is exceptionally high, enabling dynamic mod-
ifications of its functionality on the fly. In contrast, in microcontrollers utilized by other
researchers, planning and pre-defining the functions and their potential alterations are es-
sential. Under unforeseen circumstances, the proposed model would incorporate measures
to prevent the successful execution of the attack or would be intentionally programmed
to fail. Additionally, when alternative manipulators or data-input devices are employed,
and obtaining all necessary data for the attack is not feasible, our proposed model would
activate and remotely control a camera, or respond to pre-defined triggers, ensuring adapt-
ability and maintaining functionality. The control distance of the solution is virtually
unlimited where the device will have a connection. The proposed model is designed to be
cross-platform-compatible, ensuring seamless functionality across different platforms.

3.2. Implementation of Keystroke-Payload Generation

The proposed keystroke-injection method encompasses four stages (as detailed in
Figure 5) and its realization (see Figure 6):

• Data collection—achieved by facilitating the ‘spy_k3y’ keystroke and key logging tool
along with the single-board computer and a microcontroller. The tool hooks up all
keyboard events. The setup collects keystroke dynamics data and pressed-key values,
logs them, and relays them to the target machine. Additional checks such as if this
is a first keypress or a keypress after a long typing break (time longer than 5 s is,
in our case, considered to be a break, while other researches use 1–1.5 s) were also
implemented. Once the data collection is completed, the exfiltration stage can begin
using a secure file-transfer protocol for transmission;

• Extraction of keystroke dynamics data and generating the keystroke-injection payload
using collected data;

• Verification of the generated payload using the LSTM neural network. The generated
payload is reversed to keystroke dynamics data and compared with the collected
data. If this payload is at least 85% similar to the source, the payload is generated
successfully and under the command or automatically could be injected impersonating
the user’s typing pattern. Alternatively, if necessary, the payload is regenerated and
the verification process is repeated;

• Committing the verified payload to the remote device (in cases where extensive
computational power is unnecessary, the task can be performed directly on the device)
and injecting it into the remote machine.

When the collected data file is extracted, the payload-generation process starts with the
“snipe_inject” tool. The data are split into separate characters and the tool will also search
for special values such as “<enter>”, etc. Then, it will query the dataset for values regarding
needed keypresses (the tool will check for H.H, D.D.h.i, U.D.h.i, etc.). If searched values
are found in the columns of the dataset, ‘snipe_inject’ will find three values: average, min
value, and max value of that keypress. Then, a random value will be generated in between
a range of min and max values for H.time and U.D.time (this simulates the time the user
would search for the next key). An alternative and more advanced approach to generate
the payload with a refined deviation time was examined and tested. However, deploying
this method on low-computation devices introduces additional computational load.

In cases where searched value is not present in the dataset file, ‘snipe_inject’ will guess
this value by using previously calculated averages from other keys or key pairs. Based on
this, a value tool will generate keypress values for H.time and U.D.time. In the scenario
where the first letter of the payload is missing, indicating an empty average array, random
values for H.time and UD.time will be generated from predefined hardcoded values within

Electronics 2023, 12, 2894 14 of 29

the dataset. Once this is done, the generated payload in a form of script can be loaded and
executed in the keyboard implant.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 29

essential. Under unforeseen circumstances, the proposed model would incorporate
measures to prevent the successful execution of the attack or would be intentionally pro-
grammed to fail. Additionally, when alternative manipulators or data-input devices are
employed, and obtaining all necessary data for the attack is not feasible, our proposed
model would activate and remotely control a camera, or respond to pre-defined triggers,
ensuring adaptability and maintaining functionality. The control distance of the solution
is virtually unlimited where the device will have a connection. The proposed model is
designed to be cross-platform-compatible, ensuring seamless functionality across differ-
ent platforms.

3.2. Implementation of Keystroke-Payload Generation
The proposed keystroke-injection method encompasses four stages (as detailed in

Figure 5) and its realization (see Figure 6):
• Data collection—achieved by facilitating the ‘spy_k3y’ keystroke and key logging

tool along with the single-board computer and a microcontroller. The tool hooks up
all keyboard events. The setup collects keystroke dynamics data and pressed-key val-
ues, logs them, and relays them to the target machine. Additional checks such as if
this is a first keypress or a keypress after a long typing break (time longer than 5 s is,
in our case, considered to be a break, while other researches use 1–1.5 s) were also
implemented. Once the data collection is completed, the exfiltration stage can begin
using a secure file-transfer protocol for transmission;

• Extraction of keystroke dynamics data and generating the keystroke-injection pay-
load using collected data;

• Verification of the generated payload using the LSTM neural network. The generated
payload is reversed to keystroke dynamics data and compared with the collected
data. If this payload is at least 85% similar to the source, the payload is generated
successfully and under the command or automatically could be injected impersonat-
ing the user’s typing pattern. Alternatively, if necessary, the payload is regenerated
and the verification process is repeated;

• Committing the verified payload to the remote device (in cases where extensive com-
putational power is unnecessary, the task can be performed directly on the device)
and injecting it into the remote machine.

Figure 5. Proposed keystroke-injection attack flow. Figure 5. Proposed keystroke-injection attack flow.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 29

When the collected data file is extracted, the payload-generation process starts with
the “snipe_inject” tool. The data are split into separate characters and the tool will also
search for special values such as “<enter>”, etc. Then, it will query the dataset for values
regarding needed keypresses (the tool will check for H.H, D.D.h.i, U.D.h.i, etc.). If
searched values are found in the columns of the dataset, ‘snipe_inject’ will find three val-
ues: average, min value, and max value of that keypress. Then, a random value will be
generated in between a range of min and max values for H.time and U.D.time (this simu-
lates the time the user would search for the next key). An alternative and more advanced
approach to generate the payload with a refined deviation time was examined and tested.
However, deploying this method on low-computation devices introduces additional com-
putational load.

In cases where searched value is not present in the dataset file, ‘snipe_inject’ will
guess this value by using previously calculated averages from other keys or key pairs.
Based on this, a value tool will generate keypress values for H.time and U.D.time. In the
scenario where the first letter of the payload is missing, indicating an empty average array,
random values for H.time and UD.time will be generated from predefined hardcoded val-
ues within the dataset. Once this is done, the generated payload in a form of script can be
loaded and executed in the keyboard implant.

There are two parameters required to generate payload based on users’ keystroke
dynamics: H.time—this indicates how long a single key was pressed; and U.D.time—this
is the time between release of the previous key and pressing of another. A key release is
initialized by sending a zero byte to the microcontroller. So, first, a command is sent to
press a specified key to the microcontroller. The H.time value is generated for that specific
key. Then, a command to release that key is sent by sending a zero byte to the microcon-
troller on a key-up event. Finally, we obtain U.D.time for a specified key sequence. This
process is repeated until the end of the payload is reached.

For payload verification, two parameters are used: H.time and U.D.time. Using these
values, we can also calculate the D.D.time using this equation: D. D. time prev next = H. time prev + U. D. time(prev next) (4)

This allows us to recreate the data that the security system uses to verify a user. Then,
we can see if the keystroke-injection payload is verified and assigned to a user we are
trying to impersonate. To reach more accurate conclusions about the effectiveness of the
proposed method, it was tested on fixed- and free-text keystroke dynamics.

Figure 6. Keyboard with implant setup.

Electronics 2023, 12, 2894 15 of 29

There are two parameters required to generate payload based on users’ keystroke
dynamics: H.time—this indicates how long a single key was pressed; and U.D.time—this
is the time between release of the previous key and pressing of another. A key release is
initialized by sending a zero byte to the microcontroller. So, first, a command is sent to press
a specified key to the microcontroller. The H.time value is generated for that specific key.
Then, a command to release that key is sent by sending a zero byte to the microcontroller
on a key-up event. Finally, we obtain U.D.time for a specified key sequence. This process is
repeated until the end of the payload is reached.

For payload verification, two parameters are used: H.time and U.D.time. Using these
values, we can also calculate the D.D.time using this equation:

D.D.time
(

prevkeynextkey

)
= H.time

(
prevkey

)
+ U.D.time

(
prevkeynextkey

)
(4)

This allows us to recreate the data that the security system uses to verify a user. Then,
we can see if the keystroke-injection payload is verified and assigned to a user we are trying
to impersonate. To reach more accurate conclusions about the effectiveness of the proposed
method, it was tested on fixed- and free-text keystroke dynamics.

As seen in Figure 6, a Raspberry PI zero 2W computer and a Teensy 3.5 microcontroller
are embedded in a keyboard as an implant for this research. The keyboard controller
is directly wired to the USB ports of the computer. Using the aforementioned implant
configuration, we gathered the dataset and generated payloads to conduct experiments that
involve both fixed- and free-text scenarios. These payloads encompassed login credentials,
as well as typed blocks of paragraphs. The generated payloads were thoroughly tested,
successfully bypassing the 2FA mechanism by using the generated payload and enabling
user impersonation by providing a specific block of paragraph text for payload generation.
Both types of payload generation for keystroke-injection attacks were, at least, 90% similar
to the victims’ typing patterns and are detailed in the next section.

4. Results and Discussion

The results and findings cover the two fields that were analyzed: fixed-text keystroke
dynamics and free-text keystroke dynamics. Table 1 presents the datasets utilized for the
experiments, along with the key parameters associated with the datasets gathered by the
researchers. The table consists of three columns, which, respectively, indicate the quantity
of keystrokes in each dataset, the number of users from whom the data were collected, and
the count of user errors encountered in the collected data. The reported errors in this context
refer to additional keystrokes performed by users who were not part of the original typed
text, as well as corrections made to the typed text. To address these inconsistencies, the
collected fixed-text dataset underwent a process of normalization and error removal. This
was necessary due to the diverse nature of the data collected from multiple individuals.

Table 1. Summary of collected datasets.

Total Keystrokes Users User Error
Percentage

Fixed-text dataset 4443 15 ±9%
Fixed-text filtered dataset 4070 15 -

Free-text dataset 21,119 20 -

The resulting dataset, referred to as the fixed-text filtered dataset, is presented in the
second row of the table. The free-text dataset collected by the researchers is appropriately
denoted in the third row of the table. In addition to the datasets showcased in Table 1,
two additional datasets were created specifically for experiments to verify the dissimilarity
between our generated free-text payload and datasets obtained from other researchers. To
facilitate this, a dataset was generated by mixing a portion of the user data collected specifi-
cally for this research with a segment of the 136 million keystrokes dataset collected by V.

Electronics 2023, 12, 2894 16 of 29

Dhakal [68], with a total of about 150 thousand keystrokes. Additionally, another dataset
was created by combining mixed data sourced from the 136 million keystrokes dataset and
A. Mishra’s keystroke dataset [69], with a total of about 120 thousand keystrokes.

4.1. Fixed-Text Keystroke Dynamics

For fixed-text keystroke dynamics, we collected a dataset of 15 users while each user
entered the same passphrase in several times until they started to display signs of rejection.
Keypress timings, showing the first passphrase typed by users x1–x11, are provided in
Figure 7. We observed that the first typing is the one that most closely matches the
user’s pattern.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 29

Figure 7. Keypress dynamics with timings, typing the same passphrase by users x1–x11.

As seen in Figure 7, the H.time values are more similar among all users of this dataset.
However, the DD.time and UD.time features give us more indications on what the user
was typing.

These data were used to train the LSTM network which had the same number of
layers as the DSN-2009 tests. To extract more features, each LSTM layer had fewer neu-
rons. The output layer will have the same number of neurons as our dataset has unique
users.

After the training phase for the TypingDNA test, we proceeded to provide our model
with unlabeled data that included the generated payload, which serves as the test set. The
results demonstrated that the LSTM successfully identified the generated payloads as be-
longing to the user in 9 out of 10 instances. The left section of Figure 8 exhibits a heatmap
chart that illustrates a comparative analysis of the five payloads generated for user x2. On
the contrary, the right side of Figure 8 displays the timings of 10 user keypresses along
with the payload generated for user x2. Notably, the generated payloads adhere to the
acceptable accuracy range typically observed in fixed-text systems such as TypingDNA.

Figure 8. Payloads generated for user x2 comparison heatmaps.

During the training of the neural network with our collected dataset, it reached a
maximum accuracy of 90–96%. The train–test split used for fixed-text experiments was

Figure 7. Keypress dynamics with timings, typing the same passphrase by users x1–x11.

As seen in Figure 7, the H.time values are more similar among all users of this dataset.
However, the DD.time and UD.time features give us more indications on what the user
was typing.

These data were used to train the LSTM network which had the same number of layers
as the DSN-2009 tests. To extract more features, each LSTM layer had fewer neurons. The
output layer will have the same number of neurons as our dataset has unique users.

After the training phase for the TypingDNA test, we proceeded to provide our model
with unlabeled data that included the generated payload, which serves as the test set.
The results demonstrated that the LSTM successfully identified the generated payloads as
belonging to the user in 9 out of 10 instances. The left section of Figure 8 exhibits a heatmap
chart that illustrates a comparative analysis of the five payloads generated for user x2. On
the contrary, the right side of Figure 8 displays the timings of 10 user keypresses along
with the payload generated for user x2. Notably, the generated payloads adhere to the
acceptable accuracy range typically observed in fixed-text systems such as TypingDNA.

Electronics 2023, 12, 2894 17 of 29

Electronics 2023, 12, x FOR PEER REVIEW 16 of 29

Figure 7. Keypress dynamics with timings, typing the same passphrase by users x1–x11.

As seen in Figure 7, the H.time values are more similar among all users of this dataset.
However, the DD.time and UD.time features give us more indications on what the user
was typing.

These data were used to train the LSTM network which had the same number of
layers as the DSN-2009 tests. To extract more features, each LSTM layer had fewer neu-
rons. The output layer will have the same number of neurons as our dataset has unique
users.

After the training phase for the TypingDNA test, we proceeded to provide our model
with unlabeled data that included the generated payload, which serves as the test set. The
results demonstrated that the LSTM successfully identified the generated payloads as be-
longing to the user in 9 out of 10 instances. The left section of Figure 8 exhibits a heatmap
chart that illustrates a comparative analysis of the five payloads generated for user x2. On
the contrary, the right side of Figure 8 displays the timings of 10 user keypresses along
with the payload generated for user x2. Notably, the generated payloads adhere to the
acceptable accuracy range typically observed in fixed-text systems such as TypingDNA.

Figure 8. Payloads generated for user x2 comparison heatmaps.

During the training of the neural network with our collected dataset, it reached a
maximum accuracy of 90–96%. The train–test split used for fixed-text experiments was

Figure 8. Payloads generated for user x2 comparison heatmaps.

During the training of the neural network with our collected dataset, it reached a
maximum accuracy of 90–96%. The train–test split used for fixed-text experiments was
70/30, respectively. Precision, recall, and f1-scores were not equal to or close to one,
respectively, except in the case of a few classes. The precision value for class x9 was 0.71.
Recall values for the x10 class were 0.94 and the x6 class 0.56, respectively. F1-score notable
values obtained for x6 class were 0.71 and x9 class 0.83, respectively. After completion
of the training phase, the model was given unlabeled data encompassing the generated
payload for a particular user, using a “snipe_inject” tool. The results demonstrated that
LSTM reached a recognition rate of ~90% in identifying the generated payloads as coming
from the specified user, based on a series of 10 tests. For most tests 150–200 epochs were
used. Checkpoints were used to save the best epoch based on the accuracy of the validation
and 30% of the dataset was used for validation, as seen in Figure 9. The confusion matrix
can be seen in Figure 10. Figure 11 presents the k-fold cross-validation results which show
the model’s ability to learn and provide consistent reliable outputs. The average accuracy of
all folds was 96% and the validation accuracy of all folds was 93%. The standard deviation
of all folds was 1.7% and 3%, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 29

70/30, respectively. Precision, recall, and f1-scores were not equal to or close to one, re-
spectively, except in the case of a few classes. The precision value for class x9 was 0.71.
Recall values for the x10 class were 0.94 and the x6 class 0.56, respectively. F1-score notable
values obtained for x6 class were 0.71 and x9 class 0.83, respectively. After completion of
the training phase, the model was given unlabeled data encompassing the generated pay-
load for a particular user, using a “snipe_inject” tool. The results demonstrated that LSTM
reached a recognition rate of ~90% in identifying the generated payloads as coming from
the specified user, based on a series of 10 tests. For most tests 150–200 epochs were used.
Checkpoints were used to save the best epoch based on the accuracy of the validation and
30% of the dataset was used for validation, as seen in Figure 9. The confusion matrix can
be seen in Figure 10. Figure 11 presents the k-fold cross-validation results which show the
model’s ability to learn and provide consistent reliable outputs. The average accuracy of
all folds was 96% and the validation accuracy of all folds was 93%. The standard deviation
of all folds was 1.7% and 3%, respectively.

Figure 9. LSTM accuracy and loss after 200 epochs.

Figure 10. Fixed-text confusion matrix with 11 user classes.

Figure 9. LSTM accuracy and loss after 200 epochs.

Electronics 2023, 12, 2894 18 of 29

Electronics 2023, 12, x FOR PEER REVIEW 17 of 29

70/30, respectively. Precision, recall, and f1-scores were not equal to or close to one, re-
spectively, except in the case of a few classes. The precision value for class x9 was 0.71.
Recall values for the x10 class were 0.94 and the x6 class 0.56, respectively. F1-score notable
values obtained for x6 class were 0.71 and x9 class 0.83, respectively. After completion of
the training phase, the model was given unlabeled data encompassing the generated pay-
load for a particular user, using a “snipe_inject” tool. The results demonstrated that LSTM
reached a recognition rate of ~90% in identifying the generated payloads as coming from
the specified user, based on a series of 10 tests. For most tests 150–200 epochs were used.
Checkpoints were used to save the best epoch based on the accuracy of the validation and
30% of the dataset was used for validation, as seen in Figure 9. The confusion matrix can
be seen in Figure 10. Figure 11 presents the k-fold cross-validation results which show the
model’s ability to learn and provide consistent reliable outputs. The average accuracy of
all folds was 96% and the validation accuracy of all folds was 93%. The standard deviation
of all folds was 1.7% and 3%, respectively.

Figure 9. LSTM accuracy and loss after 200 epochs.

Figure 10. Fixed-text confusion matrix with 11 user classes. Figure 10. Fixed-text confusion matrix with 11 user classes.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 29

Figure 11. K-fold cross-validation of fixed-text dataset.

4.2. Free-Text Keystroke Dynamics
The free-text keystroke dynamics systems require significantly more data to train,

varying from specified text entries to typing different paragraphs. That means that H, UD,
and DD times had to be calculated for each key value.

One approach involves having users type the same text or paragraphs, while another
approach involves having each participant type different paragraphs, which closely re-
sembles free-text keystroke dynamics. A good example of this is a dataset collected by two
researchers that comprises a comprehensive collection of approximately 136 million key-
strokes derived from a diverse range of users and devices [68]. In our research, this dataset
was utilized for experiments; however, the data collected by these researchers specifically
consisted of the operating system’s time values for keypress and release events. Conse-
quently, the calculation of the hold (H), up–down (UD), and down–down (DD) times was
necessary for each key value. The test results obtained using our proposed method were
inaccurate and unsuitable for the generation due to the inherent limitations of the data-
collection process, including variations in devices, keyboard layouts, and limited collec-
tion of typing features. Therefore, the subsequent sections of this research present the
findings obtained from a dataset that was specifically collected by us, utilizing the
“spy_k3y“ and keyboard implant, solely for the purpose of this research.

For the purposes of this research on free-text analysis, a unique dataset was collected
by soliciting individuals to type a minimum of two paragraphs. Table 1 denotes the size
of the dataset and the number of individuals from whom it was gathered. One paragraph
was identical among all participants, while the remaining paragraphs varied individually.
The texts utilized for the collection of datasets were sourced from a typing-practice plat-
form (https://thepracticetest.com (accessed on 3 April 2023)) to ensure maximal diversity
and an authentic representation of the characteristics of the user’s text typing. All samples
used in the free-text research were no longer than 700 characters and the average word
length was about 5.6 words. All the paragraphs contained most letters from the English
alphabet. The average word length was important for us since we decided to use 30 fea-
tures (see Figure 12) as an input for our LSTM model because we noticed that participants
typing given paragraphs tend to type about 10 symbols before looking at the text again.
Data collected in free-text dataset are split into chunks of 30 data entries each (stream of
mix of H, UD, and DD values). Each element in that chunk is represented in seq from 1 to
30 and a new line in the dataset (which was used for LSTM) is a new chunk of seq from 1
to 30. Figure 12 illustrates one of the keystroke resolutions employed in the research, spe-
cifically utilizing four decimal places. Additionally, another resolution of eight decimal
places was employed to accommodate a larger number of users. The choice of different
resolutions allowed flexibility in capturing and analyzing keystroke dynamics.

Figure 11. K-fold cross-validation of fixed-text dataset.

4.2. Free-Text Keystroke Dynamics

The free-text keystroke dynamics systems require significantly more data to train,
varying from specified text entries to typing different paragraphs. That means that H, UD,
and DD times had to be calculated for each key value.

One approach involves having users type the same text or paragraphs, while another
approach involves having each participant type different paragraphs, which closely re-
sembles free-text keystroke dynamics. A good example of this is a dataset collected by
two researchers that comprises a comprehensive collection of approximately 136 million
keystrokes derived from a diverse range of users and devices [68]. In our research, this
dataset was utilized for experiments; however, the data collected by these researchers

Electronics 2023, 12, 2894 19 of 29

specifically consisted of the operating system’s time values for keypress and release events.
Consequently, the calculation of the hold (H), up–down (UD), and down–down (DD) times
was necessary for each key value. The test results obtained using our proposed method
were inaccurate and unsuitable for the generation due to the inherent limitations of the
data-collection process, including variations in devices, keyboard layouts, and limited
collection of typing features. Therefore, the subsequent sections of this research present
the findings obtained from a dataset that was specifically collected by us, utilizing the
“spy_k3y“ and keyboard implant, solely for the purpose of this research.

For the purposes of this research on free-text analysis, a unique dataset was collected
by soliciting individuals to type a minimum of two paragraphs. Table 1 denotes the size of
the dataset and the number of individuals from whom it was gathered. One paragraph was
identical among all participants, while the remaining paragraphs varied individually. The
texts utilized for the collection of datasets were sourced from a typing-practice platform
(https://thepracticetest.com (accessed on 3 April 2023)) to ensure maximal diversity and
an authentic representation of the characteristics of the user’s text typing. All samples used
in the free-text research were no longer than 700 characters and the average word length
was about 5.6 words. All the paragraphs contained most letters from the English alphabet.
The average word length was important for us since we decided to use 30 features (see
Figure 12) as an input for our LSTM model because we noticed that participants typing
given paragraphs tend to type about 10 symbols before looking at the text again. Data
collected in free-text dataset are split into chunks of 30 data entries each (stream of mix of
H, UD, and DD values). Each element in that chunk is represented in seq from 1 to 30 and
a new line in the dataset (which was used for LSTM) is a new chunk of seq from 1 to 30.
Figure 12 illustrates one of the keystroke resolutions employed in the research, specifically
utilizing four decimal places. Additionally, another resolution of eight decimal places was
employed to accommodate a larger number of users. The choice of different resolutions
allowed flexibility in capturing and analyzing keystroke dynamics.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 29

Figure 12. Features and data chunking in free-text analysis.

The LSTM employed in the free-text research was configured with three layers and a
single dense layer. The initial layer consisted of 512 neurons, while the second and third
layers contained 128 neurons each. Activation was performed using the Softmax function.
The Adam optimizer was used for the training of the model. Experimental trials were con-
ducted, and, when employing five layers, the number of neurons doubled. However, in-
corporating such a solution into a computationally limited device presents considerable
challenges, particularly when prioritizing appropriate payload generation. Consequently,
the specified configuration was chosen to seek a balance between speed and results.

The model’s performance, in terms of accuracy and loss, exhibited a comparatively
inferior performance of approximately 10–20% when compared to free-text experiments.
Validation stood out in particular, since the number of data for free-text was very small.
The train–test split employed for free-text experiments followed a distribution of 70% for
training and 30% for testing. Most tests incorporated 200 epochs. The precision and recall
values varied widely across experiments, particularly when dealing with short texts or a
limited number of blocks, ranging between 0.95 and 0.71. Notably, as the number of blocks
increased, the results decreased even more. The confusion matrix for the free-text analysis
can be observed in Figure 13. The average accuracy on five folds varied from 74% to 88%.
To achieve sufficient results aligned with the accuracy required for free-text analysis, ap-
proximately 10 users were required. The outcomes obtained from the tests conducted on
the mixed dataset specified in Table 1 were only acceptable when dealing with a limited
number of blocks, typically limited to the size of several passwords. For longer texts, the
approaches used in the research were ineffective or could not be used to bypass keystroke
dynamics systems.

Figure 12. Features and data chunking in free-text analysis.

The LSTM employed in the free-text research was configured with three layers and a
single dense layer. The initial layer consisted of 512 neurons, while the second and third
layers contained 128 neurons each. Activation was performed using the Softmax function.
The Adam optimizer was used for the training of the model. Experimental trials were
conducted, and, when employing five layers, the number of neurons doubled. However,
incorporating such a solution into a computationally limited device presents considerable
challenges, particularly when prioritizing appropriate payload generation. Consequently,
the specified configuration was chosen to seek a balance between speed and results.

The model’s performance, in terms of accuracy and loss, exhibited a comparatively
inferior performance of approximately 10–20% when compared to free-text experiments.
Validation stood out in particular, since the number of data for free-text was very small.
The train–test split employed for free-text experiments followed a distribution of 70% for
training and 30% for testing. Most tests incorporated 200 epochs. The precision and recall
values varied widely across experiments, particularly when dealing with short texts or
a limited number of blocks, ranging between 0.95 and 0.71. Notably, as the number of
blocks increased, the results decreased even more. The confusion matrix for the free-text

https://thepracticetest.com

Electronics 2023, 12, 2894 20 of 29

analysis can be observed in Figure 13. The average accuracy on five folds varied from
74% to 88%. To achieve sufficient results aligned with the accuracy required for free-text
analysis, approximately 10 users were required. The outcomes obtained from the tests
conducted on the mixed dataset specified in Table 1 were only acceptable when dealing
with a limited number of blocks, typically limited to the size of several passwords. For
longer texts, the approaches used in the research were ineffective or could not be used to
bypass keystroke dynamics systems.

Figures 14 and 15 illustrate the outcomes of payload generation pertaining to free-text
experiments, specifically in relation to prediction and assigning payload blocks to user x1.
The generated payloads were produced subsequent to the submission of user x1’s captured
keystrokes to the inject tool, with the specification of the desired payload type based on
the logged key values or the entered text. The generation of the depicted payload involves
utilizing one of the texts from the dataset collection phase, which includes 26 blocks, as
well as a randomly selected text. Subsequently, the objective of deep-learning is to identify
the imitated ownership of the blocks within the generated payload. In the case depicted
in Figure 14, eight blocks were used, which could be represented as several relatively
lengthy passwords. The prediction results in this scenario were good. Further experiments
involving predictions with up to 10 blocks yielded results ranging from 75% to 92%.

Figure 15 shows the prediction results for 26 blocks or features. In particular, when
the LSTM model attempted to predict with this particular number of blocks, the accuracy
decreased, averaging at 74%. The comparison of all generated payloads was conducted
among 16 users. Following thorough training of the network, the predictions consistently
exhibited no more than two falsely identified users, who were included among the actual
users whose data were utilized to generate the payload. During the payload-generation
process, the model demonstrated success in payload prediction even when not all required
data were available. In such cases, the model leveraged the data from the closest user when
generating the payload, provided that it corresponded to a specific block or generated it
according to the predefined values. This approach can be particularly effective when the
number of users is limited and the accuracy of the keystroke dynamics system is average
or lower.

The payload generation tool performed effectively without requiring any modifica-
tions both in the context of free-text experiments and its original design for fixed-text
payload generation and verification tasks. The experiments on payload prediction demon-
strated that the “snipe_inject” tool not only generated payloads based on the keylogged
data but also successfully generated payloads based on specified text provided prior to the
payload generation process.

Analysis of collected data also revealed that users are more focused at the beginning
of the paragraph and tend to be more distracted over time and regain focus during the end.
This observation becomes particularly evident when conducting analysis of data derived
from the same paragraph that was typed by multiple users.

To evaluate the efficiency and precision of the payload generated from the collected
free-text data we developed POCs for two distinct attacks, unlocking a screen-locked
computer and executing a PowerShell script.

By leveraging keystroke dynamics to impersonate a user, a threat actor can execute
a PowerShell script or bypass the login screen by utilizing a malicious USB device. The
first technique involved mimicking the typing dynamics of the target user, allowing the
threat actor to input specific commands into the PowerShell prompt using hidden window
mode without alerting the user or raising suspicions, especially if user keystroke dynamics
solutions were invoked. Figure 16 shows a snippet of the payload script with keystroke
timings. The provided example demonstrates a static payload configuration that triggers a
predefined keystroke. However, the same principle can be applied to create a user-specific
payload capable of injecting malicious data while the user is typing. This approach is
regarded as on-demand payload generation, where the keypress timings are dynamically

Electronics 2023, 12, 2894 21 of 29

altered to introduce variations. Figure 8 showcases the generation of multiple payloads for
the same user, highlighting the continuously changing keypress timings.

The lock-screen bypass attack involves connecting the keyboard with an implant or
malicious USB device to the target system, which tricks the computer into recognizing
it as a trusted input device. By emulating the user’s keystroke patterns, the threat actor
can bypass the login-screen lock, gaining unauthorized access. In our case, the keyboard
with implant had the full functionality for such an attack, including managing the attack
remotely. If the user would use on-screen keyboard, the camera planted in our keyboard
could help to exploit this as well.

To see whether our collected data resemble the typing characteristics of distinct users,
we compared two users to see how different they appear by graphing their typing values
during the typing period. Their results are provided in Figure 17.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 29

Figure 13. Free-text confusion matrix with X user classes.

Figures 14 and 15 illustrate the outcomes of payload generation pertaining to free-
text experiments, specifically in relation to prediction and assigning payload blocks to
user x1. The generated payloads were produced subsequent to the submission of user x1’s
captured keystrokes to the inject tool, with the specification of the desired payload type
based on the logged key values or the entered text. The generation of the depicted payload
involves utilizing one of the texts from the dataset collection phase, which includes 26
blocks, as well as a randomly selected text. Subsequently, the objective of deep-learning is
to identify the imitated ownership of the blocks within the generated payload. In the case
depicted in Figure 14, eight blocks were used, which could be represented as several rel-
atively lengthy passwords. The prediction results in this scenario were good. Further ex-
periments involving predictions with up to 10 blocks yielded results ranging from 75% to
92%.

Figure 15 shows the prediction results for 26 blocks or features. In particular, when
the LSTM model attempted to predict with this particular number of blocks, the accuracy
decreased, averaging at 74%. The comparison of all generated payloads was conducted
among 16 users. Following thorough training of the network, the predictions consistently
exhibited no more than two falsely identified users, who were included among the actual
users whose data were utilized to generate the payload. During the payload-generation
process, the model demonstrated success in payload prediction even when not all re-
quired data were available. In such cases, the model leveraged the data from the closest
user when generating the payload, provided that it corresponded to a specific block or
generated it according to the predefined values. This approach can be particularly effec-
tive when the number of users is limited and the accuracy of the keystroke dynamics sys-
tem is average or lower.

The payload generation tool performed effectively without requiring any modifica-
tions both in the context of free-text experiments and its original design for fixed-text

Figure 13. Free-text confusion matrix with X user classes.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 29

payload generation and verification tasks. The experiments on payload prediction demon-
strated that the “snipe_inject” tool not only generated payloads based on the keylogged
data but also successfully generated payloads based on specified text provided prior to
the payload generation process.

Figure 14. Small generated payload for x1 user prediction.

Figure 15. Generated average payload for x1 user prediction.

Analysis of collected data also revealed that users are more focused at the beginning
of the paragraph and tend to be more distracted over time and regain focus during the
end. This observation becomes particularly evident when conducting analysis of data de-
rived from the same paragraph that was typed by multiple users.

To evaluate the efficiency and precision of the payload generated from the collected
free-text data we developed POCs for two distinct attacks, unlocking a screen-locked com-
puter and executing a PowerShell script.

By leveraging keystroke dynamics to impersonate a user, a threat actor can execute a
PowerShell script or bypass the login screen by utilizing a malicious USB device. The first
technique involved mimicking the typing dynamics of the target user, allowing the threat
actor to input specific commands into the PowerShell prompt using hidden window mode
without alerting the user or raising suspicions, especially if user keystroke dynamics so-
lutions were invoked. Figure 16 shows a snippet of the payload script with keystroke tim-
ings. The provided example demonstrates a static payload configuration that triggers a
predefined keystroke. However, the same principle can be applied to create a user-specific
payload capable of injecting malicious data while the user is typing. This approach is

Figure 14. Small generated payload for x1 user prediction.

Electronics 2023, 12, 2894 22 of 29

Electronics 2023, 12, x FOR PEER REVIEW 21 of 29

payload generation and verification tasks. The experiments on payload prediction demon-
strated that the “snipe_inject” tool not only generated payloads based on the keylogged
data but also successfully generated payloads based on specified text provided prior to
the payload generation process.

Figure 14. Small generated payload for x1 user prediction.

Figure 15. Generated average payload for x1 user prediction.

Analysis of collected data also revealed that users are more focused at the beginning
of the paragraph and tend to be more distracted over time and regain focus during the
end. This observation becomes particularly evident when conducting analysis of data de-
rived from the same paragraph that was typed by multiple users.

To evaluate the efficiency and precision of the payload generated from the collected
free-text data we developed POCs for two distinct attacks, unlocking a screen-locked com-
puter and executing a PowerShell script.

By leveraging keystroke dynamics to impersonate a user, a threat actor can execute a
PowerShell script or bypass the login screen by utilizing a malicious USB device. The first
technique involved mimicking the typing dynamics of the target user, allowing the threat
actor to input specific commands into the PowerShell prompt using hidden window mode
without alerting the user or raising suspicions, especially if user keystroke dynamics so-
lutions were invoked. Figure 16 shows a snippet of the payload script with keystroke tim-
ings. The provided example demonstrates a static payload configuration that triggers a
predefined keystroke. However, the same principle can be applied to create a user-specific
payload capable of injecting malicious data while the user is typing. This approach is

Figure 15. Generated average payload for x1 user prediction.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 29

regarded as on-demand payload generation, where the keypress timings are dynamically
altered to introduce variations. Figure 8 showcases the generation of multiple payloads
for the same user, highlighting the continuously changing keypress timings.

Figure 16. Payload snippet of payload impersonating user keystrokes.

The lock-screen bypass attack involves connecting the keyboard with an implant or
malicious USB device to the target system, which tricks the computer into recognizing it
as a trusted input device. By emulating the user’s keystroke patterns, the threat actor can
bypass the login-screen lock, gaining unauthorized access. In our case, the keyboard with
implant had the full functionality for such an attack, including managing the attack re-
motely. If the user would use on-screen keyboard, the camera planted in our keyboard
could help to exploit this as well.

To see whether our collected data resemble the typing characteristics of distinct us-
ers, we compared two users to see how different they appear by graphing their typing
values during the typing period. Their results are provided in Figure 17.

Figure 17. Comparison of the typing data of User 1 (blue) and User 2 (red) (the same paragraph).

From Figure 17, we can see that User 2 was typing faster and was less distracted dur-
ing the test. To achieve deeper conclusions on typing characteristics of these two partici-
pants, we differentiated and compared three features (see Figure 18)—H.time (blue),
U.D.time (red), and D.D.time (yellow). These features are also used for our LSTM model
and by many others. The UD and DD times show us how fast a person can type words, as
they reveal how long someone searches for a letter. And H time shows us how strongly
an individual presses a single key (longer time—more force for a press is used).

Figure 16. Payload snippet of payload impersonating user keystrokes.

From Figure 17, we can see that User 2 was typing faster and was less distracted during
the test. To achieve deeper conclusions on typing characteristics of these two participants,
we differentiated and compared three features (see Figure 18)—H.time (blue), U.D.time
(red), and D.D.time (yellow). These features are also used for our LSTM model and by
many others. The UD and DD times show us how fast a person can type words, as they
reveal how long someone searches for a letter. And H time shows us how strongly an
individual presses a single key (longer time—more force for a press is used).

We can see that most U.D. and D.D. values of User 2 are in the 2 s range. And the
H. times are very low. Most of User 2 U.D. and D.D. values are in the range of 1.5 s. This
means that User 2 probably types faster. However, he uses more force to press a single key
and we can see that in higher H. time values.

Since most participants tend to be less distracted during the beginning, we compared
the first 10 characters typed (30 timings of keystroke data) of all users from our dataset and
see if we can observe a noticeable difference (see Figure 19). Each line of a different color in
Figure 19 represents an individual user and his keystroke dynamics, expressed in seconds.

Electronics 2023, 12, 2894 23 of 29

Electronics 2023, 12, x FOR PEER REVIEW 22 of 29

regarded as on-demand payload generation, where the keypress timings are dynamically
altered to introduce variations. Figure 8 showcases the generation of multiple payloads
for the same user, highlighting the continuously changing keypress timings.

Figure 16. Payload snippet of payload impersonating user keystrokes.

The lock-screen bypass attack involves connecting the keyboard with an implant or
malicious USB device to the target system, which tricks the computer into recognizing it
as a trusted input device. By emulating the user’s keystroke patterns, the threat actor can
bypass the login-screen lock, gaining unauthorized access. In our case, the keyboard with
implant had the full functionality for such an attack, including managing the attack re-
motely. If the user would use on-screen keyboard, the camera planted in our keyboard
could help to exploit this as well.

To see whether our collected data resemble the typing characteristics of distinct us-
ers, we compared two users to see how different they appear by graphing their typing
values during the typing period. Their results are provided in Figure 17.

Figure 17. Comparison of the typing data of User 1 (blue) and User 2 (red) (the same paragraph).

From Figure 17, we can see that User 2 was typing faster and was less distracted dur-
ing the test. To achieve deeper conclusions on typing characteristics of these two partici-
pants, we differentiated and compared three features (see Figure 18)—H.time (blue),
U.D.time (red), and D.D.time (yellow). These features are also used for our LSTM model
and by many others. The UD and DD times show us how fast a person can type words, as
they reveal how long someone searches for a letter. And H time shows us how strongly
an individual presses a single key (longer time—more force for a press is used).

Figure 17. Comparison of the typing data of User 1 (blue) and User 2 (red) (the same paragraph).

Electronics 2023, 12, x FOR PEER REVIEW 23 of 29

Figure 18. H. time, U.D.time, and D.D.time characteristics of the research.

We can see that most U.D. and D.D. values of User 2 are in the 2 s range. And the H.
times are very low. Most of User 2 U.D. and D.D. values are in the range of 1.5 s. This
means that User 2 probably types faster. However, he uses more force to press a single
key and we can see that in higher H. time values.

Since most participants tend to be less distracted during the beginning, we compared
the first 10 characters typed (30 timings of keystroke data) of all users from our dataset
and see if we can observe a noticeable difference (see Figure 19). Each line of a different
color in Figure 19 represents an individual user and his keystroke dynamics, expressed in
seconds.

Figure 19. Difference in typing speed between users.

Observations from the experiment revealed a higher occurrence of anomalies in the
generated payload compared to the original input, which shows that in high-precision
systems it can be detected if the anomaly in the generated payload occurs more often. We
analyzed the reason behind these results and noticed that users that have fewer anomalies
in their datasets tend to “poison” the payload generation with rear accidental anomalies
that appear unpredicted and do not repeat. This would increase the interval when random
values are generated because during the payload generation process we search for specific
values that are needed inside that dataset and we generate a random value inside the

Figure 18. H. time, U.D.time, and D.D.time characteristics of the research.

Observations from the experiment revealed a higher occurrence of anomalies in the
generated payload compared to the original input, which shows that in high-precision
systems it can be detected if the anomaly in the generated payload occurs more often. We
analyzed the reason behind these results and noticed that users that have fewer anomalies
in their datasets tend to “poison” the payload generation with rear accidental anomalies
that appear unpredicted and do not repeat. This would increase the interval when random
values are generated because during the payload generation process we search for specific
values that are needed inside that dataset and we generate a random value inside the

Electronics 2023, 12, 2894 24 of 29

interval of min and max. To improve this method, anomaly data can be collected and used
to develop a mechanism to control how many anomalies are present in user data and take
that into consideration when the payload is generated.

Electronics 2023, 12, x FOR PEER REVIEW 23 of 29

Figure 18. H. time, U.D.time, and D.D.time characteristics of the research.

We can see that most U.D. and D.D. values of User 2 are in the 2 s range. And the H.
times are very low. Most of User 2 U.D. and D.D. values are in the range of 1.5 s. This
means that User 2 probably types faster. However, he uses more force to press a single
key and we can see that in higher H. time values.

Since most participants tend to be less distracted during the beginning, we compared
the first 10 characters typed (30 timings of keystroke data) of all users from our dataset
and see if we can observe a noticeable difference (see Figure 19). Each line of a different
color in Figure 19 represents an individual user and his keystroke dynamics, expressed in
seconds.

Figure 19. Difference in typing speed between users.

Observations from the experiment revealed a higher occurrence of anomalies in the
generated payload compared to the original input, which shows that in high-precision
systems it can be detected if the anomaly in the generated payload occurs more often. We
analyzed the reason behind these results and noticed that users that have fewer anomalies
in their datasets tend to “poison” the payload generation with rear accidental anomalies
that appear unpredicted and do not repeat. This would increase the interval when random
values are generated because during the payload generation process we search for specific
values that are needed inside that dataset and we generate a random value inside the

Figure 19. Difference in typing speed between users.

4.3. Comparison with the Previous Results Obtained

Direct comparison of our results with studies conducted by other researchers poses
challenges due to divergent research focuses. Some researchers have prioritized hardware
implementation for keystroke-injection attacks [24], while others have focused on software
implementation [47]. Notably, in terms of user-classification accuracy with free-text, their
results ranged from 94% to 97%, closely aligning with the outcomes of our own research.
The findings of this investigation indicate that greater computational power facilitates
the attainment of more precise results, particularly when the quantity of data from the
impersonated user is known. However, in our proposed approach, we do not presuppose
prior knowledge of the data provided by the targeted user. This assumption stems from
the notion that this attack method can be employed in scenarios where fundamental
information about the user of the compromised device is not accessible.

When comparing our proposed model with the research findings of the “USB keyboard
attack case study” [27], we observe a very simplified version compared to our proposed
model. The primary advantage of utilizing a microcontroller, as opposed to our proposed
solution, lies in its low-power consumption. However, it is important to note that the mi-
crocontroller alone lacks sufficient power to collect data and execute attacks autonomously
without the aid of external devices. Furthermore, the attack scenario presented in the
aforementioned case study necessitates physical access to the target device, specifically
during the data-collection phase after a certain period of time. Scheduling an attack at
a specific time entails several drawbacks, including the potential for the system to be
powered off during the scheduled attack, the user’s active utilization of the device at the

Electronics 2023, 12, 2894 25 of 29

designated time, and the possibility of detecting the attack. On the contrary, our proposed
model enables the launch of attacks based on real-time circumstances. The success of
an attack is dependent upon the prevailing conditions rather than upon adhering to a
predetermined time.

Among the existing solutions, the solution that closely resembles our proposed model
is “Malboard: A novel user keystroke impersonation attack” [14]. This study presents
three adaptations of side-channel attacks for detecting keystroke-attack devices, which
aligns well with the functionality of our proposed model. Compared to our proposed
model, there are several key distinctions. First, our model focuses on launching attacks on
demand, allowing for targeted and specific actions. Additionally, we incorporate payload
verification mechanisms to ensure compatibility and prevent mismatches. Moreover, our
model employs sophisticated averaging techniques to handle unknown values during
payload generation when the dataset size is very limited. Furthermore, we utilize camera-
based methods to bypass keyboard checks and gain a user’s perspective on the controlled
device, enhancing the overall attack capabilities.

5. Conclusions

The proposed keystroke-injection method implements a covert hardware keystroke-injection
platform that collects keystroke dynamics data (H.time, UD.time, and DD.time + keystrokes),
generates payload, and transmits that data via serial communication to be injected with the
same value as a user (live keypress and up events).

The fixed-text dataset contained 11 users who each typed a fixed pass phrase multiple
times. Graphed data showed noticeable differences in typing speeds between these users,
especially in UD.time and DD.time.

The free-text dataset contained data from 20 users typing the same paragraph and some
participants also typed a different paragraph. All paragraphs were taken from a typing-
practice website and contained various symbols and letters. The difference in typing speeds
was also noticeable by each user, however, during the duration of the test all users showed
anomalies in their typing habits (caused by lack of focus, emotions, or overall tiredness,
etc.). Some users had more anomalies than others. These findings offer valuable insight
into distinguishing between human users and robots, enabling identification of impostors.

Experiments were performed with collected user data, as well as TypingDNA web
2FA. The proposed keystroke-injection method was able to bypass the fixed-text keystroke
dynamics solution by TypingDNA and login to the user account. LSTM was trained on
the collected user dataset with a passphrase (91% validation accuracy was achieved), and
10 payloads were given as unlabeled data to be verified. Nine times out of 10, the payload
was identified as the victim user. Victim data were compared graphically to a payload and
two random users and a noticeable similarity between payload and user could be seen,
which indicates that our payload is effective.

The free-text keystroke dynamics dataset was also used to train the LSTM model, al-
though 74% validation accuracy was achieved. A dataset of 136 million keystrokes [68] was
also tested, however, experiment results revealed that data did not meet the requirements
to generate payload with the required level of accuracy. Generated free-text payload pre-
diction accuracy results ranged from 75% to 92%. However, similar graphical comparison
was drawn between a payload and victim, and the payload showed similar similarities
to a user as in fixed-text, but an important difference was noticed. Users who had fewer
anomalies in their data (made fewer mistakes while typing and were more focused overall)
tend to display more noticeable difference from the generated payload.

During the research, it was observed that in order to achieve the desired accuracy for
bypassing security systems, it is important to record the timings of keystrokes along with
the corresponding key values. This is because the analysis of the collected data revealed
that users who natively use various keyboard layouts have distinct ways of entering special
characters or capital letters. For CLICKA researchers, attempts to recognize the native
language of users based on keystroke dynamics allowed them to achieve only slightly

Electronics 2023, 12, 2894 26 of 29

higher accuracy than guessing [70]. With keylogging and mapping keys to appropriate
behavior, the accuracy of such research would increase significantly. In keystroke dynamics
systems, these anomalies can serve as significant features with substantial importance.
The absence of specific keypress data can notably diminish the accuracy during payload
generation. Overall research showed that the “snipe_inject” payload is effective in free-text
keystroke dynamics as well.

6. Limitations and Future Research

At its current stage, the proposed model does have some limitations and shortcomings.
One such limitation is that dataset collection and payload generation can be achieved with
a relatively small number of users as the device operates locally. However, this limitation
can also be viewed as a significant advantage of the proposed model, particularly when the
targeting of specific user populations becomes crucial.

The research did not specifically examine the impact of hardware and software so-
lutions on the accuracy of collected keypress times and the results obtained by using
fixed-time values. However, it is worth noting that the precision employed in capturing
keypresses during certain experiments exceeded that of other researches, utilizing a time
resolution of eight decimal places.

The plug-and-play applicability of the proposed implant to all keyboards without the
need for additional reprogramming has not been thoroughly studied.

The results obtained using free-text user data from other researchers’ datasets did not
yield the desired level of accuracy. To better understand the reasons behind these moderate
results, more research is needed. Additionally, it is important to test the proposed model
against advanced keystroke-injection detection methods, including those that involve faked
keypress data for deception purposes. The integration of a microphone would also enhance
data-capture capabilities, complementing the existing camera functionality.

Author Contributions: Conceptualization, V.G. and J.D.; methodology, N.G.; software, J.D.; valida-
tion, J.J. and A.Č.; formal analysis, N.G.; investigation, J.D. and V.G.; resources, A.Č.; data curation,
J.D. and V.G.; writing—original draft preparation, J.D. and J.J.; writing—review and editing, N.G.;
visualization, J.D.; supervision, N.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: [https://github.com/itsecprof/keystroke-payload (accessed on 5 June 2023)].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tian, J.; Scaife, N.; Kumar, D.; Bailey, M.; Bates, A.; Butler, K. SoK: ‘Plug & Pray’ Today-Understanding USB Insecurity in Versions

1 Through C. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018;
pp. 1032–1047. [CrossRef]

2. Lu, H.; Wu, Y.; Li, S.; Lin, Y.; Zhang, C.; Zhang, F. BADUSB-C: Revisiting BadUSB with Type-C. In Proceedings of the 2021 IEEE
Security and Privacy Workshops (SPW), San Francisco, CA, USA, 27 May 2021; pp. 327–338. [CrossRef]

3. Thomas, T.; Piscitelli, M.; Nahar, B.A.; Baggili, I. Duck Hunt: Memory forensics of USB attack platforms. Forensic Sci. Int. Digit.
Investig. 2021, 37, 301190. [CrossRef]

4. Mohammadmoradi, H.; Gnawali, O. Making whitelisting-based defense work against bad USB. In Proceedings of the 2nd
International Conference on Smart Digital Environment, ICSDE’18, Rabat, Morocco, 18–20 October 2018; ACM International
Conference Proceeding Series; ACM: New York, NY, USA, 2018; pp. 127–134. [CrossRef]

5. Liu, H.; Spolaor, R.; Turrin, F.; Bonafede, R.; Conti, M. USB powered devices: A survey of side-channel threats and countermea-
sures. High Confid. Comput. 2021, 1, 100007. [CrossRef]

6. Dieter, G. Computer Security, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011.
7. Karantzas, G. Forensic Log Based Detection for Keystroke Injection ‘BadUsb’ Attacks. arXiv 2023, arXiv:2302.04541.
8. Lawal, D.; Gresty, D.; Gan, D.; Hewitt, L. Have You Been Framed and Can You Prove It? In Proceedings of the 2021 44th

International Convention on Information, Communication and Electronic Technology, MIPRO, Opatija, Croatia, 27 September–1
October 2021; pp. 1236–1241. [CrossRef]

https://github.com/itsecprof/keystroke-payload
https://doi.org/10.1109/SP.2018.00037
https://doi.org/10.1109/SPW53761.2021.00053
https://doi.org/10.1016/j.fsidi.2021.301190
https://doi.org/10.1145/3289100.3289121
https://doi.org/10.1016/j.hcc.2021.100007
https://doi.org/10.23919/MIPRO52101.2021.9596889

Electronics 2023, 12, 2894 27 of 29

9. Dumitru, R.; Wabnitz, A.; Genkin, D.; Yarom, Y. The Impostor Among US(B): Off-Path Injection Attacks on USB Communications.
arXiv 2022, arXiv:2211.01109.

10. Nissim, N.; Yahalom, R.; Elovici, Y. USB-based attacks. Comput. Secur. 2017, 70, 675–688. [CrossRef]
11. Arora, L.; Thakur, N.; Yadav, S.K. USB rubber ducky detection by using heuristic rules. In Proceedings of the IEEE 2021

International Conference on Computing, Communication, and Intelligent Systems, ICCCIS, Greater Noida, India, 19–20 February
2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 156–160. [CrossRef]

12. Mamchenko, M.; Sabanov, A. Exploring the taxonomy of USB-based attacks. In Proceedings of the 2019 12th International
Conference “Management of Large-Scale System Development” (MLSD), Moscow, Russia, 1–3 October 2019; pp. 1–4. [CrossRef]

13. Lee, K.; Yim, K. Vulnerability Analysis and Security Assessment of Secure Keyboard Software to Prevent PS/2 Interface Keyboard
Sniffing. Sensors 2023, 23, 3501. [CrossRef]

14. Farhi, N.; Nissim, N.; Elovici, Y. Malboard: A novel user keystroke impersonation attack and trusted detection framework based
on side-channel analysis. Comput. Secur. 2019, 85, 240–269. [CrossRef]

15. Ramadhanty, A.D.; Budiono, A.; Almaarif, A. Implementation and Analysis of Keyboard Injection Attack using USB Devices in
Windows Operating System. In Proceedings of the 2020 3rd International Conference on Computer and Informatics Engineering,
IC2IE, Yogyakarta, Indonesia, 15–16 September 2020; pp. 449–454. [CrossRef]

16. Negi, A.; Rathore, S.S.; Sadhya, D. USB Keypress Injection Attack Detection via Free-Text Keystroke Dynamics. In Proceedings of
the 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 26–27 August 2021;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2021; pp. 681–685. [CrossRef]

17. Borges, C.D.B.; de Araujo, J.R.B.; de Couto, R.L.; Almeida, A.M.A. Keyblock: A software architecture to prevent keystroke
injection attacks. In Proceedings of the XVII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais,
Brasilia, Brazil, 6–9 November 2017; pp. 518–524. [CrossRef]

18. Tian, D.J.; Bates, A.; Butler, K. Defending against malicious USB firmware with GoodUSB. In Proceedings of the 31st Annual
Computer Security Applications Conference, ACSAC ‘15, Los Angeles, CA, USA, 7–11 December 2015; ACM: New York, NY,
USA, 2015; pp. 261–270. [CrossRef]

19. Wahanani, H.; Idhom, M.; Kurniawan, D.R. Exploit remote attack test in operating system using arduino micro. J. Phys. Conf. Ser.
2020, 1569, 022038. [CrossRef]

20. Clements, A. Principles of Computer Hardware, 4th ed.; Oxford University Press: Oxford, UK, 2006.
21. Faircloth, J. Client-side attacks and social engineering. In Penetration Tester’s Open Source Toolkit; Elsevier: Amsterdam, The

Netherlands, 2017. [CrossRef]
22. Sun, C.; Lu, J.; Liu, Y. Analysis and Prevention of Information Security of USB. In Proceedings of the 2021 International Conference

on Electronic Information Engineering and Computer Science, EIECS, Changchun, China, 23–26 September 2021; pp. 25–32.
[CrossRef]

23. Cronin, P.; Gao, X.; Wang, H.; Cotton, C. Time-Print: Authenticating USB Flash Drives with Novel Timing Fingerprints. In
Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; pp. 1002–1017.
[CrossRef]

24. Eswar, P.V.D.S. Microcontroller Manipulated As Human Interface Device Performing Keystroke Injection Attack. Int. Res. J. Mod.
Eng. Technol. Sci. 2021, 3, 1230–1233.

25. Muslim, A.A.; Budiono, A.; Almaarif, A. Implementation and Analysis of USB based Password Stealer using PowerShell in
Google Chrome and Mozilla Firefox. In Proceedings of the 2020 3rd International Conference on Computer and Informatics
Engineering, IC2IE, Yogyakarta, Indonesia, 15–16 September 2020; pp. 421–426. [CrossRef]

26. Ferreira, J.L.S.; Amorim, M.F.; Altafim, R.A.P. Biometric patterns recognition using keystroke dynamics. In Proceedings of the
XVIII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais, Natal, Brazil, 22–25 October 2018.

27. Bojović, P.D.; Bojović, P.D.; Bašičević, I.; Pilipović, M.; Bojović, Ž.; Bojović, M. The Rising Threat of Hardware Attacks: USB
Keyboard Attack Case Study. IEEE Secur. Priv. 2020, preprint. Available online: https://www.researchgate.net/publication/3595
09222 (accessed on 19 June 2023).

28. Ahire, J.; Shembekar, A.; Makadia, K.; Bhokare, D. Exploring Attack Vectors Using Single Board Computers. Int. Res. J. Mod. Eng.
Technol. Sci. 2022, 4, 2911–2914.

29. Nicho, M.; Sabry, I. Threat and Vulnerability Modelling of Malicious Human Interface Devices. Technol. Eng. Math. (EPSTEM)
2022, 21, 241–247. Available online: www.isres.org (accessed on 19 May 2023). [CrossRef]

30. Neuner, S.; Voyiatzis, A.G.; Fotopoulos, S.; Mulliner, C.; Weippl, E.R. Usblock: Blocking USB-Based keypress injection attacks. In
Data and Applications Security and Privacy XXXII; LNCS; Springer International Publishing: Cham, Switzerland, 2018; Volume 10980.
[CrossRef]

31. Kang, M.; Saiedian, H. USBWall: A novel security mechanism to protect against maliciously reprogrammed USB devices. Inf.
Secur. J. 2017, 26, 166–185. [CrossRef]

32. Wang, Z. Poisoning Attacks on Learning-Based Keystroke Authentication Poisoning Attacks on Learning-Based Keystroke Authen-
tication and a Residue Feature Based Defense and a Residue Feature Based Defense. Available online: https://digitalcommons.
latech.edu/dissertations (accessed on 19 May 2023).

33. Szoke, D. Model Poisoning in Federated Learning: Collusive and Individual Attacks. Ph.D. Thesis, The Ohio State University,
Columbus, OH, USA, 2023.

https://doi.org/10.1016/j.cose.2017.08.002
https://doi.org/10.1109/ICCCIS51004.2021.9397064
https://doi.org/10.1109/MLSD.2019.8910969
https://doi.org/10.3390/s23073501
https://doi.org/10.1016/j.cose.2019.05.008
https://doi.org/10.1109/IC2IE50715.2020.9274631
https://doi.org/10.1109/spin52536.2021.9566083
https://doi.org/10.5753/sbseg.2017.19526
https://doi.org/10.1145/2818000.2818040
https://doi.org/10.1088/1742-6596/1569/2/022038
https://doi.org/10.1016/b978-0-12-802149-1.00008-7
https://doi.org/10.1109/EIECS53707.2021.9588135
https://doi.org/10.1109/SP46214.2022.9833595
https://doi.org/10.1109/IC2IE50715.2020.9274566
https://www.researchgate.net/publication/359509222
https://www.researchgate.net/publication/359509222
www.isres.org
https://doi.org/10.55549/epstem.1225679
https://doi.org/10.1007/978-3-319-95729-6_18
https://doi.org/10.1080/19393555.2017.1329461
https://digitalcommons.latech.edu/dissertations
https://digitalcommons.latech.edu/dissertations

Electronics 2023, 12, 2894 28 of 29

34. Porwik, P.; Doroz, R.; Wesolowski, T.E. Dynamic keystroke pattern analysis and classifiers with competence for user recognition.
Appl. Soft Comput. 2021, 99, 106902. [CrossRef]

35. Hazan, I.; Margalit, O.; Rokach, L. Supporting unknown number of users in keystroke dynamics models. Knowl. Based Syst. 2021,
221, 106982. [CrossRef]

36. Lu, X.; Zhang, S.; Hui, P.; Lio, P. Continuous authentication by free-text keystroke based on CNN and RNN. Comput. Secur. 2020,
96, 101861. [CrossRef]

37. Roy, S.; Roy, U.; Sinha, D.; Pal, R.K. Imbalanced ensemble learning in determining Parkinson’s disease using Keystroke dynamics.
Expert Syst. Appl. 2022, 217, 119522. [CrossRef]

38. Chang, H.-C.; Li, J.; Wu, C.-S.; Stamp, M. Machine Learning and Deep Learning for Fixed-Text Keystroke Dynamics. arXiv 2021,
arXiv:2107.00507.

39. Ibrahim, M.; Abdelraouf, H.; Amin, K.M.; Semary, N. Keystroke dynamics based user authentication using Histogram Gradient
Boosting. Int. J. Comput. Inf. IJCI 2023, 10, 36–53. [CrossRef]

40. Nnamoko, N.; Barrowclough, J.; Liptrott, M.; Korkontzelos, I. A behaviour biometrics dataset for user identification and
authentication. Data Brief 2022, 45, 108728. [CrossRef]

41. Parkinson, S.; Khan, S.; Crampton, A.; Xu, Q.; Xie, W.; Liu, N.; Dakin, K. Password policy characteristics and keystroke biometric
authentication. IET Biom. 2021, 10, 163–178. [CrossRef]

42. Zeid, E.S.S.; ElKamar, R.A.; Hassan, S.I. Fixed-Text vs. Free-Text Keystroke Dynamics for User Authentication. Eng. Res. J. Fac.
Eng. 2022, 51, 95–104.

43. Mondal, S.; Bours, P. A study on continuous authentication using a combination of keystroke and mouse biometrics. Neurocom-
puting 2016, 230, 1–22. [CrossRef]

44. Ciaramella, G.; Iadarola, G.; Martinelli, F.; Mercaldo, F.; Santone, A. Continuous and Silent User Authentication Through Mouse
Dynamics and Explainable Deep Learning: A Proposal. In Proceedings of the 2022 IEEE International Conference on Big Data,
(Big Data 2022), Osaka, Japan, 17–20 December 2022; pp. 6628–6630. [CrossRef]

45. Shadman, R.; Wahab, A.A.; Manno, M.; Lukaszewski, M.; Hou, D.; Hussain, F. Keystroke Dynamics: Concepts, Techniques, and
Applications. arXiv 2023, arXiv:2303.04605.

46. Iapa, A.C.; Cretu, V.I. Modified Distance Metric That Generates Better Performance for the Authentication Algorithm Based on
Free-Text Keystroke Dynamics. In Proceedings of the SACI 2021—IEEE 15th International Symposium on Applied Computational
Intelligence and Informatics, Timisoara, Romania, 19–21 May 2021; pp. 455–460. [CrossRef]

47. Eizaguirre-Peral, I.; Segurola-Gil, L.; Zola, F. Conditional Generative Adversarial Network for keystroke presentation attack.
arXiv 2022, arXiv:2212.08445.

48. Kochegurova, E.A.; Zateev, R.P. Hidden Monitoring Based on Keystroke Dynamics in Online Examination System. Program.
Comput. Softw. 2022, 48, 385–398. [CrossRef]

49. Bernatavičienė, J. Proceedings of the 13th Conference on “Data analysis methods for software systems”. Vilnius Univ. Proc. 2022,
31, 1–110. [CrossRef]

50. Eizagirre, I.; Segurola, L.; Zola, F.; Orduna, R. Keystroke Presentation Attack: Generative Adversarial Networks for Replacing
User Behaviour. In Proceedings of the 2022 European Symposium on Software Engineering, ESSE ’22, Rome, Italy, 27–29 October
2022; Association for Computing Machinery: New York, NY, USA, 2023; pp. 119–126. [CrossRef]

51. Wahab, A.; Hou, D. When Simple Statistical Algorithms Outperform Deep Learning: A Case of Keystroke Dynamics. In
Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods ICPRAM, Lisbon, Portugal,
22–24 February 2023; pp. 363–370. [CrossRef]

52. Kar, S.; Bamotra, A.; Duvvuri, B.; Mohanan, R. KeyDetect—Detection of anomalies and user based on Keystroke Dynamics. arXiv
2023, arXiv:2304.03958.

53. Tewani, A. Keystroke Dynamics based Recognition Systems using Deep Keystroke Dynamics based Recognition Systems using
Deep Learning: A Survey Learning: A Survey. techRxiv 2022, preprint. [CrossRef]

54. Toosi, R.; Akhaee, M.A. Time–frequency analysis of keystroke dynamics for user authentication. Future Gener. Comput. Syst. 2021,
115, 438–447. [CrossRef]

55. Killourhy, K.S.; Maxion, R.A. Comparing anomaly-detection algorithms for keystroke dynamics. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, Lisbon, Portugal, 29 June–2 July 2009; pp. 125–134. [CrossRef]

56. Killourhy, K.S.; Maxion, R.A. Free vs. transcribed text for keystroke-dynamics evaluations. In LASER ‘12: Proceedings of the 2012
Workshop on Learning from Authoritative Security Experiment Results, Arlington, VA, USA, 18–19 July 2012; ACM International
Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2012; pp. 1–8. [CrossRef]

57. González, N.; Calot, E.P. Finite context modeling of keystroke dynamics in free text. In Proceedings of the 2015 International
Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 20–22 September 2015; Lecture Notes in
Informatics (LNI), Proceedings-Series of the Gesellschaft fur Informatik (GI); Gesellschaft fur Informatik: Bonn, Germany, 2015;
Volume P-245. [CrossRef]

58. Banerjee, R.; Feng, S.; Kang, J.S.; Choi, Y. Keystroke Patterns as prosody in digital writings: A case study with deceptive reviews
and essays. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
26–28 October 2014; pp. 1469–1473. [CrossRef]

https://doi.org/10.1016/j.asoc.2020.106902
https://doi.org/10.1016/j.knosys.2021.106982
https://doi.org/10.1016/j.cose.2020.101861
https://doi.org/10.1016/j.eswa.2023.119522
https://doi.org/10.21608/ijci.2022.155605.1081
https://doi.org/10.1016/j.dib.2022.108728
https://doi.org/10.1049/bme2.12017
https://doi.org/10.1016/j.neucom.2016.11.031
https://doi.org/10.1109/BigData55660.2022.10020235
https://doi.org/10.1109/SACI51354.2021.9465601
https://doi.org/10.1134/S0361768822060044
https://doi.org/10.15388/DAMSS.13.2022
https://doi.org/10.1145/3571697.3571714
https://doi.org/10.5220/0011684100003411
https://doi.org/10.36227/techrxiv.19532269.v1
https://doi.org/10.1016/j.future.2020.09.027
https://doi.org/10.1109/DSN.2009.5270346
https://doi.org/10.1145/2379616.2379617
https://doi.org/10.1109/BIOSIG.2015.7314606
https://doi.org/10.3115/v1/d14-1155

Electronics 2023, 12, 2894 29 of 29

59. González, N.; Calot, E.P. Dataset of human-written and synthesized samples of keystroke dynamics features for free-text inputs.
Data Brief 2023, 48, 109125. [CrossRef]

60. Tewari, A.; Verma, P. An Improved User Identification based on Keystroke-Dynamics and Transfer Learning. Webology 2022, 19,
5369–5387. [CrossRef]

61. Nirmal, J.R.; Kiran, R.B.; Hemamalini, V. Improvised multi-factor user authentication mechanism using defense in depth strategy
with integration of passphrase and keystroke dynamics. Mater. Today Proc. 2022, 62, 4837–4843. [CrossRef]

62. TypingDNA. Available online: www.typingdna.com/ (accessed on 19 May 2023).
63. Fernando, K.J.L.; Jayalath, W.J.D.L.D.D.; Ranasinghe, A.D.R.N.; Bandara, P.K.B.P.S.; De Silva, H. Innovative, Integrated and

Interactive (3I) LMS for Learners and Trainers. In Proceedings of the ICAC 2020—2nd International Conference on Advancements
in Computing, Malabe, Sri Lanka, 1–11 December 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA,
2020; pp. 37–42. [CrossRef]

64. Chen, C.H. Fuzzy Logic and Neural Network Handbook; McGraw-Hill, Inc.: New York, NY, USA, 1990.
65. Kasprowski, P.; Borowska, Z.; Harezlak, K. Biometric Identification Based on Keystroke Dynamics. Sensors 2022, 22, 3158.

[CrossRef] [PubMed]
66. Shan, X.; Ma, T.; Gu, A.; Cai, H.; Wen, Y. TCRNet: Make Transformer, CNN and RNN Complement Each Other. In Proceedings of

the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27
May 2022; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2022; pp. 1441–1445. [CrossRef]

67. Olah, C. LSTMs. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on 29 May 2023).
68. Dhakal, V.; Feit, A.M.; Kristensson, P.O.; Oulasvirta, A. Observations on typing from 136 million keystrokes. In Proceedings of

the CHI ‘18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26
April 2018. [CrossRef]

69. Mishra, A. IIITBh-Keystrokes Database. Available online: https://github.com/aroonav/IIITBh-keystroke (accessed on 19
May 2023).

70. Buckley, O.; Hodges, D.; Windle, J.; Earl, S. CLICKA: Collecting and leveraging identity cues with keystroke dynamics. Comput.
Secur. 2022, 120, 102780. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.dib.2023.109125
https://doi.org/10.14704/WEB/V19I1/WEB19360
https://doi.org/10.1016/j.matpr.2022.03.439
www.typingdna.com/
https://doi.org/10.1109/ICAC51239.2020.9357149
https://doi.org/10.3390/s22093158
https://www.ncbi.nlm.nih.gov/pubmed/35590848
https://doi.org/10.1109/icassp43922.2022.9747716
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1145/3173574.3174220
https://github.com/aroonav/IIITBh-keystroke
https://doi.org/10.1016/j.cose.2022.102780

	Introduction
	Related Work
	USB Imperfections
	USB Attacks
	Keystroke Dynamics and Its Circumvention
	User Keypress Data and Their Minimum

	Method for Keystroke-Injection Detection and Payload Generation
	Keystroke-Injection Detection
	Implementation of Keystroke-Payload Generation

	Results and Discussion
	Fixed-Text Keystroke Dynamics
	Free-Text Keystroke Dynamics
	Comparison with the Previous Results Obtained

	Conclusions
	Limitations and Future Research
	References

