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Abstract: Underwater vision technology is of great significance in marine investigation. However,
the complex underwater environment leads to some problems, such as color deviation and high
noise. Therefore, underwater image enhancement has been a focus of the research community.
In this paper, a new underwater image enhancement method is proposed based on a generative
adversarial network (GAN). We embedded the channel attention mechanism into U-Net to improve
the feature utilization performance of the network and used the generator to estimate the parameters
of the simplified underwater physical model. At the same time, the adversarial loss, the perceptual
loss, and the global loss were fused to train the model. The effectiveness of the proposed method
was verified by using four image evaluation metrics on two publicly available underwater image
datasets. In addition, we compared the proposed method with some advanced underwater image
enhancement algorithms under the same experimental conditions. The experimental results showed
that the proposed method demonstrated superiority in terms of image color correction and image
noise suppression. In addition, the proposed method was competitive in real-time processing speed.

Keywords: underwater image enhancement; generative adversarial network (GAN); channel
attention mechanism; underwater physical model

1. Introduction

The vision-based autonomous underwater vehicle (AUV) has become a well-known
tool for exploring the natural resources in oceans. It is an intuitive way to explore the seabed
based on the underwater images captured by the AUV [1–3]. As compared with air images,
the complex underwater environment, such as suspended matter underwater, forward
scattering, and backward scattering, leads to blurring and poor contrast in underwater
images [4]. Furthermore, different colors in light are attenuated to a different degree in
water as longer wavelengths are seriously attenuated. This leads to the color deviation
in underwater images [5,6]. All these negative effects limit the application of underwa-
ter images in marine biological research [7] and marine monitoring [8]. Therefore, the
development of underwater image enhancement algorithms has been a focus of research
community for improving underwater vision technologies [9].

The commonly used image enhancement algorithms, such as adaptive histogram
equalization (AHE) [10] and automatic white balance [11], improve the global contrast of
underwater images in some scenes [12]. However, these algorithms have some limitations
when dealing with severely degraded underwater images. Considering the characteristics
of underwater imaging, some researchers have established underwater physical models to
deduce real images in reverse. Jaffe et al. [13] established a physical model of underwater
optical imaging based on the prior knowledge and restored the underwater images through
direct transmission, forward scattering, and backward scattering. However, it is noteworthy
that the parameters of the imaging model are difficult to estimate due to the dynamic
environment. The effective solution is to estimate the model based on many experiments.
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He et al. proposed a dark channel priority algorithm (DCP) [14] for image defogging based
on many experimental statistics. Yang et al. [15] estimated the prior parameters by counting
the pixel distribution of a large number of underwater images. These works show that it is
very important to estimate the parameters of physical model efficiently and accurately for
performing image enhancement [16].

Recently, the deep learning methods have been widely used for accomplishing com-
puter vision tasks. In order to perform underwater image enhancement, some models
based on convolutional neural networks (CNNs) have been trained by using a large number
of data and achieved good performance [17]. Wang et al. [18] proposed an underwater
image enhancement network, which corrected and defogged the image by using two sub-
networks, thus addressing the color deviation and blur. Barbosa et al. [19] trained a CNN
based on a set of image quality indicators for improving the image contrast and suppressing
the image noise. Due to their powerful learning ability, CNN-based methods outperform
methods based on models obtained after extensive training using specific datasets. How-
ever, when there is a big difference between the test and the train sets, its performance
declines, which may be partly due to the lack of physical model constraints [20].

The generative adversarial network (GAN) [21] was originally applied to the task of
image style transfer and then was gradually applied to different visual fields. The successful
application of GAN in many visual tasks provides a new solution to address the problem
of underwater image enhancement. Li et al. [22] proposed WaterGAN, which transferred
the style of a normal image and an underwater image to achieve the purpose of image
enhancement. Based on the CycleGAN [23], the style transfer between underwater images
and air images can be realized by using the cyclic consistent loss of two generators and
discriminators. Based on this, the conditional generative adversarial network (cGAN) [24]
only generates some specific samples based on a constraint generator, which causes cGAN
to learn the pixel-level mapping from any source domain to the desired target domain.
Therefore, cGAN can also be applied in the field of underwater image enhancement. Islam
et al. [25] built FunieGAN based on U-Net by fusing various loss functions and realized
the real-time enhancement effect. Due to a small parameter scale, the generator based on
U-Net processes images quickly, but the extracted features are not as good as the deep
network with huge parameters, and there still exists room for further improvement in
feature utilization [26].

The attention mechanism enables the network to obtain features efficiently, which
increases the practicality in many image processing tasks [27–29]. In this paper, an un-
derwater image enhancement generative adversarial network based on channel attention
mechanism and underwater physical model is proposed. In the generator, the channel
attention mechanism is embedded in a U-Net to build a fully convolutional network, which
improves the utilization of features. The improved generator is used to estimate the pa-
rameter image of the underwater physical model. On one hand, the parameter image of
the physical model is estimated by using the powerful data-driven ability of the generator,
so as to alleviate the problem that the physical model needs prior conditions or a large
number of statistical experiments. On the other hand, the problem that the generator of
GAN is highly dependent on a given dataset is solved by the physical model. We take
advantage of both sides to make up for each other's shortcomings. The contributions of
this work are summarized below.

1. The channel attention mechanism was used to recalibrate the weights of the extracted
features in the generator of the generative adversarial network, and the input features
of the reconstructed images were optimized.

2. The improved U-Net generator was used to output the parameter estimation image
of the underwater physical model, and the enhanced image was obtained by fusing
the original image with the parameter estimation image.

3. An enhancement method combining the channel attention mechanism and the un-
derwater physical model was proposed. After enhancement, the color deviation of
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the image was corrected, the colors were balanced, and the noise in the image was
suppressed. Moreover, this method was competitive in terms of real-time processing.

The rest of the paper is organized as follows. Section 2 describes the specific steps and
details of the proposed method. Section 3 analyzes and discusses the enhancement results.
Section 4 presents the conclusion.

2. Methods

The architecture of the model proposed in this paper is presented in Figure 1. In genera-
tor, U-Net [30] with a channel attention mechanism extracted features and reconstructed the
input original image. The input image and the estimated image output obtained using U-Net
were enhanced by the underwater physical model. In the discriminator, the enhanced image
was stacked with its corresponding real image for judgment. The down-sampling module
of the discriminator convolved the input and finally outputted a probability matrix, which
represented the similarity between the enhanced image and the corresponding real image.
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Figure 1. The architecture of the proposed model.

2.1. Generator Network

In Figure 2, the structure of the generator is embedded in the down-sampling convo-
lution layer and up-sampling transposed convolution layer of U-Net to form the CBLA
module and the TBRA module, respectively, for optimizing the extracted image features.
The generator was used to estimate the parameter estimation image of the physical model.
Afterward, the real and clear underwater image was inverted by combining the parameter
estimation image with the original underwater image.

U-Net is an encoder–decoder network that down-samples the images by using convo-
lution for obtaining low-dimensional features. Then, the network up-samples the features
based on transposed convolution to reconstruct the image. In addition, the output of
each encoder skip to its corresponding mirror module in decoder preserves the spatial
dependence of the encoder. This idea has proved to be effective [31,32].

The structure of U-Net is shown in Figure 3. The input image was reshaped to
256× 256× 3. The low-dimensional feature map of 8× 8× 256 was obtained by using
five encoding modules. Afterward, the low-dimensional features and the output of the
corresponding decoding module were stacked and used as the input of the decoding
module. The encoding module included a 2-D convolution layer with 4× 4 kernels and
two steps, a batch normalization layer (BN) [33], a leaky ReLU activation function [34], and
a channel attention mechanism module. The decoding module included a 2-D transposed
convolution layer with 4× 4 kernels and two steps, a batch normalization layer, a ReLU
activation function [34], and a channel attention mechanism module.
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Figure 3. Specific structural parameters of U-Net based on a channel attention mechanism.

In this model, the channel attention mechanism was added to each convolutional
layer and transposed convolutional layer of U-Net as an additional layer of the network to
optimize the input features. The specific structure of the module is shown in Figure 4.

The channel attention mechanism first utilized global average pooling to generate
channel statistics and then utilized fully connected layers and a sigmoid function to capture
channel dependencies [35]. The specific method was to learn the generation of chan-
nel weights. The channel attention mechanism could perform feature recalibration and
strengthen the feature representation of the network to optimize the parameter estimation
of the subsequent physical model.
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The first step was the extraction operation, in which an H ×W × C feature with a
height of H, a width of W, and a channel of C was transformed into 1× 1× C feature with
a global receptive field to a certain extent. The global average pooling is expressed as

zc = FGAP(xc) =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (1)

where FGAP(xc) represents the global average pooling and xc(i, j) represents the value of
the characteristic of the c-th channel at (i, j).

Second, the weight generation operation sent the global characteristics of the global
average pooling output to two fully connected layers for learning, so as to display the
correlation between the geo-modeling channels [16]. Finally, the normalized weight was
obtained by the sigmoid function. This is mathematically expressed as

s = f (W2 · δ(W1 · zc)) (2)

where f and δ represent the sigmoid function and the rectified linear unit (ReLU), respec-
tively. W1 represents the learnable parameters of the first fully connected layer, and W2
represents the learnable parameters of the second layer.

The last step was the scale operation, which weighted the generated weights to the
previous features channel by channel and completed the recalibration of the input features
on the channels. This is mathematically expressed as follows:

x̃ = Fscale(s) · x (3)

where Fscale means adjusting the height and width of s.
The output of U-Net was used as the input of an underwater physical model [13],

which is mathematically expressed as follows:

ET(u, v) = Ed(u, v) + E f (u, v) + Eb(u, v) (4)

where ET(u, v), Ed(u, v), E f (u, v), and Eb(u, v) represent the total signal received by the
camera, the direct transmission component, the forward scattering component, and the
background scattering component, respectively. Since the object was relatively close to
the camera, the forward scattering component could be ignored, and only the direct
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transmission component and the background scattering component were retained [16]. So
the underwater optical imaging model was simplified as follows:

I(x) = J(x)t(x) + B(x)(1− t(x)) (5)

where I(x) is the observed image, J(x) is the theoretically real and clear underwater image,
and B(x) represents the background light source. t(x) is the residual energy ratio after it
was captured by the camera, and it is mathematically expressed as follows:

t(x) = e−βd(x) (6)

in which β represents the attenuation coefficient of light sources with different wavelengths,
and d(x) represents the distance between the underwater scene and the camera. In order to
obtain the real underwater image, J(x) can be rewritten as follows:

J(x) =
I(x) + B(x)t(x)− B(x)

t(x)
(7)

t(x) and B(x) are used as parameters for estimating K(x) as follows:

K(x) =
1

t(x) (I(x)− B(x)) + B(x)

(I(x)− 1)
(8)

The final underwater physical model is mathematically expressed as follows:

J(x) = K(x)I(x)− K(x) + b (9)

where b is a constant, which is one by default.
Then, we use the improved U-Net to estimate K(x), so as to integrate the physical

model into the generator. In the architecture of the proposed generator, I(x) represents the
input original underwater image, K(x) represents the image generated by the generator, b
is used as a learnable parameter to fine-tune the final output result, and J(x) is the final
generated image that is sent to the discriminator along with the real sample of the original
underwater image.

2.2. Discriminator Network

In this work, we used Markovian Patch-GAN [31] as the discriminator. This discrimi-
nator is presented in Figure 5. In this structure, we stacked the enhanced image generated
by the generator and its corresponding real reference image in the dimension of the channel
and then extracted the features by down-sampling the output of the convolution module,
which is shown in CBL in Figure 5. The down-sampling module finally outputted a similar-
ity matrix, and the consistency between the images was calculated by the average value of
the similarity matrix. This network maintained a fully convolutional structure to a certain
extent and at the same time achieved the function of judging images.

The main operation of the discriminator was to transform two enhanced images of
256× 256× 3 and real reference images into images of size 256× 256× 6 by stacking and
then reduce the dimensions by using the down-sampling module for four consecutive
times. Each down-sampling module reduced the width and height of the images to half
of the original image and outputted them as a similar matrix of 16 × 16. Finally, the
module averaged the values of the matrix. The down-sampling module contained a
two-dimensional convolution layer with a kernel of 4× 4 and a step size of 2, a batch
normalization layer (BN), and a leaky-ReLU activation function.
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2.3. Loss Function

The loss function was mainly used to guide the network model parameters in the
direction of minimum loss. In this paper, we designed a loss function that integrated
the adversarial loss, the global loss, and the perceptual loss to guide the training of the
generative adversarial network.

The adversarial loss was caused by the game between the generator and discriminator.
The generator constantly updated the network parameters to generate an image consistent
with the real reference image. On the other hand, the discriminator continuously judged
whether the generated image was original or fake.

min
G

max
D

LGAN(G, D) = EX,Y[log D(Y)] +EX,Y[log(1− D(X, G(X)))] (10)

where G represents the generator, D represents the discriminator, X represents the source
domain (low-quality underwater image), and Y represents the target domain (clear under-
water image). The generator G aims to minimize the loss LGAN , while the discriminator
aims to maximize LGAN .

Many current methods show that adding L1 or L2 loss can result in the images gener-
ated by the generator having a better global similarity [31,36]. It is noteworthy that the L2
loss is less robust, and it is easier to introduce blur in the image. In this paper, the L1 loss
(global loss) had a better effect and is expressed as follows:

L1(G) = EX,Y[‖Y− G(X)‖1] (11)

The perceptual loss was beneficial for making the generator G attain the texture
information of the image. According to its calculation method, we defined the perceptual
loss Φ(). In this method, the features in the generated image and the real image were
extracted by using VGG-19. The Euclidean distance between the high-dimensional feature
maps extracted by them in block5_conv2 layer was calculated. The VGG-19 is a pre-trained
network. The perceptual loss is mathematically expressed as follows:

Lcontent = EX,Y[‖Φ(Y)−Φ(G(X))‖2] (12)
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The adversarial loss, the global loss, and the perceptual loss were combined, and the
following loss function was obtained:

G∗ = argmin
G

max
D

LGAN(G, D) + λ1L1(G) + λ2Lcontent(G) (13)

where λ1 and λ2 are hyperparameters, which are used to adjust the proportion of global loss
and perceptual loss in the loss function. In order to select the appropriate hyperparameters
so that the fusion loss could achieve the optimal effect, we referred to the previous work [25]
and determined the value range of the two hyperparameters to be (0, 1). Then, under the
same experimental conditions, we fine-tuned the parameters with a step size of 0.1 and
recorded the loss on the EUVP dataset, and the final results are shown in Figure 6. The
experiments showed that λ1 = 0.7, λ2 = 0.3 had the best effect.
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2.4. Image Evaluation Metrics

For evaluating the image quality, this study adopted well-known image evalua-
tion metrics, such as peak signal-to-noise ratio (PSNR) [17,32] and structural similarity
(SSIM) [37]. The commonly used evaluation metrics in underwater image processing in-
clude underwater image quality measure (UIQM) [38] and underwater color image quality
evaluation (UCIQE) [39].

The PSNR was obtained by calculating the mean square error (MSE) between the
generated image and the real value of the original input. This is mathematically expressed
as follows:

PSNR(x, y) = 10 log10

[
2552

MSE(x, y)

]
(14)

where x and y represent the real values of the generated image and the original image,
respectively. The MSE(x, y) represents the mean square error between the generated image
and the original image. The larger the value of PSNR, the lower was the noise in the image.

The natural image had strong correlations between each channel and each pixel value
in the channel. These correlations contained important feature information regarding the
object structure in the visual scene. The SSIM refers to the difference in brightness, contrast,
and structure between two images. The SSIM was computed by using the expression

SSIM(x, y) =

(
2µxµy + c1

µ2
x + µ2

y + c1

)(
2σxy + c2

σ2
x + σ2

y + c2

)
(15)

where x and y represent the real values of the generated image and the original image,
respectively; µx(µy) represents the average value of each channel of the image; σx(σy)
represents the variance of each channel of the image; and σxy represents the covariance
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between x and y. In addition, c1 and c2 were used to ensure the stability of the numerical
values. The larger the value of SSIM, the more similar were the structures of the two images.

The UIQM is a special metric for evaluating the underwater image quality proposed
by Panetta et al. [40]. This metric did not need the real value corresponding to the original
image. The UIQM obtained the final result by quantifying the color, sharpness, and contrast
and weighting it. This is expressed as

UIQM(x) = w1UICM(x) + w2UISM(x) + w3UIConM(x) (16)

where x represents the test image. UICM(x), UISM(x), and UIConM(x) represent the
color, definition, and contrast of the quantized image, respectively, and w1, w2, and w3
represent the weight of each component. As the value of metric became larger, the color of
the image was closer to the image in the normal state.

UCIQE is a new measurement method proposed by Yang et al. [39]. The method
compared the pixels per inch distribution of underwater images in CIELAB color space with
subjective image quality perception. This method was a linear combination of chromaticity,
saturation, and contrast, and was used to quantify the uneven color projection, blur, and
low contrast of the underwater images. The metric is mathematically expressed as follows:

UCIQE(x) = c1 × σc + c2 × conl + c3 × µs (17)

where x is the test image; σc is the standard deviation of chromaticity; conl is the bright-
ness contrast; µs is the average value of saturation; and c1, c2, and c3 are the weighting
coefficients. The larger the value of this metric was, the thicker was the color of the image.

3. Results and Discussion

In order to verify the effectiveness of the proposed method, we trained and tested it by
using two publicly available datasets, including the enhancement of the underwater visual
perception (EUVP) [25] dataset and the underwater image enhancement benchmark dataset
(UIEBD) [41]. Then, we compared the proposed method with model-based methods, such
as the depth estimation method of an underwater scene based on image blur and light
absorption (IBLA) [42], the depth of field estimation model of an underwater image based
on underwater light attenuation prior (ULAP) [43], and CBM [44]; CNN-based methods,
including WaterNet [41] and an enhanced model based on structural decomposition and
underwater imaging characteristics (UWCNN) [45]; and GAN-based methods, including
multilevel feature fusion-based conditional GAN (MLFcGAN) [46], UGAN [6], fast un-
derwater image enhancement for improved visual perception (FunieGAN) [25], based on
a physical model and a GAN network (IPMGAN) [20], and a comprehensive underwa-
ter object tracking benchmark dataset and underwater image enhancement with GAN
(CRN-UIE) [47] in terms of visual quality, quantitative criteria, and real-time performance.

3.1. Dataset Introduction

EUVP was a large dataset, which comprised 13,000 pairs of underwater images for
training and verification and 515 pairs of test images for testing the generalization ability
of the model. Seven different cameras were used in the EUVP dataset to obtain underwater
images. In addition, the dataset also included images extracted from some public videos to
adapt to a wide range of underwater scenes. This dataset mainly contained underwater
scenes with blue, green, and low brightness. Based on this dataset, we could test the ability
of color correction and brightness enhancement of the model.

The UIEBD contained 950 large-resolution underwater images. These image data
came from Google and some related papers, and after refinement, they contained different
underwater scenes, mainly statues and marine life. The corresponding reference images
were generated by using 12 different image enhancement algorithms and were selected by
pairwise comparison. Finally, 890 pairs of underwater images and 60 underwater images
without reference were obtained. This dataset mainly included blue, green, and fuzzy
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underwater scenes, which could be used for testing the ability of the color correction and
clarity improvement of the model.

3.2. Experimental Setup

The proposed method was implemented by using PyTorch (1.2.0). We used TD41-Z2
server manufactured by AMAX (Suzhou, China), with internal configurations including
CPU Intel (R) Xeon (R) Silver4210R CPU @ 2.40 GHz, NVIDIA 3090 GPU, and 256 GB RAM.
The network was trained for 400 epochs on the EUVP and UIEBD datasets. During the
training process, we used the batch size of 64, an Adam optimizer, an initial learning rate
of 0.001, and an exponential attenuation rate, and the input image size was adjusted to
256× 256.

3.3. Evaluation of Visual Quality

First, we evaluated the image quality from the visual aspect. We randomly selected
five images from the training sets of the two aforementioned datasets and analyzed them
by comparing the original input image, the real reference image, and the enhanced image.
Some example images are shown in Figure 7.
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From the EUVP dataset, the real color of the enhanced image was restored, the color
deviation of blue and green was solved, and the brightness was improved to a certain
extent. However, the color concentration was not as good as that of the real reference
image. In the UIEBD dataset, in addition to the correction of the color deviation, it had a
certain effect on image defogging, but it lacked improvements in color saturation, and the
enhancement effect of some bright areas in the image required improvement.

The proposed method was compared with 10 advanced underwater image enhance-
ment algorithms. For the models that required training, such as WaterNet [41], CRN-
UIE [47], etc., we trained and verified them based on the training sets of EUVP and UIEBD
according to the network structure and training parameter settings described in this work
and randomly selected five images from the two test sets for performing the analysis. The
corresponding results are shown in Figures 8 and 9.



Electronics 2023, 12, 2882 11 of 18

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 7. Results of the proposed model. A few sample images were randomly selected from EUVP 
and UIEBD. 

The proposed method was compared with 10 advanced underwater image enhance-
ment algorithms. For the models that required training, such as WaterNet [41], CRN-UIE 
[47], etc., we trained and verified them based on the training sets of EUVP and UIEBD 
according to the network structure and training parameter settings described in this work 
and randomly selected five images from the two test sets for performing the analysis. The 
corresponding results are shown in Figures 8 and 9. 

 
Figure 8. EUVP dataset: comparison results of different image enhancement algorithms. 

As shown in Figure 8, in the EUVP dataset, the original image had some problems, 
such as the green color, the blue color, and low brightness. The IBLA and ULAP methods 
based on the physical model improved the brightness, but the color deviation was not 
corrected completely. The images generated by MLFcGAN, UGAN, and FunieGAN based 
on GAN had higher contrast. However, the images were still green. The image enhanced 
by CBM was different from the reference image, but the visual performance was better, 
which may have been due to the fact that CBM was based on morphological operations 
without a reference image. The brightness of the UWCNN-enhanced image was obviously 
improved, but there was a phenomenon of supersaturation. The image generated by CRN-
UIE was closer to the reference image. The proposed method and WaterNet had better 

Figure 8. EUVP dataset: comparison results of different image enhancement algorithms.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

performance in color deviation correction, the proposed method was better in brightness 
improvement, and there was room for further improvement in color density. 

 
Figure 9. UIEBD: comparison results of different underwater image enhancement algorithms. 

As shown in Figure 9, based on the UIEBD dataset, the color supersaturation problem 
of the IBLA and ULAP methods may have been due to the serious degradation of the 
dataset. This led to inaccurate prior parameter estimation, when these methods generated 
transmission images. The CBM method used the morphological processing for restraining 
the problem of supersaturation. The WaterNet and MLFcGAN had some correction effects 
on color deviation, but they were not good enough in terms of defogging. There was a 
certain difference between the images generated by UWCNN and the reference image, 
which may have been due to insufficient training epochs. UGAN and IPMGAN were su-
perior to other methods in image defogging. Our method was similar to CRN-UIE in color 
correction but had certain advantages in contrast enhancement. The method may have 
had the problem of background color deviation when enhancing low-brightness images, 
and the defogging effect was not particularly ideal. 

3.4. Quantization Comparison of Enhanced Images 
To verify the generalization performance of different methods based on EUVP da-

tasets, the advanced underwater image enhancement methods were learned by using the 
training set and tested by the standard test set provided by EUVP. The corresponding 
results are shown in Table 1, where red indicates the best result, and blue indicates the 
suboptimal result. The former indicates the mean, and the latter indicates the variance in 
brackets. The symbol “↑” means that the larger the metric, the higher the image quality. 

Table 1. Underwater image quality evaluation of different enhancement methods on EUVP. 

Method PSNR (dB)↑ SSIM ↑ UIQM ↑ UCIQE ↑ 
Original image (17.27, 2.88) (0.62, 0.07) (2.67, 0.52) (0.57, 0.05) 

Reference image - - (2.88, 0.54) (0.59, 0.05) 
IBLA [42] (22.11, 4.72) (0.73, 0.14) (2.16, 0.56) (0.62, 0.05) 
ULAP [43] (21.92, 2.54) (0.72, 0.09) (2.17, 0.56) (0.61, 0.04) 
CBM [44] (21.22, 2.96) (0.72, 0.07) (2.78, 0.41) (0.63, 0.03) 

WaterNet [41] (24.06, 3.71) (0.78, 0.07) (3.07, 0.38) (0.60, 0.03) 
UWCNN [45] (20.02, 3.42) (0.71, 0.09) (3.02, 0.24) (0.63, 0.05) 

MLFcGAN [46] (25.52, 2.53) (0.76, 0.07) (2.91, 0.46) (0.59, 0.04) 
UGAN [6] (26.55, 3.16) (0.81, 0.05) (2.96, 0.43) (0.59, 0.05) 

FunieGAN [25] (25.46, 3.03) (0.77, 0.06) (2.96, 0.41) (0.59, 0.04) 
IPMGAN [20] (23.54, 3.11) (0.78, 0.07) (3.08, 0.36) (0.58, 0.03) 
CRN-UIE [47] (25.58, 2.98) (0.79, 0.06) (3.11, 0.26) (0.61, 0.03) 

Figure 9. UIEBD: comparison results of different underwater image enhancement algorithms.

As shown in Figure 8, in the EUVP dataset, the original image had some problems,
such as the green color, the blue color, and low brightness. The IBLA and ULAP methods
based on the physical model improved the brightness, but the color deviation was not
corrected completely. The images generated by MLFcGAN, UGAN, and FunieGAN based
on GAN had higher contrast. However, the images were still green. The image enhanced by
CBM was different from the reference image, but the visual performance was better, which
may have been due to the fact that CBM was based on morphological operations without a
reference image. The brightness of the UWCNN-enhanced image was obviously improved,
but there was a phenomenon of supersaturation. The image generated by CRN-UIE was
closer to the reference image. The proposed method and WaterNet had better performance
in color deviation correction, the proposed method was better in brightness improvement,
and there was room for further improvement in color density.

As shown in Figure 9, based on the UIEBD dataset, the color supersaturation problem
of the IBLA and ULAP methods may have been due to the serious degradation of the
dataset. This led to inaccurate prior parameter estimation, when these methods generated
transmission images. The CBM method used the morphological processing for restraining
the problem of supersaturation. The WaterNet and MLFcGAN had some correction effects
on color deviation, but they were not good enough in terms of defogging. There was a
certain difference between the images generated by UWCNN and the reference image,
which may have been due to insufficient training epochs. UGAN and IPMGAN were
superior to other methods in image defogging. Our method was similar to CRN-UIE in
color correction but had certain advantages in contrast enhancement. The method may
have had the problem of background color deviation when enhancing low-brightness
images, and the defogging effect was not particularly ideal.
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3.4. Quantization Comparison of Enhanced Images

To verify the generalization performance of different methods based on EUVP datasets,
the advanced underwater image enhancement methods were learned by using the training
set and tested by the standard test set provided by EUVP. The corresponding results are
shown in Table 1, where red indicates the best result, and blue indicates the suboptimal
result. The former indicates the mean, and the latter indicates the variance in brackets. The
symbol “↑” means that the larger the metric, the higher the image quality.

Table 1. Underwater image quality evaluation of different enhancement methods on EUVP.

Method PSNR (dB) ↑ SSIM ↑ UIQM ↑ UCIQE ↑
Original image (17.27, 2.88) (0.62, 0.07) (2.67, 0.52) (0.57, 0.05)

Reference image - - (2.88, 0.54) (0.59, 0.05)
IBLA [42] (22.11, 4.72) (0.73, 0.14) (2.16, 0.56) (0.62, 0.05)
ULAP [43] (21.92, 2.54) (0.72, 0.09) (2.17, 0.56) (0.61, 0.04)
CBM [44] (21.22, 2.96) (0.72, 0.07) (2.78, 0.41) (0.63, 0.03)

WaterNet [41] (24.06, 3.71) (0.78, 0.07) (3.07, 0.38) (0.60, 0.03)
UWCNN [45] (20.02, 3.42) (0.71, 0.09) (3.02, 0.24) (0.63, 0.05)

MLFcGAN [46] (25.52, 2.53) (0.76, 0.07) (2.91, 0.46) (0.59, 0.04)
UGAN [6] (26.55, 3.16) (0.81, 0.05) (2.96, 0.43) (0.59, 0.05)

FunieGAN [25] (25.46, 3.03) (0.77, 0.06) (2.96, 0.41) (0.59, 0.04)
IPMGAN [20] (23.54, 3.11) (0.78, 0.07) (3.08, 0.36) (0.58, 0.03)
CRN-UIE [47] (25.58, 2.98) (0.79, 0.06) (3.11, 0.26) (0.61, 0.03)

Ours (26.93, 3.22) (0.79, 0.06) (3.13, 0.38) (0.59, 0.03)

According to the comparison results based on PSNR and SSIM, which paid attention
to image similarity, our method achieved the optimal and suboptimal results, respectively.
On one hand, the channel attention mechanism improved the utilization performance of
the features. On the other hand, the fusion loss function enhanced the texture details and
suppressed noise. The processing results of UGAN were also outstanding as the mapping
relationship was excellent, which caused the generated image to be closest to the reference
image. In terms of unreferenced UIQM and UCIQE, the method proposed in this paper
had a remarkable effect on UIQM considering underwater characteristics because of the
underwater physical model. In terms of UCIQE, the proposed method had no advantage
because the color of some areas in the enhanced image was weak.

In order to verify the generalization performance of different methods on UIEBD,
we used 60 unreferenced underwater images provided by UIEBD. As these 60 images
were more degraded as compared with the 890 trained images, there were no clear and
referenceable images for the time being. Therefore, only UIQM and UCIQE metrics were
used for performing comparison. The results are shown in Table 2, where red indicates
the best result, and blue indicates the suboptimal result. The former indicates the mean,
and the latter indicates the variance in brackets. The symbol “↑” means that the larger the
metric, the higher the image quality.

The comparison results show that WaterNet performed best on UIQM, which may
have been due to the fact that it used different image enhancement methods to fuse images,
so that the best results could be achieved by learning the color, brightness, and contrast of
the images through CNNs. However, the proposed method had better robustness when
facing different underwater scenes due to the existence of underwater physical models, so
it achieved suboptimal results. Based on UCIQE, the image color was heavy because of
supersaturation, so the value of IBLA was high, but the visual quality was defective. On
the other hand, because of the morphological processing of CBM, the visual performance
was good, and the evaluation metric also reached the best result. However, the color of the
image generated by the proposed method was light, so there was a slight gap in UCIQE as
compared with the method based on the physical model.
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Table 2. Underwater image quality evaluation of different enhancement methods on UIEBD.

Method UIQM ↑ UCIQE ↑
Original image (2.163, 0.631) (0.517, 0.064)

IBLA [42] (2.132, 0.567) (0.584, 0.064)
ULAP [43] (1.807, 0.702) (0.565, 0.068)
CBM [44] (2.718, 0.508) (0.635, 0.031)

WaterNet [41] (2.887, 0.374) (0.570, 0.033)
UWCNN [45] (2.789, 0.732) (0.623, 0.039)

MLFcGAN [46] (2.622. 0.473) (0.589, 0.052)
UGAN [6] (2.574, 0.571) (0.568, 0.044)

FunieGAN [25] (2.775, 0.512) (0.573, 0.057)
IPMGAN [20] (2.782, 0.611) (0.574, 0.062)
CRN-UIE [47] (2.788, 0.713) (0.591, 0.044)

Ours (2.789, 0.622) (0.579, 0.043)

To evaluate the performance of the model, we performed five-fold cross-validation on
EUVP and UIEBD datasets. We randomly divided all the data into five parts, one of which
was used as the test set and the rest as the training set, and exchanged them in sequence.
The specific results of the mean and standard deviation (SD) in five experiments are shown
in Tables 3 and 4.

Table 3. Five-fold cross-validation on EUVP dataset.

Fold PSNR (dB) SSIM UIQM UCIQE

1 26.88 0.77 3.15 0.57
2 25.74 0.81 3.11 0.58
3 26.99 0.79 3.09 0.57
4 26.79 0.79 3.14 0.59
5 27.01 0.78 3.12 0.59

Average 26.68 0.79 3.12 0.58
SD 0.53 0.02 0.02 0.01

Table 4. Five-fold cross-validation on UIEBD dataset.

Fold PSNR (dB) SSIM UIQM UCIQE

1 23.21 0.68 2.67 0.56
2 25.86 0.62 2.78 0.58
3 26.01 0.71 2.73 0.55
4 23.17 0.74 2.59 0.57
5 24.58 0.69 2.77 0.57

Average 24.56 0.68 2.71 0.57
SD 1.37 0.04 0.08 0.01

Since the images in the same dataset did not have significant differences with each
other, our model results were relatively stable via random partitioning.

Finally, we compared the various algorithms in Table 1 using the Iman–Davenport test
method in the scmamp package proposed by Calvo et al. [48], and the p-values are shown
in Table 5. Compared with other methods, our model did not generate significant results.

Table 5. Different test methods using p-value statistics on two datasets.

Without Our Method With Our Method

EUVP 4.08 × 10−1 3.26 × 10−1

UIEBD 1.49 × 10−1 2.15 × 10−1
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3.5. Ablation Experiments

Then, four evaluation metrics, including PSNR, SSIM, UIQM, and UCIQE, were used
to perform ablation experiments. The standard test set provided by EUVP was used, and
the corresponding results are shown in Table 6, where red denotes the best result, and blue
denotes the second-best result. The former indicates the mean, and the latter indicates the
variance in brackets.

Table 6. Underwater image quality evaluation of different variants of the proposed method.

CA UPM FL PSNR (dB) ↑ SSIM ↑ UIQM ↑ UCIQE ↑
(25.46, 3.03) (0.76, 0.06) (2.88, 0.47) (0.57, 0.04)√
(26.94, 3.09) (0.80, 0.07) (2.97, 0.44) (0.58, 0.05)√ √
(24.90, 3.41) (0.79, 0.08) (3.09, 0.38) (0.59, 0.03)√ √ √
(26.92, 3.22) (0.79, 0.06) (3.13, 0.38) (0.59, 0.03)

After adding the channel attention mechanism in the generator, the four indexes
increased by 5.96%, 44.31%, 3.22%, and 1.7%. The channel attention (CA) mechanism
improved the utilization performance of the features and caused the image generated by
the model to be closer to the reference image. As a result, it achieved the best results in
terms of PSNR and SSIM. The simplified underwater physical model (UPM) enhanced
the image from the underwater imaging characteristics and did not completely depend
on the reference image. Therefore, the UIQM and UCIQE increased by 7.35% and 1.7%
after incorporating UPM in the generator, but the PSNR and SSIM were reduced. The
global loss and perceptual loss effectively restored the texture information of the image
and suppressed noise, so that the PSNR and UIQM were improved by integrating the
global loss and perceptual loss into the fusion loss (FL). However, the color density in the
image generated by the method was too weak. Therefore, the improvement in UCIQE was
not obvious.

The PSNR and SSIM metrics mainly focused on the similarity between the enhanced
image and the reference image. The closer enhanced image was to the reference image,
the higher was the score. The model improved the ability to extract effective features after
adding the channel attention mechanism and enhanced the feature representation ability of
U-Net, thus reducing the difference between the generated image and the reference image.
As shown in Table 6, our method achieved good results in PSNR and SSIM.

It is worth noting that the reference images did not always have the best visual
effect. In Table 1, the UIQM and UCIQE values of the real images were slightly lower as
compared with those of the images generated by using deep learning methods, which
actually limited the performance of the models. We embedded the underwater physical
model in the generator, so that the generator was able to enhance the images in terms
of underwater imaging characteristics. This reduced the dependence on the reference
images to some extent, thus improving the UIQM and PSNR metrics for underwater image
evaluation. However, at the same time, it reduced the PSNR and SSIM metrics based on
the reference image.

In terms of loss function, we combined the adversarial loss, the global loss, and the
perceptual loss. The latter two effectively restored the texture details of an image and
suppressed the noise in the image, so that it could improve the PSNR that paid attention
to the proportion of information. In addition, our method corrected the color deviation,
improved the brightness, and appeared clearer. Therefore, it performed well on UIQM,
as shown in Table 1. However, there was a lack of color saturation, and the enhancement
effect on UCIQE metric was not obvious. In addition, we observed that when the color
of the enhanced image was too bright, the UCIQE was high. Therefore, if the image was
supersaturated, UCIQE was inconsistent with the actual visual experience.
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3.6. Real-Time Analysis and Discussion

We used the published underwater target tracking dataset UOT32 [49] to compare
the practicability of the advanced underwater image enhancement methods. We used the
video sequences naturally shot in it and adjusted the resolution of each frame to adapt to
the input of the model. With regard to different image enhancement methods, we counted
the parameters of different network models and analyzed the relationship between the
parameters and the image processing speed. Then, we conducted experiments on TD41-Z2
server made by AMAX (Suzhou, China) with GPU (NVIDIA RTX 3090), and averaged
the processing results, as shown in Table 7, where red indicates the best result, and blue
indicates the suboptimal result.

Table 7. Underwater image processing speed of different enhancement methods on UOT32.

Method Size FPS

IBLA [42] - 1.8
ULAP [43] - 2.5
CBM [44] - 45.3

WaterNet [41] 157.3 M 105.8
UWCNN [45] 1.1 M 32.3

MLFcGAN [46] 565.6 M 84.9
UGAN [6] 654.2 M 73.6

FunieGAN [25] 21.9 M 138.5
IPMGAN [20] 323.5 M 91.4
CRN-UIE [47] 59.6 M 112.3

Ours 27.1 M 121.7

As the physical model-based methods IBLA and ULAP adjusted every pixel, the
processing time was longer as compared with the learning-based method, which could
not meet the real-time requirements. As compared with general methods, CRN-UIE was
a target-oriented tracking method, so its real-time performance was better. Although
UWCNN had the smallest network scale, its real-time performance was not outstanding,
because it needed physical models to generate additional transmission images. The network
scale of FunIEGAN and our method was smaller as compared with other methods, and
the processing speed was optimal and suboptimal, respectively. Therefore, this method is
competitive in actual underwater work.

4. Conclusions

In this paper, a network model for underwater image enhancement was proposed. In
this model, the channel attention mechanism was embedded in U-Net, which suppressed
the noise existing in the original image and restored the real color of the image by combining
with the underwater physical model. In addition, the existence of the underwater physical
model also alleviated the problem that the generator was highly dependent on specific
datasets. In order to verify the effectiveness of the proposed method, we trained and tested
it on EUVP and UIEBD and compared the results with some advanced underwater image
enhancement algorithms. The results showed that in the visual effect, the color deviation
of the enhanced image was corrected, and the high-noise problem was solved. In the
image evaluation metrics, our method performed well on PSNR and UIQM, indicating
that the noise of the image was suppressed, and the color was balanced. In practical
applications, the proposed method was competitive in real-time processing speed. This
method improved the brightness to a certain extent, but some areas in the enhanced image
were lighter in color, which was manifested by a lower UCIQE. In addition, we did not
consider the influence of underwater depth, light level, and water turbulence on the original
image, so it had certain limitations. In the future, we will continue to optimize the proposed
structure for enhancing the saturation of color and pay attention to the acquisition methods
of underwater images and significance testing of the model.
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