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Abstract: This paper presents the first circuit that enables microsaccade function in an artificial eyeball
system. Currently, the artificial eyeball is receiving increasing development in vision restoration. The
main challenge is that the human eye is born with microsaccade that helps refresh vision, avoiding
perception fading while the gaze is fixed for a long period, and without microsaccade, high-quality
vision restoration is difficult. The proposed electronic microsaccade (E-µSaccade) circuit addresses
the issue, and it is intrinsically safe because only charge-balanced stimulus pulses are allowed for
stimulation. The E-µSaccade circuit adopts light-to-frequency modulation; due to the circuit’s leakage
and dark current of light-sensitive elements, stimulus pulses of a frequency lower than tens of Hz
occur, which is the cause of flickering vision. A flicker vision prevention (FVP) circuit is proposed to
mitigate the issue. The proposed circuits are designed in a 0.18 µm standard CMOS process. The
simulation and measurement results show that the E-µSaccade circuit helps refresh the stimulation
pattern and blocks the low-frequency output.

Keywords: artificial eye system; neural adaptation; electronic microsaccade; flicker vision prevention;
charge-balancing stimulation

1. Introduction

The ability to see is arguably humans primary information source. Millions of people
worldwide suffer from eye diseases that can steal their vision, resulting in an increasing
demand for vision restoration [1,2]. Individuals’ quality of life (QoL) could be lowered
significantly if any internal or external cause robs them of their vision. Unfortunately, age-
related macular degeneration (AMD) and retinitis pigmentosa (RP), for example, can kill
the photoreceptor cells in the human retina and finally lead to blindness. However, if the
rest of the retinal cells are alive, vision restoration for patients with AMD and RP is possible
by releasing electrical stimulation to the retinal nerve [3–5]. Other than AMD and RP,
diabetic retinopathy, eye cancer, and severe glaucoma are also common causes of blindness.
Hyperglycemia can destroy the capillaries and the layers of cells that support them in the
retina, which is the cause of diabetic retinopathy [6]. High intraocular pressure in glaucoma
can cause damage and the loss of ganglion cells [7]. Therefore, retinal prostheses become
unavailable since no living cell exists for impulse generation and transmission.

Currently, artificial eyeballs show their strength in humanoid robots [8]. In the early
days, vision restoration was demonstrated by connecting a television camera to a patient’s
visual cortex [9]. The previous work included a small computer, peripheral circuitry on
a belt, and cables connecting with the patient’s brain. Although vision perception was
generated successfully, the drawback is the risk of infection and the high failure rate of
the complex system [10]. Advanced CMOS technology allows imaging and stimulation
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elements to be integrated into one chip, which makes a compact artificial vision system with
high power efficiency possible. For powering the system, inductive links and photovoltaic
cells are promising candidates [11–13]. Providing minor modifications, an artificial eyeball
system mimicking the human eye can support vision restoration for virtually any blindness.

Figure 1 depicts an artificial eyeball system with an integrated image sensor and
stimulator, which act as photoreceptor cells for light-to-nerve impulse conversion. In some
previous studies, wireless power transfer was realized with the inductive coil, and a battery
was expected to stabilize the power supply [11,14]. However, the human eye is born with
an important ability, microsaccade, to prevent vision from fading [15–19]. In general, a
strong neural response is generated in the biological eye when receiving rapid spatial and
temporal brightness changes. With this feature, the human eye can efficiently detect subtle
differences. The price to pay is that the still objects will fade away gradually due to neural
adaptation. To counteract the issue, it is required to regularly refresh vision information.
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Figure 1. Concept images of artificial eyeball system for vision restoration.

Retinal prostheses are installed on the retina and share the eye’s movement, while the
artificial eyeball has no connection with the eye muscle. Therefore, it has no vision refresh.
Neural adaptation can arise when the gaze is fixed for a long period of time. For this reason,
a weak response would be generated and finally fade away. Without addressing the issue,
the user must constantly move the eyes for non-fading vision. In this work, the proposed
approach adopts a customized circuit to regularly vary the vision information used for
stimulation to alleviate vision fading. The details are included in Section 2.

As shown in Figure 2, because the charge balance of the stimulus current would be
broken, a charge-balancing circuit is required for safe operation. In addition, low-frequency
stimulus current can be generated because of transistor leakage and the photodiode’s dark
current, resulting in flickering phosphenes [20–27]. This study is the first to propose the
flicker vision prevention (FVP) circuit for dealing with the issue.

In this paper, we extend our previous work [28,29]. First, the methodology for design-
ing the electronic microsaccade (E-µSaccade) circuit is described. Next, charge-balancing
and FVP circuits are presented. Section 3 shows the experimental results. Discussion and
conclusions are in Sections 4 and 5, respectively.
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Figure 2. Charge imbalance in stimulus current.

2. Materials
2.1. Behavioral Model of Biological Eye

As depicted in Figure 3, the eyeball is constantly driven to move the gaze. The
fixational eye movement, microsaccade, can prevent vision fading caused by neural adapta-
tion [30]. In general, microsaccades show an amplitude of 1–120 arcmin and a frequency of
0.1–33 Hz [15]. The movement with 24 arcmin increases visibility most effectively, while the
stimulus current with a frequency higher than 10 Hz is detrimental [31]. In our previous
work, the pixel size of the retinal prosthesis was 75 × 75 µm2, which can be translated into
an angular separation of lines of 21.5 arcmin on the retina [28,32,33].

Electronics 2023, 12, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 2. Charge imbalance in stimulus current. 

In this paper, we extend our previous work [28,29]. First, the methodology for de-
signing the electronic microsaccade (E-µSaccade) circuit is described. Next, charge-bal-
ancing and FVP circuits are presented. Section 3 shows the experimental results. Discus-
sion and conclusions are in Sections 4 and 5, respectively. 

2. Materials 
2.1. Behavioral Model of Biological Eye 

As depicted in Figure 3, the eyeball is constantly driven to move the gaze. The fixa-
tional eye movement, microsaccade, can prevent vision fading caused by neural adapta-
tion [30]. In general, microsaccades show an amplitude of 1–120 arcmin and a frequency 
of 0.1–33 Hz [15]. The movement with 24 arcmin increases visibility most effectively, while 
the stimulus current with a frequency higher than 10 Hz is detrimental [31]. In our previ-
ous work, the pixel size of the retinal prosthesis was 75 × 75 µm2, which can be translated 
into an angular separation of lines of 21.5 arcmin on the retina [28,32,33]. 

 
Figure 3. Microsaccade in the biological eye. 

The cause of vision fading and the proposed solution when implanted with artificial 
eyeballs are shown in Figure 4a,b, respectively. The yellow circles represent electrodes 
being activated. When a fixed stimulus current pattern is applied to the neuron for a long 
period of time, the related neurons generate a gradually diminishing response and even-
tually stop action, like when the gaze is fixed. The issue becomes prominent as visually 
impaired patients usually interact with stationary objects. It has been reported that users 
of the artificial eye circuit must learn to recognize objects through a fading image [34]. 

Freq1 Freq2

Case 1

Case 2

Case 3

Case 4

Charge Imbalance

A
Figure 3. Microsaccade in the biological eye.

The cause of vision fading and the proposed solution when implanted with artificial
eyeballs are shown in Figure 4a,b, respectively. The yellow circles represent electrodes
being activated. When a fixed stimulus current pattern is applied to the neuron for a
long period of time, the related neurons generate a gradually diminishing response and
eventually stop action, like when the gaze is fixed. The issue becomes prominent as visually
impaired patients usually interact with stationary objects. It has been reported that users of
the artificial eye circuit must learn to recognize objects through a fading image [34].

Mathematically, the microsaccade acts the same as a slight movement of geometric
figures. The operation can be translated as image convolution with a time-varying kernel,
as shown in Figure 5. The kernel has only one non-zero element, and the value is always
1 (the black square). Applying the convolution to the retinal image can achieve image
shifting, or microsaccade, in other words.
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There are two possible solutions for generating fixational eye movement in the artificial
eyeball: (1) vibrating the lens system to vary the light pattern; (2) electrically re-routing the
signal from an image sensor pixel to a biphasic current source (BCS). The former requires
motion elements, and the risk of mechanical failure is high. This work employs an electrical
solution for better reliability. As shown in Figure 6, with the proposed E-µSaccade circuit,
the stimulation pattern is moved slightly in random directions, like the microsaccade in the
biological eye (Figure 3). The refresh rate is designed to be as close as possible to that of
the biological eye so that the human brain can filter out the small image jitter. The elicited
phosphenes are, therefore, stable and non-fading.
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The E-µSaccade circuit connects nine adjacent stimulus trigger generators (STG) to
one BCS and keeps the charge balanced during the circuit’s operation. For activating vision
neurons, the stimulus current depolarizes the cell membrane first and resets the membrane
potential back to the resting potential [35]. The waveform parameters of stimulus current,
such as pulse width and amplitude, must be designed elaborately to make the neurons
respond to the stimulus current as maximally as possible. Since the E-µSaccade circuit con-
nects the image sensor pixel to different electrodes and all the pixels work asynchronously,
there are risks of charge imbalance because the matching between anodic and cathodic
pulses can be broken, as shown in Figure 2. Unbalanced stimulation would result in incor-
rect visual perception and damage to the nerve cells. In this work, the issue is mitigated by
the proposed charge-balancing multiplexer (CBMUX). It improves the device’s safety by
making the anodic and cathodic pulses well-matched.

2.2. Implementation of Electronic Microsaccade Circuit
2.2.1. Light-to-Frequency Modulation

The STG is for light-to-frequency modulation. Its schematic is shown in Figure 7.
Ambient light is converted into frequency-modulated VCTSTG and VATSTG signals for
triggering the BCS. In this work, a p-diffusion/n-well/p-sub structure photodiode is
adopted for light sensing. In future development, the light-sensing element will be moved
to an image sensor chip, and the STG will be in the stimulator chip. They can be connected
through 3D-stacking technology. Following the photodiode, the current mirrors copy and
amplify the photocurrent and then feed it to the modulation circuit. As shown in Figure 8
and described by Equations (1)–(5), the frequency of VCTSTG and VATSTG signals is a
function of photocurrent.

The timing diagram of STG is depicted in Figure 8. If the DISSTG signal is 1, no stimulus
current pulse appears on the output. The capacitor CA determines the stimulus current’s
pulse repetition frequency (PRF). CA is charged to the power rail after the reset phase. Then
the photocurrent continuously discharges the CA, and a Schmitt trigger monitors if VA
crosses the threshold voltage VSCH. The RS latch in Figure 7 is for controlling the operation
phase switching.

The pulse width of VCTSTG is given by Equation (3). In the beginning, the RS latch is
in the initial state (Q = 0 and QN = 1), and when VA reaches VSCH, the AND gate outputs 1,
turning on the current source IB, and the cathodic pulse starts. After the Schmitt trigger
flips to high, the capacitor CB begins to be charged. The stored VB is compared with the
reference voltage VCW, and the result is sent to the S terminal of the latch. If VB crosses
VCW, the VCTSTG signal is stopped, and VB is reset to 0 right after.
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When Q changes to high, VC starts to ramp up from 0 V. At the beginning, both current
sources on the output terminal are turned off, and the electrode is in a high impedance state
until VC exceeds VGAP. The VATSTG pulse starts after VC crosses VGAP and finishes when
VC reaches VAW. The switch, SW, is for resetting and making the operation sustainable.
When VC exceeds VAW, VA is charged to the power rail. Since each pixel in the stimulator
can decide to output individually, the global clock is not required.

f =
1

TDIS + TVCT + TGAP + TVAT
(1)

TDIS = CA
VDD − VSCH

IA
(2)

TVCT = CB
VCW

IB
(3)

TGAP = CC
VGAP

IC
(4)

TVAT = CC
VAW − VGAP

IC
(5)
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The above formulas calculate the key parameter of stimulus current. The PRF of the
stimulus pulses is represented by f. TVCT is the pulse width of the cathodic pulse, and TVAT
is the pulse width of the anodic pulse. TGAP represents the interval between cathodic and
anodic pulses, which helps to reduce the stimulation threshold [36–38]. TDIS is the interval
between two stimulation periods where no stimulus current appears. The threshold voltage
of the Schmitt trigger is represented by VSCH. The current flows into capacitors CA, CB,
and CC, which are represented by IA, IB, and IC, respectively.

In the proposed circuit, to save space and achieve large capacitance, MIM capacitors
are used. The process variation can result in circuit mismatches, lowering performance and
reliability. Later, the effect will be described in Section 3.

2.2.2. Flicker Vision Prevention Circuit

Continuous vision perception is available when the PRF of the biphasic current is suffi-
ciently high. The STG should not generate VCTSTG and VATSTG signals whose frequency is
lower than the perception threshold to avoid flickering vision. However, due to the transis-
tor’s leakage current and the photodiode’s dark current, slow VCTSTG and VATSTG signals
are generated even without ambient light. For this reason, dark backgrounds or objects
are represented by low-frequency stimulus pulses. The patients can perceive flickering
patterns that correspond to the dark area. To improve image quality, the low-frequency
stimulus current must be cut off.

The schematic of the FVP circuit is shown in Figure 9. It comprises AND gates, a
timing capacitor CD, and an RS latch. The electrode must be connected to the ground in
the period between the cathodic and anodic pulses to release the residual charge on the
cell membrane after the cathodic and anodic pairs are absorbed. The DISSTG signal is high
during these periods. A slow DISSTG indicates a long stimulation period, and vice versa.
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Figure 9. Schematic of flicker vision prevention (FVP) circuit.

The timing diagram of the FVP circuit is plotted in Figure 10. VD ramps up when both
the power down and DISSTG are logically high. If EN is 1, VCTSTG and VATSTG signals are
allowed to pass through. With low illuminance conditions, the high level of DISSTG lasts so
long that VD exceeds the threshold voltage of the latch and EN is set to low, stopping the
stimulus pulse. When DISSTG becomes low, the S terminal of the latch turns low instantly,
and so does VD. However, the R terminal remains high for a short period because of the
additional delay. Therefore, EN is kept at 0, and all VCTSTG and VATSTG pulses are blocked.
EN is reset to high when a rising edge of the DISSTG signal occurs. The FVP circuit enters
the next operation period. With higher stimulation frequencies, because DISSTG is short
and VD does not cross the trigger threshold, EN stays at 1, allowing pulses to pass through.
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Figure 10. Timing diagram of flicker vision prevention circuit.

2.2.3. Charge-Balancing Multiplexer for Safe Electronic Microsaccade

The core component of the E-µSaccade circuit is the CBMUX; the schematic is depicted
in Figure 11. In the CBMUX, the 9-channel MUX selects VCT and VAT signals according
to the pixel selection code (PSC). The definition of PSC is listed in Table 1. DFF1 receives
an external clock signal, CLKMS, and DFF2 controls the phase switching. DFF3 generates
a DISO signal for residual charge release during two stimulation periods. For charge
balancing, DFF4 and DFF5 count the VCTI pulses and change the circuit state properly.
Then stimulus trigger signals VATO and VCTO are generated after two rising edges of the
VCTI. For not breaking the matched pulses, a latch is used to save PSC temporally.
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Figure 11. Schematic of charge-balancing multiplexer (CBMUX).

The timing diagram of CBMUX is shown in Figure 12. For simplicity, only two related
channels, VCTFVP,1–2 and VATFVP,1–2, are demonstrated. The CLKMS signal controls circuit-
state switching. Before t2, there is no clock signal. VCTFVP,1 and VATFVP,1 pass through
CBMUX to VCTO and VATO. Then, CLKMS rises at t2, indicating that a switching event
occurs. At the same time, a PSC is fed to the CBMUX. The switching event is recorded
by setting the SW signal to 1. VCTO and VATO follow VCTFVP,1 and VATFVP,1 because the
latch holds the previous PSC. At t4, a stimulation period is completed. The latch is enabled
because EN is high, and the new PSC is sent to the MUX. Then the MUX selects VCTFVP,2
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and VATFVP,2. Meanwhile, TG is pulled low, stopping the stimulus-triggered pulses. No
pulse is allowed between t4 and t5. To not break down the charge balance, two DFFs are
used for counting the VCTI signal. When VCTI triggers the circuit reset procedure at t5, the
circuit is reset to the initial state (SW = 0, EN = 0, TG = 1). With this mechanism, the anodic
and cathodic pulses are well matched.

Table 1. True table of charge-balancing multiplexer.

PSC (BCD Code) Signal Path from STG to BSC

0 VAT and VCT from the upper-left STG
1 VAT and VCT from the upper-center STG
2 VAT and VCT the upper-right STG
3 VAT and VCT from the middle-left STG
4 VAT and VCT from the middle-right STG
5 VAT and VCT from the lower-left STG
6 VAT and VCT from the lower-center STG
7 VAT and VCT from the lower-right STG
8 VAT and VCT from the central STG
≥9 N/A
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3. Results

Circuit simulation is conducted for functional verification. The photodiode in STG is
replaced with a current source, and a resistor of 10 kΩ is added to the electrode terminal of
BCS as a tissue load. First, the FVP circuit is turned off to verify the time-domain response
of STG. A current step is applied to the STG. Due to the fact that incident light is attenuated
in the eyeball when reaching the retina, the STG is designed to work with low illuminance.
The current steps are from 1 pA to 100 pA at 0 s. Figure 13a shows the frequency step of
the stimulus current, and the input current step is plotted. The corresponding waveform of
stimulus current (converted into voltage with a 10 kΩ resistor) is plotted in Figure 13b. The
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results report that the STG can correctly track the rapid change of incident light. Figure 13c
depicts the frequency variation of stimulus current when photocurrent ramps from 1 pA at
0 s to 100 pA at 1 s. Despite some nonlinear distortion, STG gives a satisfactory result in
tracking the ramp change of the photocurrent. The corresponding time-domain waveform
is shown in Figure 13d.
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Figure 13. Simulation results of stimulus trigger generator: (a) Circuit response with photocurrent
step; (b) Biphasic current waveform of step response; (c) Circuit response with photocurrent ramp;
(d) Biphasic current waveform of ramp response.

Due to the unavoidable process variation, the frequency of biphasic current can vary
from wafer to wafer or lot to lot. Figure 14a,b show the Monte Carlo simulation of the
proposed circuit. As a reference, the red lines indicate the measured results. Process
variation can change the threshold of transistors. An elaborately designed layout can
minimize the mismatch. Furthermore, the transistors in digital parts act as switches; they
are robust to process variation.

The most variation-vulnerable component in the circuit is the capacitor, which has
good matching characteristics but whose absolute value is greatly affected by manufac-
turing. As described in Equations (1)–(5), the capacitors CA, CB, and CC determine the
PRF and pulse width of biphasic current. With a well-designed layout, the cathodic and
anodic pulse widths still well match each other, maintaining the charge balance. On the
other hand, the PRF of stimulus current varies between 4~34 Hz with 1 pA photocurrent
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and 46~276 Hz with 100 pA photocurrent. It means that trimming is necessary, and it can
be done through the configuration of the current source IA, IB, and IC in the STG.
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Next, the FVP circuit is enabled for functional verification. The photocurrent is swept
from 1 pA to 100 pA with ten steps per decade. The flicker fusion threshold is set to 10 pA
(corresponding to a PRF of about 50 Hz). As shown in Figure 15, when the current is
lower than 10 pA, the frequency of VCTSTG and VATSTG pulses is below the flicker fusion
threshold, and the FVP circuit blocks the stimulus current. Therefore, no current pulse
occurs on the output of BCS, as marked by the circle.
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Figure 15. Simulation results of flicker vision prevention (FVP) circuit.

With a larger input current, the pulse width of DISSTG becomes short enough. As
shown in Figure 10, the accumulated voltage on the capacitor will not cross the threshold of
the latch; the EN signal is always high. The FVP circuit allows VCTSTG and VATSTG signals
to pass through. The BCS generates the current pulse as usual.
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To verify the E-µSaccade function, a circuit prototype is fabricated in a 0.18 µm
standard CMOS process. Table 2 summarizes the design information. Figure 16a–c show
the micrograph of the E-µSaccade circuit. As shown in Figure 16d, a probe card is used to
apply the necessary signals to the fabricated chip and read the biphasic stimulus current,
and a light source is used to provide the test light pattern to the circuit. The CBMUX array
is designed as a 3 × 3 array, the minimum required pixel number to perform microsaccade
operation for conducting microsaccade operation. To maximize the illumination difference
for better output observation, the four SCG are maximally separated. The distance between
them is about 700 µm.

Table 2. Summary of design information.

Process 0.18 µm Standard CMOS 1P6M

Power Supply 1.8 V
Pixel Count 3 × 3

STG Pixel Size 75 × 75 µm2 (Including FVP circuit)
CBMUX Pixel Size 45 × 26 µm2

Power Consumption 8.255 µW/pixel @PRF = 100 Hz
Microsaccade Speed 0.1 or 1 Hz
External Component Decoupling Capacitors
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Figure 16. Measurement setup: (a) Micrograph of the fabricated prototype; (b) Micrograph of the
CBMUX array; (c) Micrograph of the STG; (d) The probe card and light source for circuit function
verification.

The block diagram of the measurement setup is shown in Figure 17. Four STG are
configured to sense ambient light (corresponding to the PSC of 0, 2, 5, and 7). A signal
generator is used for directly feeding frequency-controllable VCT and VAT signals to the
rest of the input terminals of CBMUX (corresponding to the PSC of 1, 3, 4, 6, and 8). The
center BCS is connected to an oscilloscope for monitoring the stimulus current waveform.
Thus, the biphasic current with different frequencies can be observed on the oscilloscope
by sending the proper value of PSC to CBMUX.
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Figure 17. Block diagram of the measurement setup.

A PSC of 4 sets the CBMUX to connect the STG4 running at 160 Hz to the BCS
connected to an oscilloscope. Therefore, a biphasic current of 160 Hz can be observed, as
shown in Figure 18. Although in practice, the stimulus current is tens of µA not to hurt the
retina cell. This test sets the stimulus current to a higher level for better observation. With
the fabrication process and the designed transistor size, the maximum output current is
about 80 µA, which is translated into ±0.8 V by the 10 kΩ tissue load resistor. To verify
dynamic microsaccade operation, PSC is varied every 100 ms (10 Hz) and 1 s (1 Hz), and
the CBMUX changes the signal path from different STGs to the center BCS.
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Figure 18. Measured waveform of biphasic current when PSC = 4.

The frequency variation of biphasic current during microsaccade operation is shown
in Figure 19. First, the frequency of CLKMS is set to 1 Hz. When fed by a PSC sequence of
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the frequency of the biphasic current of the center BCS varies in the
order of {4 Hz, 40 Hz, 6 Hz, 80 Hz, 160 Hz, 40 Hz, 200 Hz, 58 Hz, and 120 Hz}, and then
returns to 4 Hz again. The frequency of stimulus current is stable during the silent phase of
the microsaccade, which is expected to provide a more stable visual perception.

Due to the high operation speed of pattern movement, only several stable pulses can
be sent out in a short microsaccade period (0.1 s) when the PRF of the stimulus current is as
low as tens of Hz. When the CLKMS is increased to 10 Hz and a PSC sequence of {1, 3, 4,
6, and 8} is fed to the circuit, the frequency drop that comes from signal switching is no
longer negligible. Details about the frequency drop are in Section 4.
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Figure 19. Measured results of the proposed E-µSaccade circuit: (a) Microsaccade operates at 1 Hz;
(b) Microsaccade operates at 10 Hz.

4. Discussion

The main function of the proposed circuit relies on VAT and VCT signals. Therefore,
any improper waveform, such as a glitch, can lead to the malfunction of the circuit. In the
STG shown in Figure 7, QN must be reset to 1 only when the output of the Schmitt trigger
falls to the ground. If not, a glitch can be generated on the VCT signal line. Although a
narrow pulse of several tens of nanoseconds would not affect the neurons’ charge balance,
the timing chart of the proposed circuit could break down. Therefore, an additional delay
must be considered at the R terminal of the latch.

The artificial eyeball system must satisfy the need for low power consumption. In the
FVP circuit shown in Figure 8, given a slow-varying stimulus trigger signal, the dynamic
current of the RS latch can be too large to prevent normal operation. Therefore, an inverter
with a large L/W ratio is added to the R terminal of the latch to avoid excessive dynamic
current and introduce an extra delay for correct operation.
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In Figure 13c, the conversion gain degenerates when the photocurrent is high. The rea-
son for the results is that the portion of the stimulation period (TVCT + TVAT + TGAP = 3 ms)
is small at low frequency, and the DIS signal dominates the PRF of the stimulus current. As
the biphasic current goes faster, the DIS phase, the variable portion, also becomes shorter. Fi-
nally, the PRF will converge to the theoretical limit of 333 Hz (TVCT = TVAT = TGAP = 1 ms).

For stable visual perception, a slow microsaccade operation is desired. If the operation
speed of the microsaccade is too fast, the vision nerve cannot receive enough pulses to
generate perception. The results shown in Figure 19a,b indicate that if allowed in clinical
usage, the microsaccade operation should be in the range of seconds, and they match the
finding in [30] well that high-frequency eye movement is detrimental to visual perception.

In our previous work, the vision fading problem in vision restoration was found and
addressed. However, the artificial eyeball still suffers from flickering vision problems.
There is no current work that focuses on the issue. This work proposed and added the
flicker vision prevention circuit to the microsaccade circuit, making it the first practical
artificial vision system.

In the future, to build a fully functional artificial eyeball system, all the verified
building blocks in this work will be expanded into a full array with 32 by 32 pixels for
achieving simple pattern recognition. For solving the mismatch problem, binary stimulation
instead of continuous stimulation can be adopted, which means that only pixels with
brightness over the threshold are allowed to send out stimulation current. To connect the
proposed artificial eye circuit to the visual neuron, a cuffless electrode that surrounds the
optic nerve or a Utah array that deepens into brain tissue can be considered.

5. Conclusions

The artificial eyeball is becoming a promising treatment for every blindness, which
replaces the biological eye and restores vision for virtually all blindness. In the human
eye, microsaccade is critical to avoiding vision fading. This study is the first to focus on
mimicking microsaccades in the biological eye. In addition, the flickering vision comes
from low-frequency stimulus current, and charge imbalance issues are also considered.

A 3 × 3 circuit prototype is designed and fabricated for function verification in the
TSMC 0.18 µm CMOS process. In the future, the simulation results will show that the
light-to-frequency ratio correctly tracks the ambient light change and that the FVP circuit
stops the stimulation in low illuminance conditions. The measurement results show that
the circuit can move the image in eight directions at the frequency given by the global clock.
Furthermore, pre-defined commands define the direction of the movement. The stimulus
current waveform shows that no pulse mismatch occurs. With the proposed E-µSaccade
circuit, the vision fading issue can be alleviated, and the more visually impaired can benefit
from the artificial eyeball system.
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