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Abstract: This paper introduces a new chaotic jerk system with three cubic nonlinear terms. The
stability properties of the three equilibrium points of the proposed jerk system are analyzed in detail.
We show that the three equilibrium points of the new chaotic jerk system are unstable and deduce
that the jerk system exhibits self-excited chaotic attractors. The bifurcation structures of the proposed
jerk system are investigated numerically, showing period-doubling, periodic windows and coexisting
bifurcations. An electronic circuit design of the proposed jerk system is designed using PSPICE. As
an engineering application, a new image-encryption approach based on the new chaotic jerk system
is presented in this research work. Experimental results demonstrate that the suggested encryption
mechanism is effective with high plain-image sensitivity and the reliability of the proposed chaotic
jerk system for various cryptographic purposes.

Keywords: chaotic systems; chaos; jerk system; Lyapunov exponents; bifurcations; circuit design;
image encryption; cryptosystem

1. Introduction

Chaotic systems find a wide range of engineering applications such as memris-
tors [1–4], laser systems [5–7], electrical circuits [8–10], neural networks [11,12], encryp-
tion [13–15], memristors [16], neuron models [17], etc. As a particular case, a third-order
autonomous jerk differential equation has the general form

...
ε = F(ε, ε̇, ε̈) (1)

Electronics 2023, 12, 2818. https://doi.org/10.3390/electronics12132818 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12132818
https://doi.org/10.3390/electronics12132818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4696-908X
https://orcid.org/0000-0001-7187-4686
https://orcid.org/0000-0003-4739-0037
https://orcid.org/0000-0002-5068-2033
https://orcid.org/0000-0002-1623-0770
https://orcid.org/0000-0002-2861-8633
https://doi.org/10.3390/electronics12132818
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12132818?type=check_update&version=1


Electronics 2023, 12, 2818 2 of 22

Using the state variables z1 = ε, z2 = ε̇, z3 = ε̈, one can rewrite the jerk Equation (1)
in system form as follows:

ż1 = z2

ż2 = z3

ż3 = F(z1, z2, z3)

(2)

Jerk systems with chaotic attractors have several applications such as circuits [18–20],
memristors [21], encryption [22,23], etc.

There is significant interest regarding chaotic jerk systems in the literature [24–28].
Sprott [24] proposed a simple chaotic jerk system with one quadratic nonlinearity. Sun
and Sprott [25] reported a chaotic jerk system with a piecewise exponential nonlinearity.
Liu et al. [26] discussed a new chaotic jerk system having two quadratic nonlinearities.
Vaidyanathan et al. [27] proposed a new chaotic jerk system having two exponential
nonlinearities and presented its electronic circuit simulation. Rajagopal et al. [28] presented
a chaotic jerk system with two quadratic nonlinearities, discussed its dynamic properties
and gave a circuit realization of the jerk system.

In this paper, we describe a new chaotic jerk system with three cubic nonlinear terms.
We show that there are three unstable equilibrium points for the proposed jerk system.
The bifurcation structures of the proposed jerk system are investigated numerically, show-
ing period-doubling, periodic windows and coexisting bifurcations.

An electronic circuit design of the proposed jerk system is designed using PSpice.
Although PSpice is a useful tool, it has many limitations [27]. Real electronic components
can be complex creatures with many behaviors. Simulation of a circuit is only as accurate
as the behaviors modeled in the PSpice devices created for it. Many circuit simulations are
based on simplified models [27].

Finally, a new image-encryption approach is presented based on the chaotic behavior
of the proposed jerk system. Circuit designs of chaotic systems are useful for their practical
implementations [8,18].

The security and privacy of digital information play an important role in the digital
era, in which images are a common data type for representing and transferring data [29].

Digital images can be secured by applying a reliable image-encryption mechanism.
Because of their high sensitivity to primary conditions and their chaotic demeanor, chaotic
systems are commonly utilized for developing image cryptosystems [30,31].

In this paper, a new image-encryption approach based on the chaotic behavior of the
new jerk system is proposed. The proposed encryption approach consists of two rounds
of encryption, in which the substitution phase is performed in the first round, and some
information about the substituted image is gained using the SHA-256 algorithm for mod-
ernizing the prime conditions of the jerk system. The second round of encryption consists
of one permutation phase and one substitution phase. Experimental results demonstrate
that the suggested encryption mechanism is effective with high plain-image sensitivity and
the reliability of the proposed chaotic jerk system for various cryptographic purposes.

2. A New Jerk System

In this paper, we propose a new 3-D jerk differential equation given by

...
z + az̈ + z(z2 + zż + ż2 − b) = 0 (3)

where z has the physical interpretation of displacement, ż the velocity, z̈, the acceleration
and

...
z the jerk. Here, a and b are taken as positive constants.
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Using the phase variables z1 = z, z2 = ż and z3 = z̈, it is possible to represent the jerk
ODE (3) as a system of first-order differential equations:

ż1 = z2

ż2 = z3

ż3 = −az3 − z1
(
z2

1 + z1z2 + z2
2 − b

) (4)

In this work, we shall show that the jerk system (4) has a chaotic attractor for
(a, b) = (1.2, 2.5). This is verified by calculating the local Lyapunov exponent values for
(a, b) = (1.2, 2.5) and Z(0) = (0.3, 0.2, 0.3) with simulation time T = 1× 105 seconds
as follows:

τ1 = 0.0941, τ2 = 0, τ3 = −1.2941 (5)

Figure 1 shows the calculation of the local Lyapunov exponent (LE) values for the jerk
system (4).

Figure 1. Lyapunov exponents for the new jerk system (4) calculated using the simulation time
T = 1× 105 s for (a, b) = (1.2, 2.5) and Z(0) = (0.3, 0.2, 0.3).

Since the largest Lyapunov exponent (LLE) is positive (τ1 > 0), we conclude that the
jerk system (4) is chaotic. Moreover, the jerk system (4) is dissipative since

τ1 + τ2 + τ3 = −a < 0. (6)

Thus, the jerk system (4) has a chaotic attractor.
We note that the jerk system (4) stays invariant under the coordinates transformation

(z1, z2, z3) 7→ (−z1,−z2,−z3) (7)

This shows that the jerk system (4) has a point reflection symmetry about the origin.
Figure 2 portrays the MATLAB simulations of the jerk system (4) for Z(0) = (0.3, 0.2, 0.3)

and (a, b) = (1.2, 2.5).
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(a) (b)

(c) (d)
Figure 2. MATLAB simulations of the jerk system (4) for Z(0) = (0.3, 0.2, 0.3) and (a, b) = (1.2, 2.5):
(a) (z1, z2) plane, (b) (z2, z3) plane, (c) (z1, z3) plane and (d) R3.

The rest points of the jerk system (4) are found by solving the following equations.

z2 =0 (8a)

z3 =0 (8b)

−az3 − z1

(
z2

1 + z1z2 + z2
2 − b

)
=0 (8c)

Using the values z2 = 0 and z3 = 0 from (8a) and (8b), respectively, we can simplify
(8c) as follows:

−z1

(
z2

1 − b
)
= 0 (9)

Since b > 0, there are three rest points for the jerk system (4) given by
Z0 = (0, 0, 0),

Z1 = (
√

b, 0, 0),

Z2 = (−
√

b, 0, 0).

(10)

For the chaotic case, when (a, b) = (1.2, 2.5), the rest points are determined as follows:
Z0 = (0, 0, 0),

Z1 = (1.5811, 0, 0),

Z2 = (−1.5811, 0, 0).

(11)
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If we represent the jerk system (4) as Ż = F(Z), then the Jacobian matrices of the
vector field F at the three rest points Z0, Z1 and Z2 can be easily calculated and denoted as
J0, J1 and J2, respectively.

The eigenvalues of J0 are numerically evaluated as

λ1 = −0.2463, λ2,3 = 0.1231± 2.0113i. (12)

The eigenvalues of J1 are numerically estimated as

λ1 = 0.5961, λ2,3 = −0.2980± 1.0730i. (13)

The eigenvalues of J2 are the same as those of J1.
Hence, we conclude that the jerk system (4) has three unstable, saddle-foci rest points at

Z0, Z1 and Z2. Hence, the new chaotic jerk system (4) has a self-excited chaotic attractor [32].

3. Bifurcation Analysis of the New Jerk System

To define different routes to chaos in our system and to investigate the rich behavior
as a bifurcation diagram that can be spotted in the new jerk system in Equation (4), a
numerical study is carried out using a standard fourth-order Runge–Kutta integration
scheme technique. The dynamical study of our model starts by analyzing possible states of
fixed points, their stability, and bifurcations that arrive under the control of corresponding
parameters of model components.

For this bifurcation study of the jerk system (4), the time step is chosen such that
∆t = 0.005 for every set of parameter values, and computations are carried out using
variables and constant parameters in extended mode. For each setting, the jerk system (4)
is integrated for a sufficiently long time, and the transitional phase is removed.

To call attention to the influence of the system parameters on the dynamics of the
jerk system (4), we maintain that a = 1.4 and b can be used as bifurcation parameters.
Figure 3 supplies the bifurcation diagram of the coordinate z1 versus b and the related plots
of the largest Lyapunov exponent (λmax) of the jerk system (4) versus b. These figures are
obtained by scanning the parameter downward without resetting the initial conditions,
beginning the system from the initial state (0.3, 0.2, 0.3). From Figure 3, we can observe
very abundant and remarkable bifurcation scenarios. This bifurcation diagram shows that
the jerk system is very sensitive to even a slight variation of the initial conditions. Chaotic
motion is achieved progressively within the chaotic oscillator with respect to the control
parameter b. Period-doubling bifurcation sequences and periodic windows can be easily
identified in the graphs of Figure 3a,b.

Figure 4 shows the stability diagram for which the Lyapunov exponent band is acti-
vated for a better decision on the type of behavior. In light of Figure 3, behavior corresponds
to a color and is confirmed by the values of the Lyapunov exponent. Thus, the data in
blue are the behaviors of periodicities; those in red from [0, 2] represent low chaos, and
those in yellow are higher chaos (expressing positive Lyapunov exponents). This spectrum
is plotted when two parameters (a and b) vary at the same time. We remark that these
Lyapunov stability diagrams are of paramount importance for the choice of parameters
a and b, for better control of the system, as well as for a practical study (chaotic behavior
is suitable for encryption, for example). This diagram is useful in choosing the range of
parameters used in applications including chaos-based encryption.
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(a)

(b)
Figure 3. (a) Bifurcation diagram of the jerk system (4) for z1 versus b and (b) largest Lyapunov
exponent (λmax) of the jerk system (4) versus b.

Figure 4. Standard Lyapunov stability diagram plot for the jerk system (4) where two control
parameters a and b vary at the same time. Each color corresponds to a behavior different from the
blue color, which symbolizes the periodicities, red symbolizes low chaos, and yellow symbolizes the
higher chaos.

Figure 5 shows many forms of attractors in the (z2, z3) plane for the jerk system (4)
when the parameter a is fixed at a = 1.4 and the values of b are varied. For b = 2, we obtain
a limit cycle as shown in Figure 5a. For b = 5, we obtain a period-2 attractor as shown in
Figure 5b. For b = 6, we obtain a chaotic attractor as shown in Figure 5c. The jerk system
(4) exhibits a chaotic attractor for a = 1.4 and for 6 ≤ b ≤ 7. Figure 5d–f show an abrupt
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change in the shape of the attractor of the jerk system (4) in the (z2, z3) plane as b takes the
values b = 1.5, b = 4 and b = 7.

(a) b = 2 (b) b = 5

(c) b = 6 (d) b = 1.5

(e) b = 4 (f) b = 7
Figure 5. Attractors of the jerk system (4) in the (z2, z3) plane for Z(0) = (0.3, 0.2, 0.3), a = 1.4 and
various values of b.

4. Multi-Stability and Coexistence of Attractors

An attractor is a domain of convergence of the evolutions (trajectories) of a system.
A system can have several attractors. The coexistence of several attractors or multi-stability
is another remarkable property of interactive systems with nonlinear regulation [33]. In
numerical simulations, the variation of the initial conditions influences the dynamic be-
havior of the system. For the jerk system (4), we can observe multi-stability and verify the
coexistence of attractors for the range of 8 ≤ b ≤ 14, when a is fixed at a = 1.4. In this
region, we observe the coexistence of two periodic period-2 attractors on the one hand and
the coexistence of two chaotic attractors on the other hand. Figure 6 shows the bifurcation
diagram and its corresponding maximum Lyapunov exponent (λmax) of the jerk system (4)
scrolling forward (green) and backward (black) for the parameter b.
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(a) (b)
Figure 6. (a) Bifurcation diagram and the corresponding largest Lyapunov exponent for the jerk
system (4) with the initial value Z(0) = (0.3, 0.2, 0.3) and a = 1.4, and (b) Lyapunov spectrum.

Figure 7 shows the presence of two different chaotic attractors for a = 1.4 and b = 8.
Figure 8 shows the presence of two different periodic attractors for a = 1.4 and b = 14.

(a) (b)
Figure 7. Coexistence of two different chaotic attractors of the jerk system (4) for the parameters
a = 1.4 and b = 8 taking initial values (0.3, 0.2, 0.3) for the: (a) black attractor and (b) (−0.3, 0.2, 0.3)
for the green attractor.

Figure 8. Coexistence of two different periodic attractors of the jerk system (4) for the parameters
a = 1.4 and b = 14 taking initial values (0.1, 0.1, 0.3) for the black attractor and (0.1,−0.4, 0.3) for the
green attractor.
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Further information about the coexistence of the attractors can be obtained by analyz-
ing the basins of attraction of the different attractors, which are defined as the set of initial
conditions whose trajectories converge to the considered attractor. In order to understand
the coexistence of attractors, the basin of attraction is studied. Let us take the coexisting
periodic attractors of Figure 8. Their basin limits are clearly observed in Figure 9, showing
the cross-section of the basin of attraction for z3 = 0.3.

Figure 9. Basin of attraction of the jerk system (4) corresponding to Figure 8 for z3 = 0.3.

For studying the influence of the parameter a, we describe the bifurcation diagram
and maximum Lyapunov exponent (λmax) as shown on Figure 10.

(a) (b)
Figure 10. (a) Bifurcation diagram and (b) the corresponding largest Lyapunov exponent for the jerk
system (4) with the initial value Z(0) = (0.3, 0.2, 0.3) and b = 7 for the forward (blue) and backward
(red) sweeping of the parameter a.

Figure 10 shows the coexistence of multiple attractors for the jerk system (4). Taking
the parameter a = 1.4, the chaotic attractors coexist for the jerk system (4) as shown
in Figure 11. Taking the parameter a = 1.44, the periodic attractors coexist for the jerk
system (4) as shown in Figure 12.
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Figure 11. Coexistence of two different chaotic attractors of the jerk system (4) for the parameter
a = 1.4 and b = 8 taking initial values (0.3, 0.2, 0.3) for the blue attractor and (−0.3, 0.2, 0.3) for the
red attractor.

Figure 12. Coexistence of two different periodic attractors of the jerk system (4) for the parameter
a = 1.44 and b = 7 taking initial values (0.3, 0.2, 0.3) for the blue attractor and (−0.2, 0.2, 0.3) for the
red attractor.

The basin of attraction corresponding to the chaotic attractors of Figure 11 is shown in
Figure 13.

Figure 13. Basin of attraction of the jerk system (4) corresponding to Figure 11 for z2 = 0.2.
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Figure 14 shows the two-parameter bifurcation diagram based on the sign of the
maximum Lyapunov exponent (λmax) for the jerk system (4).

Figure 14. Two parameter bifurcation diagram based on the sign of the maximum Lyapunov exponent
(λmax) for the jerk system (4).

5. Circuit Simulation of the Jerk System

This section details the implementation of an electronic circuit that emulates the jerk
system proposed in Equation (4) in PSPICE and performs a series of simulations in order
to validate the mathematical model proposed from our circuit. On the other hand, it is
interesting to evaluate the effects of the simplifying ideal operational amplifier assumptions
adopted during the modeling process on the actual behavior of the oscillator in PSPICE.
The circuit of Figure 15 is simulated in PSPICE with the values of the resistances equivalent
to the parameters scaled in the numerical study to effectively verify the sensitivity of the
model to the control parameter, which for us, will be the resistance from the modeling of
the circuit equations.

The following circuit can be used to represent the jerk system (4) for an analogical study.
Using Kirchhoff’s circuit analysis laws for the proposed circuit in Figure 15, we derive

the circuit model of the jerk system (4), which is described by the following equations:

VS1 = − 1
C1

∫ VS2
R1

dt

VS2 = − 1
C2

∫ VS3
R2

dt

VS3 = − 1
C3

∫ [VS3
R3

+
V3

S1
R4

+
V2

S1
V2

S2
R5

+
VS1

V2
S2

R5
+

VS1
V2

S2
R6

+
VS1
R7

]
dt

(14)

where VSi correspond to the voltages.
Let VSi = αZi, where i = 1, 2, 3. Then, we obtain the following system of equations for

the circuit model: 

αŻ1 = − R
R1C1

αZ2

αŻ2 = − R
R2C2

αZ3

αŻ3 = − αR
C3R3

Z3 − α3R
C3R4

Z3
1 −

α3R
C3R5

Z2
1 Z2

− α3R
C3R6

Z1Z2
2 −

αR
C3R7

Z1

(15)
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Figure 15. Circuit diagram designed for the proposed jerk system (4).

We can therefore suggest that the circuit model (15) is equivalent to the jerk system (4).
The components of the circuit have been chosen to correspond to Equation (4). In particular,
the parameter values can be set according to the following relationships.

By letting α =
√

10, we observe that

a =
α

R3C3
, b =

αR
R7C3

, R = 10−4 (16)

The values of the components of the circuit are given as follows:

R1 = R2 = 10 kΩ, R4 = R5 = R6 = 1 kΩ, R7 = 1.428 kΩ, (17)

C1 = C2 = C3 = 10 nF. (18)

We vary the values of R3 to obtain different phase portraits for the circuit model (15).
It is easy to see the good agreement between the MATLAB plots of the jerk system (4)

and the simulation results of the circuit (15).
The following Figure 16 shows the various phase portraits of circuit (15) illustrating

the route to chaos, where the initial values are taken as Z(0) = (0.3, 0.2, 0.3).



Electronics 2023, 12, 2818 13 of 22

(a) R3 = 4.9 kΩ (b) R3 = 5.58 kΩ

(c) R3 = 6.85 kΩ (d) R3 = 7 kΩ

(e) R3 = 7.5 kΩ (f) R3 = 8.33 kΩ
Figure 16. Phase portraits illustrating the route to chaos for the circuit model (15) for various values
of R3.

6. Encryption Algorithm and Its Performance

Because of their high sensitivity to primary conditions and their chaotic demeanor,
chaotic systems are commonly utilized for developing image cryptosystems. In this section,
we present the image encryption approach as a cryptographic application of the presented
jerk system as well as the experimental results of this encryption mechanism.

6.1. Proposed Encryption Algorithm

For making the presented cryptosystem applicable in real-time applications, the pre-
sented jerk system is required to be accommodated as stated in Equation (19).

z1i+1 = z2i
z2i+1 = z3i

z3i+1 =
(
−az3i − z1i(z12

i + z1iz2i + z22
i − b)

)
mod 1

(19)

The proposed encryption approach consists of two rounds of encryption. In the first
round, the jerk system (19) is iterated h × w times using the initial conditions (z10, z20,
and z30) and control parameters (a and b) for generating three chaotic sequences ({Z1},
{Z2}, and {Z3}) in which h×w is the size of the plain image and sequence {Z3} is utilized
in the substitution process. In the second round, some information about the substituted
image is gained by using the SHA-256 algorithm for modernizing the prime conditions of
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the jerk system (z10, z20, and z30) and for iterating the jerk system for h× w times utilizing
the updated primary conditions for generating new three chaotic sequences ({Z1n}, {Z2n},
and {Z3n}), in which {Z1n} and {Z2n} are used to construct two permutation boxes for
permutating the substituted image. Sequence {Z3n} is utilized to substitute the permutated
image for constructing the final encrypted image. The general framework of the encryption
process is given in Figure 17, while the steps of encryption are itemized as follows.

Plain image with
size h×w

Encrypted image

 Jerk SystemSubstitution

Update

Permutation

Jerk System

Initial values

Substitution

Sequences Z1n, Z2n

Sequence  Z3

SHA256
0 0 0, ,z1 z2 z3

0 0 0, , , ,z1 z2 z3 a b

Sequence  Z3n

Round 1

Round 2

Figure 17. Outline of our encryption mechanism.

Step 1: Choose values for primary conditions (z10, z20, and z30) and control parame-
ters (a and b) for iterating our chaotic jerk system (19) h× w times to construct three chaos
sequences {Z1}, {Z2}, and {Z3}. Here, h× w is the size of the original image OIm.

Step 2: Transform the elements of the sequence {Z3} into integers in the range [0, 255],
and reshape the output into a matrix Key1.

K1 = f loor(Z3× 1014) mod 256 (20)

Key1 = reshape(K1, h, w) (21)

Step 3: Apply the bit XOR operation between the original image OIm and matrix Key1
to obtain the substituted image SbIm.

SbIm = OIm⊕ Key1 (22)

Step 4: Apply the SHA-256 hashing algorithm on the substituted image SbIm to obtain
256 bits (A), then those bits are converted into 32 integers (T), each of 8 bit, and then those
integers are converted into three decimals (M1, M2, and M3) to update the initial values
for z10, z20, and z30.

M1 =
t1 ⊕ t2 ⊕ · · · ⊕ t11

256
(23)

M2 =
t12 ⊕ t13 ⊕ · · · ⊕ t22

256
(24)

M3 =
t23 ⊕ t24 ⊕ · · · ⊕ t32

256
(25)

z1new = (z10 + M1)
/

2
z2new = (z20 + M2)

/
2

z3new = (z30 + M3)
/

2
(26)
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Step 5: Using the modernized initial conditions (z1new, z2new, and z3new) and the old
control parameters (a and b), iterate our jerk system (19) h×w times to construct new three
chaos sequences {Z1n}, {Z2n}, and {Z3n}.

Step 6: Arrange the first h elements of sequence {Z1n} from the smallest to the largest
to obtain vector {B}; then, obtain the index of every element of {Z1n(1 : h)} in {B} as a
permutation box {Ph}.

Step 7: Arrange the first w elements of sequence {Z2n} from the smallest to the largest
to obtain vector {D}; then, obtain the index of every element of {Z2n(1 : w)} in {D} as a
permutation box {Pw}.

Step 8: Permutate the substituted image SbIm using the permutation boxes {Ph} and
{Pw}.

PrIm(x, y) = SbIm(Ph(x), Pw(y)),
f or x = 1, 2, ..., h

and y = 1, 2, ..., w
(27)

Step 9: Transform the elements of the sequence {Z3n} into integers in the range
[0, 255], and reshape the output into a matrix Key2.

K2 = f loor(Z3n× 1014) mod 256 (28)

Key2 = reshape(K2, h, w) (29)

Step 10: Apply the bit XOR operation between the permutated image PrIm and matrix
Key2 to obtain the final encrypted image EcIm.

EcIm = PrIm⊕ Key2 (30)

6.2. Performance Analysis

To evaluate the proposed encryption mechanism, we used MATLAB R2016b and a PC
with an Intel(R) CoreTM2 Duo 3.00 GHz CPU and 4 GB of RAM. In addition, four standard
test images with dimensions of 512× 512 were used as test images from the SIPI dataset [34]
and were labeled as FishingBoat, Stream, Male, and Couple. The initial values of conditions
and control parameters for running the jerk system (19) were set as: z10 = 0.3, z20 = 0.2,
z30 = 0.3, a = 1.2, and b = 2.5. The visual effects of original images and their encrypted
ones utilizing the suggested encryption algorithm and the declared key parameters are
given in Figure 18, in which the encrypted images are completely noised.

(a) FishingBoat (b) Stream (c) Male (d) Couple

(e) Enc-FishingBoat (f) Enc-Stream (g) Enc-Male (h) Enc-Couple
Figure 18. Original images and their encrypted ones using the suggested encryption algorithm and
the stated key parameters.
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6.2.1. Correlation Analysis

The correlation coefficient, which is employed to determine the relationship between
the pixels that exist in the image, is one of the essential tools used to estimate the meaning of
the image. Correlation coefficient values of the original images are nearly 1 in each direction,
but they should be near 0, with ciphered images using a good encryption mechanism (no
relationship between the pixels that exist in the image) [35]. To calculate the correlation
coefficients for the suggested encryption mechanism, we randomly selected 10,000 pairs of
adjacent pixels in each direction. Table 1 shows the correlation coefficient results, which
reveal that correlation values for encrypted images are extremely near to 0. Figure 19
depicts the correlation distribution of neighboring pixels in each direction for FishingBoat
images before and after encryption. By analyzing the correlations of neighboring pixels, no
significant information about the original image can be gleaned from the results stated in
Table 1 and Figure 19.

Table 1. Outcomes of correlation coefficients.

Image
Direction

H V D

FishingBoat 0.9703 0.9355 0.9143

Enc-FishingBoat 0.0006 −0.0004 0.0001

Stream 0.9265 0.9407 0.8985

Enc-Stream 0.0004 −0.0007 −0.0001

Male 0.9695 0.9615 0.9388

Enc-Male 0.0001 −0.0008 −0.0006

Couple 0.8836 0.9353 0.8542

Enc-Couple −0.0001 −0.0009 −0.0005

Figure 19. Correlation distribution for Fishing Boat images before and after encryption, with the
first row displaying the original image’s correlation distribution and the second row displaying the
encrypted image’s correlation distribution.
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6.2.2. Differential Analysis

To evaluate the suggested encryption approach against differential attacks, we per-
formed NPCR (number of pixels change rate) and UACI (unified average changing inten-
sity) tests [35], which are both defined as given below.

NPCR =
∑
i,j

f (x,y)

T × 100%,

f (x, y) =
{

0 when E1(x, y) = E2(x, y)
1 when E1(x, y) 6= E2(x, y)

(31)

UACI =
1
T

(
∑
x,y

|E1(x, y)− E2(x, y)|
255

)
× 100% (32)

where T points to the number of pixels that exist in the image, and E1 and E2 are two
encrypted images for one original image with slight change in one bit. Table 2 displays the
outcomes of the NPCR and UACI tests, with the average NPCR value being >99.6%. As a
result, the presented encryption method is extremely sensitive to minor pixel changes in
the original image.

Table 2. Results of NPCR and UACI.

Image NPCR UACI

FishingBoat 99.61738% 33.40942%

Stream 99.61395% 33.45551%

Male 99.61509% 33.53011%

Couple 99.62539% 33.44076%

6.2.3. Histogram Analysis

The frequency of pixel values in an image is shown by the histogram test, which
is a crucial statistic for measuring the effectiveness of any encryption scheme. To resist
statistical assaults, any effective encryption method must have identical histograms for
various encrypted images. Figure 20 depicts the histograms of the original images that
differ from one another, but the histograms of analog-encrypted images are similar. As well,
the frequency distribution of pixel values in the encrypted image is measured using the
chi-square test [35], which is a quantitative tool that is used to verify the regular distribution.
The results of the chi-square test are provided in Table 3, in which all chi-square values for
encrypted images are less than the threshold of 293. As a result, our technique of encryption
can survive histogram assaults.

(a) FishingBoat (b) Stream (c) Male (d) Couple

(e) Enc-FishingBoat (f) Enc-Stream (g) Enc-Male (h) Enc-Couple
Figure 20. Histograms of plain and cipher images.
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Table 3. Results of chi-square.

Image Chi-Square Value Result

FishingBoat 383,969.6875 Varying

Stream 1,185,618.3476 Varying

Male 158,413.5429 Varying

Couple 298,865.2441 Varying

Enc-FishingBoat 245.4551 Uniform

Enc-Stream 227.9434 Uniform

Enc-Male 279.8770 Uniform

Enc-Couple 246.9727 Uniform

6.2.4. Information Entropy

Information entropy is a statistical measure that evaluates the distribution of bits per
level in an image. To calculate the information entropy, the following formula can be used.

E(X) = −
255

∑
i=1

p(vi) log2(p(vi)) (33)

where p(vi) points to the probability of vi. The potential values for pixels existing in a
greyscale image are in [0,255], and thus, the perfect entropy value is 8 bit. As a result,
to ensure the efficiency of the suggested encryption method, the entropy values should be
close to 8. The results of information entropy for the original images and their encrypted
counterparts are shown in Table 4, where the entropy values for ciphered images are quite
near to 8.

Table 4. The outcome of information entropy.

Image Encrypted Original

FishingBoat 7.999325 7.191370

Stream 7.999372 5.705560

Male 7.999229 7.534507

Couple 7.999321 7.201008

6.2.5. Occlusion Attack

It is possible to lose a portion of the transferred data while transmitting data across
noisy carriers. As a result, a robust encryption technique must survive data loss assaults.
To test our strategy against data loss threats, we remove some portions of the encrypted
image and then attempt to decrypt it. Figure 21 depicts the outcome of the occlusion attack
in which the original image is successfully recovered with no wasted information in the
cutting portion position.

6.2.6. Key Sensitivity

Key sensitivity is an essential criterion for any robust encryption scheme. Any tiny
modifications in key parameters lead to significant variations in the decrypted image.
To test the key sensitivity of our proposed technique, we performed decryption on the
Enc-FishingBoat image with various keys, as shown in Figure 22. From the results stated in
Figure 22, any tiny modification in key parameters results in significant variations in the
decrypted image.
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(a) Cutting 5% (b) Cutting 10% (c) Cutting 20% (d) Cutting 25%

Figure 21. Consequences of occlusion attacks, where the first row represents the defected images,
and their decrypted analog images are provided in the last row.

(a) (b)

(c) (d)

Figure 22. Cont.
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(e) (f)
Figure 22. Key sensitivity for our cryptosystem. The cipher Aeroplane image is deciphered with
small variations in the initial keys: (a) true key; (b) true key except z10 = 0.3000000000000001; (c) true
key except z20 = 0.2000000000000001; (d) true key except z30 = 0.3000000000000001; (e) true key
except a = 1.200000000000001; (f) true key except b = 2.500000000000001.

7. Conclusions

In this paper, we presented a new chaotic jerk system with three cubic nonlinear
terms. We conducted a qualitative study of the proposed jerk system and analyzed the
stability properties of the three equilibrium points of the jerk system. We showed that
the equilibrium points are unstable. Thus, the new chaotic jerk system has a self-excited
chaotic attractor. The bifurcation structures of the proposed jerk system were investigated
numerically, showing period-doubling, periodic windows and coexisting bifurcations.
We used PSpice to carry out an electronic circuit simulation of the proposed jerk system.
Circuit simulations of mathematical models using PSpice have their own limitations, as
these simulations are based on simplified mathematical models. Finally, a new image-
encryption approach was proposed based on the chaotic behavior of the presented jerk
system. Experimental outcomes demonstrated that the suggested encryption approach
is effective with high plain-image sensitivity and the reliability of the proposed chaotic
jerk system for various cryptographic purposes. In the future, we plan to design an
experimental realization of the proposed chaotic jerk system using a field-programmable
gate array (FPGA).
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