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Abstract: Accurate and intelligent building change detection greatly contributes to effective urban
development, optimized resource management, and informed decision-making in domains such as
urban planning, land management, and environmental monitoring. Existing methodologies face
challenges in effectively integrating local and global features for accurate building change detection.
To address these challenges, we propose a novel method that uses focal self-attention to process
the feature vector of input images, which uses a “focusing” mechanism to guide the calculation of
the self-attention mechanism. By focusing more on critical areas when processing image features in
different regions, focal self-attention can better handle both local and global information, and is more
flexible and adaptive than other methods, improving detection accuracy. In addition, our multi-level
feature fusion module groups the features and then constructs a hierarchical residual structure to
fuse the grouped features. On the LEVIR-CD and WHU-CD datasets, our proposed method achieved
F1-scores of 91.62% and 89.45%, respectively. Compared with existing methods, ours performed
better on building change detection tasks. Our method therefore provides a framework for solving
problems related to building change detection, with some reference value and guiding significance.

Keywords: remote sensing imagery; building change detection; focal self-attention; multi-level
feature fusion

1. Introduction

As remote sensing technology has developed rapidly, building change detection has
become a highly concerning issue [1]. Building change detection is the identification
and localization of building changes by comparing remote sensing images at different
time points. Change detection in remote sensing images plays a crucial role in various
applications, such as urban development monitoring, environmental analysis, and disaster
assessment [2]. As one of the basic spatial structures in cities, the spatial distribution of
building changes is of substantial significance for urban planning, illegal construction
monitoring, and other aspects. The identification and analysis of changes between different
time periods provide valuable insights for decision-making processes. Therefore, achieving
effective change detection is one of the current hotspots and difficulties in the field of
remote sensing images [3]. However, change detection in remote sensing images remains a
challenging task due to various factors, including sensor characteristics, image registration,
noise, and complex scene dynamics.

The problem of building change detection specifically focuses on detecting changes
in buildings or man-made structures between different time periods. The accurate and
efficient detection of building changes is essential for urban planning, land use monitor-
ing, and disaster management. For example, detecting new construction, demolitions, or
changes in building conditions can provide critical information for city planners, insurers,
and emergency responders [4]. Traditional methods for building change detection often
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rely on handcrafted features and heuristics, which may not fully capture the complex
patterns and variations in remote sensing images. These methods often struggle with issues
such as varying illumination conditions, occlusions, and geometric distortions, leading to
suboptimal results. Early building change detection methods mainly used traditional image
processing methods, such as template matching [5], threshold-based [6] and morphological
processing [7] methods. Gong et al. [8] calculated the spectral difference between corre-
sponding superpixels from different multi-spectral images, and trained a convolutional
neural network (CNN) to learn the difference representation of the superpixels, which
was used to distinguish between changed and unchanged regions. However, this method
ignores contextual information and may lead to the generation of noise. Seo et al. [9]
proposed a radiometric and phenological normalization image generation method based
on random forest regression, which is applicable to different types of remote sensing images
and provides a novel strategy for change detection. However, it is not effective in detecting
non-linear changes in some scenes. Morton et al. [10] proposed a novel change detection
method based on transform invariance and orthogonal linear regression. The method
employs an iterative reweighting approach to estimate invariance probability, resulting
in the improved accuracy of change detection. With the advancement of deep learning,
building change detection methods on the basis of deep learning have also been widely
applied and researched [11]. Peng et al. [12] proposed an improved semi-supervised con-
volutional network based on generative adversarial networks, which combined labeled
and unlabeled data in training to reduce the requirement for labeled data while utilizing
available information. For remote sensing images to effectively capture change informa-
tion, the model employs an adaptive network architecture that integrates multiple feature
extractors and attention mechanisms. Experimental results demonstrate that compared
to other methods, this approach achieves better performance and higher stability. Xiao
et al. [13] proposed an innovative method that builds upon object-level feature extraction
and co-segmentation techniques. This method detects building changes by extracting object
features and performing co-segmentation on multiple temporally sensed images, fully
leveraging the multi-temporal information and avoiding the problem of missed or false de-
tections caused by subtle differences between different time periods. Experimental results
demonstrate that this method improves building change detection accuracy and has practi-
cal applications. Zhang et al. [14] proposed a feature-output space dual-alignment change
detection method (FODA). This method reduces the negative impact of pseudo-changes by
focusing on the correlation between constant regions in multi-temporal images. Through
adversarial learning, it can enhance the ability to extract features from unchanged regions
and recognize pseudo-changes. Compared with existing methods, FODA can considerably
enhance change detection performance and help to effectively decrease pseudo-change
issues. Zhang et al. [15] proposed an innovative model using multiscale and attention
mechanisms. A multiscale attention module in this model captured multiscale semantic
information and built an end-to-end dual-scale attention architecture. A dual-threshold
automatic data balancing rule was also designed to alleviate severe data distribution skew-
ness. The results of the experiments indicate that this method performs well when it comes
to detecting details.

Transfer learning has emerged as a major approach for addressing the challenges
of deep learning in remote sensing applications. Remote sensing tasks often suffer from
limited labeled data, complex environmental conditions, and the need for specialized
feature extraction [16]. In such scenarios, transfer learning offers a practical solution by
leveraging knowledge learned from pretraining on large-scale datasets in related domains.
Zhong et al. [17] proposed an SAR target image classification method based on transfer
learning and model compression. They utilized a pretrained deep convolutional neural
network as the base model and applied transfer learning to SAR image classification
tasks. They also employed model compression techniques to reduce the number of model
parameters, thereby improving the computational efficiency. Rostami et al. [18] presented a
deep transfer learning method for few-shot SAR image classification. They pretrained a



Electronics 2023, 12, 2796 3 of 17

model on the source domain and then applied the pretrained model to the target domain
with adaptive fine-tuning to improve the classification performance. They also introduced
a meta-learning strategy to further enhance the accuracy in the few-shot scenario. Huang
et al. [19] investigated deep transfer learning methods for large-scale high-resolution
SAR image classification. They proposed a multi-task learning framework to transfer
knowledge from the source domain to the target domain. They also strengthened the
model’s detection capability for small targets by introducing a specific loss function. Huang
et al. [20] proposed an SAR target classification method based on deep convolutional
neural networks and transfer learning. They employed a pretrained convolutional neural
network on a large-scale image dataset as the base model and fine-tuned the network
parameters for SAR image classification tasks. Due to the limited annotated samples in
SAR image datasets, they also utilized a semi-supervised learning approach to leverage
unlabeled samples in the training process. Lu and Li [21] proposed a transfer learning
method for ship classification in high-resolution SAR images with a small training dataset.
They used a pretrained convolutional neural network on a large-scale image dataset as the
base model and fine-tuned the network parameters for ship classification in SAR images.
They also augmented the training dataset using data augmentation techniques to enhance
the model robustness and generalization. The methods mentioned utilize the concept of
transfer learning to adapt pretrained deep convolutional neural networks to specific tasks
in remote sensing. The commonality among these methods is that they employ a pretrained
model on large-scale image datasets as the base model, and fine-tune or train the model
for specific remote sensing tasks. The benefit of this approach is the utilization of learned
generic features from large-scale datasets to extract relevant features from remote sensing
images, thereby accelerating model training and improving classification performance.
These methods also incorporate different strategies to further enhance model performance.
For instance, some methods reduce the number of parameters and improve computational
efficiency through model compression. Some methods employ meta-learning strategies to
adapt to few-shot scenarios in classification tasks. Others enhance model robustness and
generalization by introducing specific loss functions or data augmentation techniques [22].

The advancement of deep-learning-based change detection techniques has led to
significant research progress [23]. However, existing methods still have some limitations,
such as the insufficient fusion of local and global features when processing large-scale
data [24], the insufficient accuracy of building change detection in complex environments,
and an inability to simultaneously achieve high levels of robustness and generalization [25].
In this paper, we propose a new method for detecting building changes using focal self-
attention for local–global interactions in vision transformers, which addresses the issue
of overly detailed local and global semantic relationships in self-attention. This method
employs the focal self-attention mechanism in the transformer model, which considers
local and global feature information. According to the experimental results, the proposed
method shows superior performance in building change detection tasks and has practical
application value.

2. Materials and Methods
2.1. Dataset

The LEVIR-CD [26] dataset contains 637 pairs of dual-temporal remote sensing images
obtained from Google Earth. The images in the dataset have a resolution of 0.5 m and a
size of 1024 × 1024 pixels. Native dual-time remote sensing images were captured between
2002 and 2018 in various areas of Texas, United States. This dataset was divided into
smaller patches of 256 × 256 pixels in order to accommodate GPU memory constraints. For
experimental purposes, the dataset is divided into three sets: the training set, the validation
set, and the test set. There are 3096 images in the training set, 432 images in the validation
set, and 921 images in the test set.

The WHU-CD [27] building dataset covers the Christchurch area of New Zealand,
with an area of approximately 450 square kilometers. The dataset consists of three parts:
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5201 training images, 744 validation images, and 1487 testing images, with image sizes of
256 × 256 pixels. These images represent the building environment of the region and serve
as a benchmark for building detection and related tasks. This dataset provides valuable re-
sources for research in the fields of remote sensing and computer vision, particularly for the
development and evaluation of algorithms for building detection and related applications.
Figures 1 and 2 show the LEVIR-CD dataset and the WHU-CD dataset, respectively. T1
represents the image before the building change, T2 represents the image after the building
change, and GT represents the label, which is the true building change area.
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Figure 1. LEVIR-CD dataset. (a) The first temporal image. (b) The second temporal image. (c) The
building change label.
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Figure 2. WHU-CD dataset. (a)The first temporal image. (b) The second temporal image. (c) The
building change label.

2.2. Network Architecture

We employed the focal self-attention [28] module and a multi-level feature fusion
module to identify image change regions. As shown in Figure 3, our network consisted of
an encoder and a decoder. The focal self-attention module acts as the encoder, extracting
features from the images, while the multi-level feature fusion module acts as the decoder,
fusing the extracted features. To begin, the focal self-attention module extracted features
from the pre-temporal and post-temporal images, sharing weights across the network.
It produced two sets of images, each containing four feature maps of different sizes,
corresponding to the same size of feature maps. These sets of feature maps were then fed
into the multi-level feature fusion module. In this module, the corresponding feature maps
were fused and subjected to convolution to reduce their dimensionality to match that of the
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pre-fusion image. Finally, the final output was obtained through feature fusion and feature
expansion.
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2.3. Focal Self-Attention Module

In images, the interaction between different regions plays a crucial role, and tra-
ditional transformer models capture the interdependencies among these features using
self-attention mechanisms. However, they often struggle to effectively capture the interac-
tions between different regions of the image. Therefore, we employed a method called focal
self-attention to enhance the interaction between local and global features in the visual
transformer model.

In our focal self-attention module, the input image was first processed by a convolu-
tional embedding layer to extract the image’s features. The flattened features were then
transmitted into the transformer encoder. The encoder contained multiple transformer
modules, each consisting of a self-attention layer and a fully connected layer. The feature
map was divided into multiple blocks in each self-attention layer. The focal self-attention
mechanism calculated the similarity between each block and all other blocks, enabling
the selection of specific local regions that shared similarity, thereby focusing on relevant
information at those locations. This process can be seen as an enhancement of local–global
interaction achieved through local attention mechanisms. Then, a convolutional embedding
layer was applied after each stage to decrease the spatial size of the feature map by half, but
double the feature dimensionality. This layer was fed into the next transformer module. Af-
ter multiple layers, the attention-weighted features were fed into multi-head self-attention
by the fully connected layer to output the model’s prediction results. Additionally, there
were two parts to the focal self-attention mechanism. Firstly, it used the self-attention
mechanism in the transformer to calculate the interaction between the feature representa-
tions of each position and all other positions. Secondly, it introduced an innovative focal
mechanism that assigned attention weights to local regions to better capture local–global
interaction. The formula is as follows:

Att(Q, K, V) =

(
−QKT
√

dk
+ M

)
V (1)

where Q, K, and V are feature representations of Query, Key, and Value, respectively. dk
represents the feature dimension, and M is a matrix of the same size as Q and K. After
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obtaining all the pooled feature maps {xi}L
1 , we calculated the queries (Q), keys (K), and

values (V) using three linear projection layers: fq, fk, and fv:

Q = fq(x1), K = {Ki}L
1 = fk({x1, . . . , xL}), V = {Vi}L

1 = fv({x1, . . . , xL}) (2)

In the focal self-attention model, we started by extracting the contextual information
surrounding each token in the feature map. Tokens within a window of size sp × sp shared
the same set of tokens. For the query Q, we extracted correspondingly sized keys and
values from the key set Ki and value set Vi, respectively. These keys and values correspond
to the tokens surrounding the query within the window. Next, we aggregated the keys and
values from all levels to obtain the final key set and value set.

Specifically, for each position, the focal self-attention mechanism calculates its similar-
ity with all other positions and selects a specific local region based on the magnitude of the
similarity. This enables the model to focus on position-specific information. We evaluated
this method on the LEVIR-CD and WHU-CD datasets, and the results based on various
metrics demonstrated significant improvements.

The innovation of the proposed method lies primarily in the use of an Adaptive Focus
algorithm to achieve image focusing. Traditional focusing algorithms typically rely on
fixed focal lengths or determine the focus position based on image sharpness. In contrast,
the Adaptive Focus algorithm dynamically adjusts the focus position by analyzing and
evaluating local regions of the image to improve overall image sharpness.

The setting of parameters is also a crucial part. Among them, the focal level is used to
specify the level adopted by the focusing algorithm. A lower level means the algorithm
focuses more on the overall image sharpness, while a higher level emphasizes the sharpness
of local regions. The choice of focusing level depends on specific application scenarios and
requirements. Lower levels are suitable for capturing scenes that require overall sharpness,
while higher levels are appropriate for emphasizing local details. In the experiment, we set
this parameter to 2.

The focal window defines the size of the local window used to evaluate image sharp-
ness. A larger window leads the focusing algorithm to consider more local detail in-
formation. However, excessively large windows can increase computational complexity.
Therefore, an appropriate window size needs to be balanced based on specific application
scenarios and available computational resources. In the experiment, we set this parameter
to 7.

The focal factor parameter adjusts the focusing strength in the focusing algorithm. A
smaller factor weakens the adjustment effect, while a larger factor enhances it. By properly
setting the focal factor, the relationship between global and local sharpness can be balanced
according to the image characteristics and requirements. In the experiment, we set this
parameter to 2.

The selection and adjustment of these parameters aim to balance the relationship
between global and local sharpness and optimize image quality based on specific needs.
Through the Adaptive Focus algorithm and proper parameter settings, image sharpness and
detail representation can be improved, thereby enhancing image quality. In the experiment,
we set the focal level parameter to 2, the focal window to 7, and the focal factor to 2 to
simultaneously focus on the overall image sharpness and the sharpness of local regions.

2.4. Multi-Level Feature Fusion Module

To address the issue of multiscale feature fusion in image fusion tasks, this paper
proposes a multi-level feature fusion module. As shown in Figure 4, this module first
groups the features and then constructs a hierarchical residual structure to fuse the grouped
features. This hierarchical residual structure reflects the multiscale nature of the fusion
process. The proposed method can be described as follows:
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First, the feature maps of the pre-change image Yi and the post-change image YV are
input into a 1 × 1 convolutional neural network to extract their deep feature maps Yi

I and
Yi

V . To achieve high-quality fusion of these two feature maps, we utilized a multi-level
feature fusion module (MLFFM). This module can fuse the same dimensional images from
eight feature maps of four different dimensions. The dimensions of the fused image will be
twice those of the original. Then, the concatenated image is convolved to restore the feature
dimension to its original size, resulting in four stages. The smallest stage is convolved
with Conv3Relu to obtain change1, and so on to obtain four transformed feature maps,
namely change1, change2, change3, and change4. Next, the feature fusion method is used
to scale the transformed smallest scale feature map (change1) to the same size as change4
using bilinear interpolation. Then, the feature maps are concatenated along the channel
dimension and output through Conv3Relu. The entire network incorporates DropBlock
regularization, a technique that randomly drops blocks of a certain size at specific locations
with a certain probability to mitigate overfitting.

Specifically, for the i-th feature (i ranging from 0 to s, s represents the total size of the
focal regions across all levels), we first concatenated the features Yi

I and Yi
V , corresponding

to the pre- and post-change images according to the channel dimension. Then, we used a
3 × 3 convolutional layer to alter the dimension and generate the preliminary fused feature
zi. It can be calculated using the following formula:

z
i
= Convi(cat(Yi

I , Yi
V)) (3)

Then, a progressive strategy was used to gradually fuse different features, and another
3 × 3 convolution was used to obtain the output feature Zi. Here is the formula:

Zi =


zi, i = 1
Convi

F(cat(zi, zi−1)), i = 2

Convi
F(cat(zi, Zi−1)), 2 < i ≤ s

(4)

where Convi(·) and Convi
F(·) represent convolutional blocks, including a 3 × 3 convolu-

tional layer, BN layer, and LeakyRelu activation function. cat(·) represents the operation
along the channel dimension. In this paper, we preset s to 3. From the formula, it can be
seen that each output Zi obtained through Convi

F(·) potentially contains the preliminary



Electronics 2023, 12, 2796 8 of 17

fusion feature zi. This allows more detailed information and global information to fully
interact and fuse.

Finally, the intermediate fusion results were concatenated along the channel dimension
to obtain the fusion feature map M. Here is the formula:

M = cat(Z1, Z2, . . . Zi) (5)

In this way, the multi-level feature fusion module design was completed, and the
entire module could fully utilize feature information of different scales, allowing for the
high-quality fusion of the extracted feature maps.

2.5. Loss Function

In most deep learning tasks, the ratio of changed areas is typically smaller than that of
unchanged areas, leading to a class imbalance in the image. In this case, a loss function
can be used to improve feature extraction accuracy. The BCE (Binary Cross-Entropy) loss
function [29] is a commonly used loss function for binary classification, and the formula is
as follows:

LOSSBCE = −{yIog[p(x) + (1− y) log(1− p(x))]} (6)

Here, p(x) is the model output and y is the ground truth label.
The Binary Cross-Entropy (BCE) loss function calculates the prediction error of the

model in binary classification problems, aiding the parameter adjustment to improve
accuracy. However, the BCE loss function may not be as effective in multi-class tasks. The
DICE (Sørensen Dice) loss function is a commonly used method for calculating the loss in
image segmentation tasks. The formula for this loss function is as follows:

LOSSDICE = 1−
2

N
∑

i=1
yi ŷi

N
∑

i=1
yi +

N
∑

i=1
ŷi

(7)

Here, the label value and predicted value of pixel i are, respectively, represented by yi
and ŷi, while N represents the pixels’ total number.

To enhance the model’s accuracy, the DICE loss function facilitates the learning of
precise boundary information. However, it presents challenges in detecting small targets,
as pixel prediction errors for such targets can lead to substantial variations in the DICE loss
function, resulting in drastic changes in gradients. Therefore, we employed a combined loss
function of BCE and DICE to improve the overall performance of the model. In comparison
to the individual BCE and DICE loss functions, the combined loss function comprehensively
incorporated pixel-level predictions and image-level predictions. Regarding the model’s
generalization capability, it mitigated the issue of model overfitting. Regarding image
fusion, it additionally extracted edge features and internal information from the image,
thereby enhancing the model’s accuracy. The following is the formula:

L(C, G) = LBCE(C, G) + LDICE(C, G) (8)

3. Experiments and Results
3.1. Experimental Settings

We implemented our proposed method based on deep learning and the Pytorch
framework. The Adam gradient optimization algorithm was used with a learning rate of
0.0035, and the iteration was set to 500. The GPU used was NVIDIA Tesla A100 with a
batch size of 16.
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3.2. Evaluation Metrics

This article employed Precision, Recall, F1-score, and IOU as evaluation metrics. Preci-
sion represents the ratio of correctly identified change regions to the total detected change
regions. Recall reflects the proportion of true positive examples correctly identified. F1-
score is a metric that combines Precision and Recall using their harmonic mean, providing
a comprehensive assessment of the classifier’s performance. IOU is employed to measure
the accuracy in detecting the target location. These metrics provide a comprehensive
evaluation of the algorithm’s performance. The formulas for calculating these metrics are
presented below.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1-score =
2× Precision× Recall

Precision + Recall
(11)

IOU =
TP

TP + FP + FN
(12)

3.3. Comparison Methods

The following sections provide explanations of seven other representative methods.
The FC-EF [30] is a U-Net-based method that takes dual-temporal image connections

as input and uses skip connections to achieve feature mapping.
The FC-Siam-conc [30] employs a Siamese network with shared weights to extract

multiscale features and combines cascading operations to merge these features through
skip connections.

The FC-Siam-diff [30] is a change detection approach similar to FC-Siam-conc, but it
utilizes absolute difference instead of concatenation.

The CDNet [31] consists of four blocks of compression and four blocks of expansion.
The compression blocks obtain image features, the expansion blocks optimize detection
results, and the softmax block classifies each pixel.

The LUNet [32] integrates fully convolutional LSTM modules on top of each encoding
layer of a U-Net-like deep architecture, computing the temporal relationship of feature
vectors of different resolutions without downsampling or flattening.

The IFNet [33] utilizes a deep supervised difference discrimination network for de-
tecting changes, using a spatio-temporal attention strategy to merge information from
different scales.

The BITNet [34] is a transformer-based network that adds a Siamese-style marker to
obtain semantic markers of dual-temporal images, enhancing features’ global contextual
effectiveness.

3.4. Visual Comparison Results

We conducted experiments using a set of eight different algorithms on two datasets.
Figures 5 and 6, respectively, present the three sets of experimental results obtained for
each dataset. Each set of experimental results comprises two pairs of dual-temporal remote
sensing images, one labeled image, seven comparative experimental results, and the results
obtained from our proposed method.
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Moreover, the article visually demonstrates the superior performance of our proposed
method compared to other existing methods on the LEVIR-CD dataset, as depicted in
Figure 5. In particular, owing to the utilization of the focal self-attention module and multi-
level feature fusion module, our method achieves a more accurate detection of building
changes, as observed in the first row of Figure 5, which represents areas with small building
changes. In the second row of Figure 5, corresponding to areas with medium building
changes, FC-EF exhibits sensitivity to changes in regions with high spectral brightness
coefficients, leading to notable detection errors, whereas IFNet struggles to accurately
detect the change area. Conversely, our proposed method demonstrates the accurate
detection of building changes. In the third row of Figure 5, corresponding to areas with
dense building changes, our proposed method achieves a lower missed detection rate
compared to FC-Siam-conc and FC-EF, as well as a lower false detection rate compared to
FC-Siam-diff.

To quantitatively measure the visual results, we evaluated the performance of different
methods on the LEVIR-CD dataset using the F1-Score, as shown in Figure 5. It can be
observed that the comparative methods achieved higher F1-Score scores in the first two
instances, but experienced a significant decline in the final F1-Score. In contrast, our
proposed method maintained the high F1-Score scores from the previous instances and
demonstrated a substantial improvement in the final performance, thus validating the
effectiveness of our model. Various methods’ results from the WHU-CD dataset are shown
in Figure 6. In the first two experiments of this dataset, FC-EF, IFNet, and our method can
identify the real change contours of buildings. However, all methods show false detections
when dealing with dense building changes. This is mainly because they are not sensitive
to the shadows cast by buildings. They may identify the shadows as buildings. In the
third row, FC-Siam-diff, FC-Siam-conc, FC-EF, LUNet, and BITNet are not sensitive to
the color distinction between buildings and the ground, and may misidentify the ground
as buildings. The proposed method incorporates a focal self-attention module and a
multi-level feature fusion module to enhance the extraction of effective features in images
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and strengthen the differential features between buildings and non-buildings, thereby
reducing the misclassification of buildings as non-buildings or non-buildings as buildings.
Similarly, we conducted a quantitative evaluation on the WHU-CD dataset, as shown in
Figure 6. It can be observed that the WHU-CD dataset is more challenging, as the majority
of methods achieved low F1-score scores across all three instances. Only the IFNet method
surpassed a 90% F1-score in the first instance. In contrast, our proposed method exhibited
excellent performance, with F1-score scores exceeding 95% in all three instances. This
performance significantly outperformed the comparative methods, further validating the
reliability of the visual analysis results discussed earlier. These findings demonstrate the
strong performance of our model in handling complex environments. In summary, the
proposed method has a comprehensive extraction of effective features and is relatively
efficient in performance. It can accurately identify buildings and non-buildings. It also
has an excellent detection ability for some high discrimination changes, and the detection
results are relatively complete.

3.5. Quantitative Analysis

To validate the method’s stability and effectiveness, we conducted a quantitative
analysis on the LEVIR-CD dataset. Results are presented in Table 1. The proposed method
achieved a precision of 4.98% higher than the current optimal BITNet method, while
maintaining a comparable recall rate. Moreover, the proposed method also outperformed
existing methods on F1-score, which comprehensively evaluates the performance by consid-
ering both precision and recall. Additionally, compared with other methods, the proposed
method produced the best results for the IOU performance metric. The data presented in
Table 1 indicate the superiority of our proposed method over other existing approaches in
terms of accuracy and completeness in detecting building change and delineating model
boundaries. Specifically, thanks to the focal self-attention module and multi-level feature
fusion module, the proposed method can detect the range of building changes more accu-
rately in datasets with small building change areas. In datasets with moderate building
change areas, FC-EF was sensitive to changes in areas with large spectral brightness coeffi-
cients in the image and had significant detection errors, while IFNet failed to detect the
change area well. In contrast, our proposed method demonstrates the accurate detection
of building changes. In datasets with dense building changes, compared to FC-EF and
FC-Siam-conc, this method has a lower miss detection rate, and compared to FC-Siam-diff
it has a reduced rate of false positives. Considering all these factors, our method achieved
the highest precision, F1-score, and IOU.

Table 1. Evaluation metrics for the LEVIR-CD dataset. The best results are highlighted in red.

Method Precision (%) Recall (%) F1-Score (%) IOU (%)

FC-EF 79.91 82.84 81.35 68.56
FC-Siam-conc 81.84 83.55 82.68 70.48
FC-Siam-diff 78.60 89.30 83.61 71.84

CDNet 84.21 87.10 85.63 74.87
LUNet 85.69 90.99 88.73 79.75
IFNet 85.37 90.24 87.74 78.16

BITNet 87.32 91.41 89.32 80.70
Ours 92.30 90.96 91.62 84.54

For the WHU-CD dataset, we also performed a quantitative analysis. Table 2 shows
the result. The proposed method exhibited an excellent detection performance, with three
metrics—precision, F1-score, and IOU—outperforming the current optimal methods. In
addition, the proposed method also achieved a high F1-score, while maintaining high
precision. The experimental results indicate that in datasets with small building change
areas, the proposed method exhibited a lower false detection rate than FC-Siam-conc
and LUNet. In datasets with moderate building change areas, LUNet had significant
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detection errors and BITNet failed to detect the change area well. By contrast, the proposed
method showed advantages in detection accuracy. In datasets with dense building changes,
current existing methods were not sensitive to the color distinction between buildings
and the ground, resulting in serious false detection problems, while the proposed method,
combined with the multi-level feature fusion module and focal self-attention module, better
utilized feature information at different levels and focused more on important features
of the target object, thereby improving the accuracy of object detection and classification.
In terms of the accuracy of detecting changes in dense buildings, our method achieved
significant advancements.

Table 2. Evaluation metrics for the WHU-CD dataset. The best result is highlighted in red.

Method Precision (%) Recall (%) F1-Score (%) IOU (%)

FC-EF 70.43 92.31 79.90 66.53
FC-Siam-conc 63.80 91.81 75.28 60.36
FC-Siam-diff 65.98 94.30 77.63 63.44

CDNet 81.75 88.69 85.08 74.03
LUNet 66.32 93.06 77.45 63.19
IFNet 86.51 87.69 87.09 77.14

BITNet 82.35 92.59 87.17 77.26
Ours 90.86 88.08 89.45 80.91

We also visually demonstrate the advantages of this method in detecting building
changes more accurately and with more complete model boundaries compared to other ex-
isting methods, as shown in the visualization result curve in Figure 7. The curve shows that
this method has some advantages in the IOU metric and has higher accuracy in detecting the
location of building changes compared to current existing methods. Although the proposed
method has some shortcomings in recall compared to current methods, it achieved a high
F1-score without sacrificing precision, ensuring the model’s comprehensive performance.
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In the binary building change detection task, there was a significant imbalance between
positive and negative samples (the number of negative samples was much larger than the
number of positive samples). Inspired by [2,23], we added an analysis of the precision–
recall curve to better represent the performance of different algorithms in the context of
imbalanced data.

As shown in Figure 8, we randomly selected five sets of images from the LEVIR-CD
dataset and calculated the precision and recall values for each method. We then plotted
the precision–recall curve based on these values. We observed that recall and precision
showed a positive correlation in general. The recall values for FC-EF and FC-Siam-conc
were concentrated below 0.94 because their early fusion strategy led to the loss of some
feature information. Thanks to the effectiveness of the multi-scale fusion strategy, IFNet
and our method performed relatively well. In particular, our multi-level feature fusion
module could fuse features from different scales, resulting in promising quantitative
performance metrics.
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3.6. Ablative Analysis

In addition, we conducted ablative experiments to further investigate the effectiveness
of our proposed multi-level feature fusion module, as shown in Table 3. We removed the
multi-level feature fusion module and observed the corresponding changes in performance
metrics. For the LEVIR-CD dataset, it can be seen that with the removal of the multi-
level feature fusion module, almost all the metrics scores decreased. The precision metric
decreased by 1.57%, recall decreased by 2.07%, and the F1-score decreased by 1.82%. For
the WHU-CD dataset, the precision metric showed a slight improvement, but the recall
metric decreased by 2.72% and the F1-score decreased by 1.32%. This is because without
the multi-level feature fusion module, the model is unable to effectively integrate global
feature information, resulting in a decrease in recognition performance. By comparing
the results of these ablative experiments with the performance of the complete model,
we quantified the contribution of the multi-level feature fusion module, which helped
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evaluate its impact on overall performance. This validation confirmed the effectiveness of
our proposed method and its role in improving detection accuracy.

Table 3. The ablative experimental results on the LEVIR-CD dataset and WHU-CD dataset. Note that
“MLFF” represents the multi-level feature fusion module.

Dataset MLFF Precision (%) Recall (%) F1-Score (%) IOU (%)

LEVIR-CD
× 90.73 88.89 89.80 81.49√

92.30 90.96 91.62 84.54

WHU-CD
× 91.08 85.36 88.13 78.78√

90.86 88.08 89.45 80.91

4. Discussion

This paper proposes a focal self-attention module and a multi-level feature fusion
method for detecting building changes in remote sensing images. This method comprehen-
sively incorporates both local and global feature information and emphasizes key areas
during image feature processing, leading to an improved detection accuracy. In compara-
tive experiments with seven other methods, our method showed good results. It achieved
an accuracy of 92.3% on the LEVIR-CD dataset, which is 4.98% higher than the current
best method, BITNet, and basically did not sacrifice recall rate. Moreover, our method
achieved the highest scores in terms of F1-score and IOU. Likewise, on the WHU-CD
dataset, our method outperformed the compared methods in the precision, F1-score, and
IOU metrics. In comparison with other existing methods, this method provided better
building change detection accuracy and more complete model boundaries, proving its
more comprehensive performance.

Among the comparative methods, FC-EF was sensitive to changes in regions with
high spectral brightness coefficients, leading to significant detection errors. IFNet could
not accurately detect change areas in certain cases. FC-EF, FC-Siam-diff, FC-Siam-conc,
LUNet, and BITNet were not sensitive in distinguishing building and ground colors, which
could result in the ground being misidentified as a building. In dense building areas,
almost every method produces false detections because they were not sensitive to the
shadows produced by buildings, which were also identified as buildings. The proposed
method incorporated a focal self-attention module and a multi-level feature fusion module,
enhancing the extraction of effective features in images and strengthening the differential
features between buildings and non-buildings, thus reducing false detections. The proposed
focal self-attention module calculated the similarity between each position’s features and
those of all other positions and assigned attention weights to local regions, selecting
local regions based on their similarity to better facilitate local–global interactions and
extract high-level semantic information. The proposed multi-level fusion module used
deep convolution and self-attention to comprehensively extract change information from
shallow to deep levels to locate the actual change position, thereby extracting effective
features more comprehensively and improving change detection accuracy.

To evaluate the generalization ability of our proposed methodology, we conducted
cross-testing on two datasets, as shown in Table 4. We tested the weights trained on the
WHU-CD dataset on the LEVIR-CD dataset, and vice versa. This setup allowed us to
assess the performance of the model on different datasets and infer its generalization
ability. However, we observed performance discrepancies when conducting cross-testing.
Specifically, when testing the weights trained on the WHU-CD dataset on the LEVIR-CD
dataset, we observed a precision of 45.70%, a recall of 4.78%, an F1-score of 8.60%, and an
IOU of 4.53%. Similarly, when testing the weights trained on the LEVIR-CD dataset on
the WHU-CD dataset, the precision, recall, F1-score, and IOU scores were 58.98%, 53.91%,
56.33%, and 39.21%, respectively.
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Table 4. The cross-validation experimental results on the LEVIR-CD dataset and WHU-CD dataset.

Dataset Precision (%) Recall (%) F1-Score (%) IOU (%)

LEVIR-CD 45.70 4.78 8.60 4.53
WHU-CD 58.98 53.91 56.33 39.21

These results indicate that there is room for improvement in the generalization abil-
ity of our proposed methodology across different datasets. The main reason for this is
the distinct characteristics and data distributions between the WHU-CD and LEVIR-CD
datasets, making it challenging for the model to adapt to the varying patterns and feature
representations of different datasets. Hence, we acknowledge the limitations of our model
in handling different datasets. While our model achieved a satisfactory performance on
specific datasets, its limited generalization ability was a significant drawback. We need to
further enhance the design and training strategies of the model to improve its adaptability
and generalization across different datasets. Possible improvements include incorporat-
ing data augmentation techniques, utilizing diverse training datasets, and adjusting the
model’s complexity to cater to a broader range of building change detection scenarios.

5. Conclusions

In this paper, we adopted a focal self-attention module and a multi-level feature fusion
method to process building change detection and validated our approach on two datasets.
The results show that our method surpassed the SOTA system and achieved an excellent
performance. The proposed method for detecting building changes in remote sensing
images also exhibited a higher robustness than existing methods. However, our method
still has room for improvement compared to other methods. The model needs further
optimization to handle more complex scenarios and harsher environments. Overall, this
method still has significant potential and can provide valuable references for research and
applications in remote sensing for detecting building changes.
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