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Abstract: In this paper, a low-computation adaptive self-triggered tracking control scheme is pro-
posed for a class of strict-feedback nonlinear systems with input saturation. By introducing two novel
error transformation functions, the designed low-computation adaptive control scheme can overcome
the problem of complexity explosion in the absence of any filters, such that the developed control
scheme is more applicable. In addition, to save communication resources in networked systems,
a self-triggered communication strategy is proposed which can predict the next trigger point based on
the current information. Compared with traditional event-triggered mechanisms, the computational
burden arising from continuous monitoring of threshold conditions was successfully avoided. Fur-
thermore, the input saturation problem considered in this paper prevents the overload phenomenon
caused by signal jumps, and the adverse effects are compensated by introducing an auxiliary system.
The effectiveness of the developed control scheme is verified through a simulation example.

Keywords: low-computation technology; self-triggered control; tracking control; input saturation;
prescribed performance

1. Introduction

In the past few decades, the control of nonlinear systems has become an increas-
ingly popular research topic across various fields [1–3]. To date, several control methods
have been proposed to address challenges posed by nonlinear dynamics, including robust
control [4], sliding mode control [5,6], adaptive control [7,8], etc. Among these methods,
adaptive backstepping control has been widely acknowledged as one of the effective ap-
proaches to handling nonlinear dynamics in systems. In addition, the presence of uncertain
nonlinear dynamics can also affect system performances. In this case, addressing the impact
of uncertain dynamics on systems becomes a prerequisite for adaptive backstepping control
design. To overcome this challenge, fuzzy logic systems (FLSs) [9–11] and neural networks
(NNs) [12–14] have been introduced in control design to deal with uncertain nonlinearity,
primarily due to their outstanding approximation ability. In this way, adaptive backstep-
ping control for uncertain nonlinear systems has achieved rapid developments. In [15],
an adaptive control method exploring radial basis function neural networks (RBF NNs) was
developed for a class of uncertain nonlinear systems under additional disturbances, where
the uncertain dynamics in systems are linearized through the approximation ability of RBF
NNs. In [16], based on the backstepping design framework and improved FLSs, an adap-
tive fuzzy compensation controller is established to handle actuator failures and dead-zone
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constraints that occur in uncertain nonlinear systems. Although backstepping technology
is an important tool for addressing control design problems of nonlinear systems, under the
traditional backstepping design framework, the large computational burden has become
an important drawback, limiting its wide application.

Specifically, in traditional backstepping technology, the derivation of virtual control
signals becomes increasingly burdensome as the number of system orders increases, even-
tually leading to the problem of complexity explosion, and this will result in extremely
high complexity for the final controller. Aiming at this problem, the command-filtered
strategy was developed by introducing a first-order low-pass filter and designing corre-
sponding filtering compensation signals to reduce filtering errors [17–20]. The authors
in [21] proposed an adaptive output feedback control strategy by using command filtering
and backstepping technology to address the problem of complexity explosion. Unfortu-
nately, with the advent of specific filters, although the problem of complexity explosion
was successfully solved, the structure of controllers also became more complex, and filtered
compensation signals imposed some additional computational burdens. Based on this
situation, in this paper, by introducing a low-computation technology, the computational
burdens generated by the backstepping method, command filters, a large number of adap-
tive parameters, etc, are overcome. Currently, low-computation technology has been
applied widely in nonlinear systems. The authors in [22] proposed a low-computation
adaptive control method based on prescribed performance, which greatly reduced the
computational burden of a system. The tracking control problem for strict-feedback non-
linear systems with unmatched disturbances was considered in [23], where, combined
with constraint-handling techniques, a low-computation adaptive fuzzy control strategy
was developed. Furthermore, in conventional control schemes, the control signals are
updated according to a specific period sampling time, which leads to a large amount of
data occupying the communication channel and increases the communication pressure.

Efficient utilization of communication resources is crucial for optimizing the per-
formances of control systems. In the current networked control context, signal trans-
missions between a controller and an actuator are achieved by sampling a shared com-
munication channel [24]. Despite this, a large number of signals are generated using
time-sampling methods, yet the available communication channel bandwidth is usually
limited, which exacerbates the communication pressure. To solve the above problems,
event-triggered [25–27] and self-triggered control strategies [28–30] are presented to reduce
the amount of information transmissions in communication processes. In [31], an event-
triggered mechanism was incorporated into the design of an adaptive control scheme for
a category of uncertain nonlinear systems, with the aim of conserving communication
resources, where the next trigger point was established by devising a suitable trigger condi-
tion (threshold). Therein, the information can be passed to the controller only when the
condition is satisfied; otherwise, the current information is discarded. In addition, the event-
triggered mechanism requires continuously monitoring signals, which is difficult to achieve
in actual systems. Based on this situation, we introduced a self-triggered mechanism to
improve it. Differently from traditional event-triggered strategies, the self-triggered control
scheme predicts the next trigger point through the current system sampling information,
thereby avoiding the need for continuously monitoring system signals.

On the other hand, in practical engineering, input saturation often occurs in amplifi-
cation and actuator components, which can degrade system performances and even lead
to system instability. As a result, the input saturation problem for nonlinear systems is
challenging, and it has received a lot of attention. In [32], the authors proposed an adaptive
fuzzy control scheme for a class of uncertain non-strict-feedback nonlinear systems with
input saturation, where the input saturation problem was solved by introducing an auxil-
iary design system. In [33], a multigradient recursive reinforcement learning scheme for
discrete-time nonlinear systems with input saturation was proposed. In [34], the author
presented an observer-based adaptive fuzzy output feedback control strategy for a category
of uncertain nonlinear systems with input saturation and output constraints which were



Electronics 2023, 12, 2771 3 of 22

prone to unforeseen states, and the designed controller effectively addressed the impact
of input saturation and output constraints. Therefore, in the case of reducing the calcula-
tion complexity, designing an adaptive self-triggering control scheme that considers both
communication resources and input saturation has become a difficult problem.

Motivated by the above discussion, this paper develops a low-computation adap-
tive self-triggered control strategy for a class of uncertain nonlinear systems with input
saturation. The designed scheme avoids the problem of complexity explosion and im-
proves the transmission efficiency of networked systems. The contributions of this paper in
comparison with the existing literature are listed below:

1. Compared with the existing literature [17–21], the adaptive low-computation control
strategy designed in this paper avoids the problem of complexity explosion and
reduces the computational burden of a system without introducing any filters.

2. To save communication resources, a self-triggered mechanism is designed in this paper
which can predict the next trigger point based on the current system information,
avoiding the problem of continuous monitoring of thresholds in an event-triggered
mechanism [25–27] and greatly improving the transmission efficiency of a system.

3. When the input signal approaches the saturation limit, an auxiliary system is intro-
duced to produce a compensation signal, which reduces the saturation effects and
maintains system performances.

2. Problem Formulation and Preliminaries
2.1. System Description

The majority of engineering systems, such as compressors for jet engines, biochemical
processes, active suspension systems, single-link flexible robots, etc., can be converted
into strict-feedback forms. The following strict-feedback nonlinear systems are taken
into consideration:

ẋi = Φi(x̄i) + xi+1, i = 1, . . . , n− 1

ẋn = Φn(x̄n) + u(v)

y = x1

(1)

where y ∈ R and x̄i = [x1, . . . , xi]
T ∈ Ri represent the measured the system output and

state vectors, respectively. Φi(x̄i) is the unknown nonlinear functions. Ri → R is locally
Lipschitz in x̄i [35]. u(v) is the saturation input to system (1) and is represented as such

u[v(t)] = sat[v(t)] =

{
sign[v(t)]uL, |v(t)| ≥ uL

v(t), |v(t)| < uL
(2)

where uL is the boundary of u(t). Obviously, when |v(t)| = uL, there is a sharp angle
between the curve of the control input v(t) and the applied control u(t), resulting in the
backstepping method not being applied directly, such that the subsequent smooth function
can approximately represent the system’s saturation

I1 = uL × tanh(p) =
uL(ep − e−p)

ep + e−p (3)

where p = v/uL; then, the saturation input sat[v(t)] in (2) further establishes that

sat[v(t)] = I1 + I2 = uL × tanh(p) + I2 (4)

where I2 = sat[v(t)] − I1 is a bounded function, and the bound is straightforward to
verify that

|I2| = |sat[v(t)]− I1| ≤ uL(1− tanh(1)) (5)

where uL(1− tanh(1)) = A and A > 0.
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Notice that I2 increases from 0 to A as |v| changes from 0 to uL; when |v| is beyond
range, the value of I2 decreases from A to 0 as |v| changes.

To facilitate further study, the following assumptions and partial lemmas are given:

Assumption 1. There exists a constant τ > 0 such that the auxiliary control signal
∣∣Γ̃∣∣ ≤ τ.

Assumption 2 ([36]). The reference signal yd and its first-order derivatives ẏd are continuous
and bounded. There exist positive constants B0, B0, B̄0, and B1, which satisfy max{B0, B̄0} ≤ B0,
and for ∀t ≥ 0, −B0 ≤ yd(t) ≤ B̄0, |ẏd(t)| ≤ B1.

Remark 1. The traditional backstepping method [37–41] is a popular approach for trajectory
tracking and control of nonlinear systems. However, it requires knowledge of the nth-order derivative
of the reference signal, which may not be available or practical in some specific industrial fields, such
as robotics, aerospace, and transportation. For example, in aerospace, the reference trajectory of
an aircraft or a spacecraft may be preplanned or provided by a ground station, but the availability
and accuracy of the nth-order derivative of the reference signal may be limited by various factors,
such as atmospheric disturbances, sensor noise, etc. The implementation of the method proposed in
this paper is made simpler, and the computational burden is decreased, since there is no need for
information about the higher-order derivatives of the reference signal.

Lemma 1 ([16]). There are two variables, F > 0 and G ∈ R, and the property listed below applies
to the hyperbolic function tanh(·).

0 ≤ |G| − G tanh(
G
F
) ≤ 0.2785F (6)

Lemma 2. For ∀a ∈ R and F > 0, the hyperbolic function tanh(·) has unique properties.

−a tanh(
a
F
) ≤ 0 (7)

Our control goal is to developed a low-computation adaptive self-triggered controller
such that the tracking error is as small as desired and the output of system (1) can track the
reference signal yd effectively.

2.2. RBF NNs Approximation Design

To achieve the control objective, we apply the RBF NNs’ approximation capability to
handle the unknown nonlinear function Ψ(X ): ΩX ⊂ R on a compact set ΩX ⊂ Rd with
arbitrary accuracy [42–45]; it follows that

Ψ(X ) = WTφ(X ) + ε(X ) (8)

where X ∈ ΩX ⊂ Rd and W = (W1, W2, . . . , Wd) ⊂ RL represent the input vector, with
d ≥ 1 denoting ideal weight vectors; L is RBF NNs’ node number satisfying L > 1.
The basis function vector φ(X ) is expanded as [φ1(X1), . . . , φL(Xd)] ∈ RL, where the
Gaussian function φi(X ) is expressed as

φi(X ) = exp(
−(X − ζi)

T(X − ζi)

Ξ2
i

), 1 ≤ i ≤ L (9)

where ζi ∈ Rδ denotes the center of basis functions, and its width is expressed by Ξi.
The approximation error ε(X ) satisfies |ε(X )| = |Ψ(X )−Ψ(X |W)| ≤ ε̄, and ε̄ > 0 is a
constant. Ψ(X |W) stands for the actual value of the unknown continuous function of the
system under consideration.
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3. Controller Design

In this section, a controller that is structurally and computationally efficient is pre-
sented. Define the following coordinate transformation:

e1 = y− yd (10)

ei = xi − αi−1, i = 2, . . . , n− 1 (11)

en = xn − αn−1 − Γ̃ (12)

where e1, ei, and yd are the output tracking error, the difference between virtual control
signal αi−1 and state xi, and the reference signal, respectively. ˙̃Γ = −Γ̃ + I1 − vstd is an
auxiliary control signal which is given later. Then, in accordance with the requirements, we
design two novel error transformation functions:

ξi = cos2(
πei
2σi

), i = 1, . . . , n (13)

ηi = tan(
πei
2σi

), i = 1, . . . , n (14)

where σi denotes the upper bound of |ei|, which is provided later in the following design.
The adaptive law and virtual controller are given as follows:

αi = −ciηi − ŴT
i φi(x̄i) (15)

˙̂Wi = −Ŵi +
liηi
σiξi

φi(x̄i), i = 1, 2, . . . , n (16)

where li > 0 and ci > 0 are design parameters. −ciηi denotes the design constraint process-
ing scheme, which aims to restrict the error variable ei in (−σi, σi). To improve the system
performance, we choose [46]

σi = (σi0 − σi∞)e−Nit + σi∞, i = 1, . . . , n (17)

where σi∞ > 0 and Ni > 0 are freely selectable design parameters. They represent the limit
value of |ei| and the convergence rate, respectively. Moreover, the selection of σi0 needs to
have the following conditions:

|ei(0)| < σi0, i = 1, . . . , n (18)

The realization of |ei(t)| < σi(t), t ≥ 0 depends on this circumstance.

4. Stability Analysis

In a closed-loop system, all command signals should be bounded under sufficient
conditions, as demonstrated by the following lemma:

Lemma 3. By the boundedness of ei, ėi, ηi, and ẋ1, . . . , ẋi (i = 1, . . . , n), we can deduce that
α̇i is bounded.

Proof. From (14) and (15), we can obtain α̇i and η̇i(i = 1, . . . , n) as

α̇i = −ciη̇i − ˙̂WT
i φi(x̄i)− ŴT

i
∂φi
∂x̄i

˙̄xi (19)

η̇i =
π

2
ėiσi − eiσ̇i

σ2
i ξi

(20)
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According to the design of RBF NNs, it is easy to obtain ‖φi(x̄i)‖ ∈ L∞ and ‖∂φi/∂x̄i‖ ∈
L∞. It is noted by the properties of ξi and ηi that ξ−1 ∈ L∞ and ηi ∈ L∞ are equivalent. By
reviewing (17), one has

σi∞ < σi < σi0, σ−1
i0 < σ−1

i < σ−1
i∞

Ni(σi∞ − σi0) < σ̇i < 0, i = 1, . . . , n
(21)

From (19)–(21), we can obtain that if ξ−1
i , ei, and ėi are bounded, then the boundedness

of η̇i can be guaranteed. In light of (16), by adding stable bounded inputs and outputs,
we can conclude that

∥∥Ŵi
∥∥ and

∥∥∥ ˙̂Wi

∥∥∥ can remain bounded when ξ−1
i is bounded. Thus,

the proof is complete.

Next, we can conclude the following:

Theorem 1. Considering a class of strict-feedback system (1) with saturated inputs, given initial
conditions (18), with the support of Lemmas 1 and 2 and Assumptions 1 and 2, the following theory
can be established:

(1) The output tracking error gradually approaches and stabilizes within the residual set (−σi, σi)
as time progresses.

(2) The boundedness of all signals in a closed-loop system is guaranteed.
(3) The Zeno phenomena are successfully avoided.

Proof. In the beginning, the closed-loop dynamics are formulated. Define α0 = yd. Com-
bining (1), (10), and (11), the first-order derivative of ei (i = 1, 2, . . . , n− 1) is obtained
as follows, where the nth step is redesigned due to the inclusion of the self-triggered
mechanism and the saturation input.

ėi = ẋi − α̇i−1

= ei+1 − α̇i−1 + Φi(x̄i)− ciηi − ŴT
i φi(x̄i)

(22)

The Lyapunov function candidate is selected as Vi = Vi1 + Vi2, where

Vi1 =
1
π

η2
i , Vi2 =

1
2li

W̃T
i W̃i, (i = 1, . . . , n) (23)

where W̃i = Wi − Ŵi, and Ŵi denotes the estimation of Wi.
The derivative of Vi1 can be found by (20) and (22) as

V̇i1 =
ηi

ξiσi
(Φi(x̄i)− ciηi − ŴT

i φi(x̄i)

+ ei+1 − α̇i−1 −
eiσ̇i
σi

), i = 1, 2, . . . , n− 1
(24)

Then, we need to prove by the converse method that all error variables are constrained
within the predetermined set [47], i.e., when t ≥ 0, they satisfy

|ei(t)| < σi(t), i = 1, . . . , n. (25)

Assume the relationship between at least one error variable and a specific time point
exists as follows: ∣∣eq(tm)

∣∣ ≥ σq(tm), q ∈ {1, . . . , n} (26)
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where tm < tm+1 and m ∈ Z+; then, define the time at which (25) is first violated as t1.
In light of (18), we know that t1 > 0. Thus,

|ei(t)| < σi(t), i = 1, . . . , n, t < t1. (27)

lim
t→t−1

∣∣eq(t)
∣∣ = σq(t1), q ∈ {1, . . . , n}. (28)

The aforementioned negative circumstance is reversed throughout the subsequent
analysis and proof process.

Step 1: In this step, we first analyze the dynamical behavior of the output tracking
error. The boundedness of y = x1 on [0, t1) is ensured with the support of Assumption 1,
(10), and (27). That is, the system state x1 always remains within the compact set Ω1 when
t < t1. Using the approximation capability of RBF NNs, we have

Φ1(x̄1) = WT
1 φ1(x1) + ε1 (29)

where ε1 is the approximation error satisfying the condition of |ε1| ≤ ε̄1.
Bringing (29) to (24) with i = 1, V̇11 can be deduced

V̇11 =
η1

ζ1σ1
(WT

1 φ1(x1) + ε1 − c1η1 − ŴT
1 φ1(x1) + e2 − ẏd −

e1σ̇1

σ1
)

=
η1

ξ1σ1
(Λ1 − c1η1 + W̃T

1 φ1(x̄1)

Λ1 = ε1 + e2 − ẏd −
e1σ̇1

σ1

(30)

By analyzing Assumption 2, (21), and (27), it is clear that ε1, e1, e2, ẏd, σ̇1, and 1/σ1 are
bounded. In summary, when t < t1, Λ1 is guaranteed to be bounded. For convenience, we
denote |Λ1| ≤ δ1, t < t1. Therefore, (30) can be rewritten as

V̇11 ≤
η1

ζ1σ1
W̃T

1 φ1(x1) +
η1

ζ1σ1
(δ1 − c1η1) (31)

≤ η1

ξ1σ1
W̃T

1 φ1(x1) +
1

ξ1σ1
(δ1|η1| − c1η2

1) (32)

According to Young’s inequality and recalling (23), one has

δ1|η1| ≤
1

2c1
δ2

1 +
c1

2
η2

1 =
1

2c1
δ2

1 +
πc1

2
V11 (33)

Thus, (31) can be rewritten as

V̇11 ≤
η1

ξ1σ1
W̃T

1 φ1(x1) +
1

ξ1σ1
(ω1 − h1V11) (34)

where ω1 = 1
2c1

δ2
1 and h1 = πc1

2
On the basis of (16) and (23), we can obtain

V̇12 = − 1
l1

W̃T
1

˙̂W1 =
1
l1

W̃T
1 Ŵ1 −

η1

ξ1σ1
W̃T

1 φ1(x1)

=
1
l1

W̃T
1 W1 −

1
l1

W̃T
1 W̃1 −

η1

ξ1σ1
W̃T

1 φ1(x1)

(35)
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Using Young’s inequality again, it is concluded that

1
l1

W̃T
1 W1 ≤

1
2l1

W̃T
1 W̃1 +

1
2l1

WT
1 W1 (36)

Bring the above equation back to (35), V̇12 further satisfies

V̇12 ≤ −
1

2l1
W̃T

1 W̃1 +
1

2l1
WT

1 W1 −
η1

ξ1σ1
W̃T

1 φ1(x1)

≤ −V12 +
1

2l1
WT

1 W1 −
η1

ξ1σ1
W̃T

1 φ1(x1)

(37)

To sum up, we arrive at

V̇1 = V̇11 + V̇12

≤ 1
ξ1σ1

(ω1 − h1V11)−V12 +
1

2l1
WT

1 W1
(38)

Next, the boundedness of V1 is illustrated by discussing two different cases of V11.
Case 1: V11 ≤ ω1

h1
+λ̄1, whereλ̄1 > 0 is a parameter used for analysis, the definition of

which is given subsequently. Apparently,

V12 = V1 −V11 ≥ V1 −
ω1

h1
−λ̄1 (39)

According to (13) and (21), term 1
ξ1σ1

(ω1 − h1V11) is bounded in this case. So, we have

1
ξ1σ1

(ω1 − h1V11) ≤
ω1

ξ1σ1
≤ h̄1 (40)

By putting (39) and (40) into (38), we can obtain

V̇1 ≤ −V1 +
1

2l1
WT

1 W1 +
ω1

h1
+λ̄1 + h̄1 (41)

Case 2: V11 > ω1
h1

+λ̄1. In this case, there is

ω1 − h1V11 < −λ̄1h1 (42)

From (14), (13), (21), and (23), 1
ξ1σ1

can be deduced as

1
ξ1σ1

=
tan2(πe1

2σ1
)

σ1sin2(πe1
2σ1

)
=

η2
1

σ1β2
1
=

π

σ1β2
1

V11 ≥
π

σ10
V11 (43)

where β1 = sin(πe1
2σ1

).
Combining (42) and (43), we can obtain

1
ξ1σ1

(ω1 − h1V11) < −
πλ̄1h1

σ10
V11 (44)

Letλ̄1 = σ10
πh1

and earn

1
ξ1σ1

(ω1 − h1V11) < −V11 (45)
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Substituting (45) into (38) yields

V̇1 < −V1 +
1

2l1
WT

1 W1 (46)

Incorporating (41) and (46), V̇1 can be modified as

V̇1 < −(V11 + V12) +
1

2l1
WT

1 W1

< −V1 + γ1

γ1 =
1

2l1
WT

1 W1 +
ω1

h1
+λ̄1 + h̄1

(47)

By integrating over both sides of (47), it is not difficult to see that

V1 < (V1(0)− γ1)e−t + γ1, t < t1 (48)

Step i (2 ≤ i ≤ n− 1): The dynamic behavior of ei is described in this step. Firstly, it is
necessary to validate that the system state x̄i is guaranteed at the set Ωi in [0, t1). The time
interval [0, t1) forms the basis of the analysis as follows:

(1) According to (23) and (48), it can be proved that ηi−1 and
∥∥Ŵi−1

∥∥ are bounded.
(2) Under (15), the boundedness of αi−1 can be derived directly.
(3) For step i, using (11) and (27), we can prove that xi is bounded.

Recall that establishing the boundedness of x1 in step 1 yields that the system states
x1,. . . , xi are guaranteed in the compact space Ωi, and the unknown nonlinear factor
Φi(x̄i)(2 ≤ i ≤ n− 1) in (24) is approximated by RBF NNs, i.e.,

Φi(x̄i) = WT
i φi(x̄i) + εi (49)

where εi with |εi| ≤ ε̄i is the approximation error.
Bringing (49) to (24), we have

V̇i1 =
ηi

ζiσi
(WT

i φi(x̄i) + εi − ciηi − ŴT
i φi(x̄i) + ei+1 − α̇i−1 −

eiσ̇i
σi

)

=
ηi

ξiσi
(Λi − ciηi + W̃T

i φi(x̄i))

Λi = εi + ei+1 − α̇i−1 −
eiσ̇i
σi

(50)

Notice from (21) and (27) that 1/σi, σ̇i, e1, ei, and ei+1 are bounded as t < t1. Then, we
ensure that α̇i−1 is bounded on [0, t1). By Φi−1 being continuous and xi−1 being bounded,
we can obtain that for [0, t1), the nonlinear function Φi−1(x̄i−1) has a bound. On this basis,
the boundedness of xi−i can also be guaranteed, as can ẋi−1 governed by (1). Based on
Lemma 3, α̇n−1 is also bounded on the interval [0, t1).

The results presented above support the existence of a positive constant δi, which
makes |Λi| < δi, t < t1. Thus, (50) becomes

V̇i1 ≤
ηi

ζiσi
W̃T

i φi(x̄i) +
ηi

ζiσi
(δi − ciηi) (51)

≤ ηi
ξiσi

W̃T
i φi(x̄i) +

1
ξiσi

(δi|ηi| − ciη
2
i ) (52)
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Using Young’s inequality and noticing Vi1 = 1
π η2

i , we have

δi|ηi| ≤
1

2ci
δ2

i +
ci
2

η2
i =

1
2ci

δ2
i +

πci
2

Vi1 (53)

Then, (51) turns into

V̇i1 ≤
ηi

ξiσi
W̃T

i φi(x̄i) +
1

ξiσi
(ωi − hiVi1) (54)

where ωi =
1

2ci
δ2

i and hi =
πci
2 .

With the support of (16) and (23), the derivative of Vi2 is

V̇i2 = − 1
li

W̃T
i

˙̂Wi =
1
li

W̃T
i Ŵi −

ηi
ξiσi

W̃T
i φi(x̄i)

=
1
li

W̃T
i Wi −

1
li

W̃T
i W̃i −

ηi
ξiσi

W̃T
i φi(x̄i)

(55)

Applying the same method as (36), we arrive at

1
li

W̃T
i Wi ≤

1
2li

WT
i Wi +

1
2li

W̃T
i W̃i (56)

Substituting (56) into (55) yields that V̇i2 further satisfies

V̇i2 ≤
1

2li
WT

i Wi −
1

2li
W̃T

i W̃i −
ηi

ξiσi
W̃T

i φi(x̄i)

≤ −Vi2 +
1

2li
WT

i Wi −
ηi

ξiσi
W̃T

i φi(x̄i)

(57)

Integrate (54) and (57), the derivative of Vi can be further modified as

V̇i = V̇i1 + V̇i2

≤ 1
ξiσi

(ωi − hiVi1)−Vi2 +
1

2li
WT

i Wi
(58)

In this step, we also elaborate the boundedness of V1 by analyzing two different cases
of Vi1.

Case 1: Vi1 ≤ ωi
hi
+λ̄i, whereλ̄i > 0 is an analysis parameter. Obviously,

Vi2 = Vi −Vi1 ≥ Vi −
ωi
hi
−λ̄i (59)

From (13) and (21), it is straightforward to see that

1
ξiσi

(ωi − hiVi1) ≤
ωi

ξiσi
≤ h̄i (60)

Inserting (59) and (60) into (58), we arrive at

V̇i ≤ −Vi +
1

2li
WT

i Wi +
ωi
hi

+λ̄i + h̄i (61)

Case 2: Vi1 > ωi
hi
+λ̄i. In this case, there are

ωi − hiVi1 < −λ̄ihi (62)
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Recalling (14), (13), (21), and (23), define βi = sin(πei
2σi

), thus obtaining

1
ξiσi

=
tan2(πei

2σi
)

σisin2(πei
2σi

)
=

η2
i

σiβ
2
i
=

π

σiβ
2
i

Vi1 ≥
π

σi
Vi1 ≥

π

σi0
Vi1 (63)

Sorting (62) and (63), and takingλ̄i =
σi0
πhi

, we can derive

1
ξiσi

(ωi − hiVi1) < −Vi1 (64)

Bringing (64) into (58) yields that we arrive at

V̇i < −(Vi1 + Vi2) +
1

2li
WT

i Wi

< −Vi +
1

2li
WT

i Wi

(65)

Merging (61) and (65), there are

V̇i < −Vi + γi

γi =
1

2li
WT

i Wi +
ωi
hi

+λ̄i + h̄i
(66)

Integrating both ends of the above equation, when t < t1, it can be clearly seen that

Vi < (Vi(0)− γi)e−t + γi (67)

Step n: Incorporating (12) into (1) yields that ėn is computed as

ėn = ẋn − α̇n−1 − ˙̃Γ

= u(v) + Φn(x̄n)− α̇n−1 − ˙̃Γ
(68)

where ˙̃Γ = −Γ̃ + I1 − vstd is the defined dynamic system [32].
Taking Vn1 in the Lyapunov function (23) and combining it with (20), for V̇n1, it is

straightforward to observe that

V̇n1 =
1
π

ηnη̇n

=
ηn

σnξn
(u(v) + Φn(x̄n)− α̇n−1 − ˙̃Γ− enσ̇n

σn
)

(69)

In a similar way to the previous step, it can be recursively deduced that the system
states x1, . . . , xi, . . . , xn guarantee in a compact space Ωn. Therefore, the unknown function
Φn(x̄n) is approximated via RBF NNs, i.e.,

Φn(x̄n) = WT
n φn(x̄n) + εn (70)

where εn is the approximation error and satisfies |εn| ≤ ε̄n.
Substituting (70) into (69) and recalling (2) and (4), one has

V̇n1 =
ηn

σnξn
(I2 + WT

n φn(x̄n) + εn − α̇n−1

+ Γ̃ + vstd −
enσ̇n

σn
)

(71)
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The self-triggered mechanism is designed as

vstd(t) = χ(tι), ∀t ∈ [tι, tι+1)

tι+1 = tι +
kσ|vstd(t)|+ kD
max{|χ̄(t)|, kc}

(72)

where tι, tι+1 ∈ Z+, 0 < kσ < 1. kD and kc are positive design parameters. kσ|vstd(t)|+ kD
represents the interval between two successfully triggered control signals; |χ̄(t)| with
χ̄(t) = χ̇(t)|t=tι and kc denote the change rates of the control signal. When (72) is triggered,
vstd(t) = χ(tι) will be input immediately into the system (1). The following trigger point
tι+1 will also be obtained at the same time and control signal vstd(t) will remain at χ(tι)
during t ∈ [tι, tι+1). χ(t) is expressed as

χ(t) = −(1 + kσ)[αn tanh(
Kαn

P
) + km tanh(

Kkm

P
)] (73)

where K = ηn/(σnξn), P and km > kD
1−kσ

are positive design parameters.

Remark 2. Given that the next trigger point is calculated, we introduce a term −(1 + kσ)km
tanh( kmK

P ) to mitigate potential calculation errors. This compensation method, which is widely
used in nonlinear system control, has proven effective.

Remark 3. In contrast to the conventional event-triggered mechanism [26,27,31,48] which requires
continuous monitoring of thresholds, the self-triggered scheme proposed in this paper uses current
system state information to determine the next trigger point for controller updates. This approach
overcomes the monitoring challenge and maintains the communication resource-saving benefits of
the event-triggered mechanism.

From (72), |vstd(tι+1)− vstd(t)| ≤ kσ|vstd(t)|+ kD is derived. Additionally, we then ob-
tain |χ(t)− vstd(tι)| ≤ kσ|vstd(t)| + kD. By setting the time-varying continuous func-
tion ρ1(tι) = ρ2(tι) = 0, ρ1(tι+1) = ρ2(tι+1) = ±1 and |ρ1(tι)| ≤ 1, |ρ2(tι)| ≤ 1,
∀t ∈ [tι, tι+1), (1 + ρ1(t)kσ)vstd(t) = χ(t) − ρ2(t)kD can be obtained. Thus, we have
vstd(t) =

χ(t)−ρ2(t)kD
1+ρ1(t)kσ

.
Since

Kvstd(t) =
Kχ(t)

1 + ρ1(t)kσ
− Kρ2(t)kD

1 + ρ1(t)kσ

≤ −Kαn tanh(
Kαn

P
)−Kkm tanh(

Kkm

P
) +

∣∣∣∣ Kρ2(t)kD
1 + ρ1(t)kσ

∣∣∣∣
≤ Kαn − |Kkm|+

∣∣∣∣ KkD
1− kσ

∣∣∣∣+ 0.557P

≤ Kαn + 0.557P

(74)

where K = ηn/(σnξn). Then, combined with (16), (71) is rewritten as

V̇n1 =
ηn

σnξn
(I2 + W̃T

n φn(x̄n) + εn − α̇n−1

+ Γ̃− cnηn + 0.557P
σnξn

ηn
− enσ̇n

σn
)

=
ηn

σnξn
(Λn − cnηn + W̃T

n φn(x̄n))

Λn =I2 + εn − α̇n−1 + Γ̃ + 0.557P
σnξn

ηn
− enσ̇n

σn

(75)
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where Γ̃ is bounded [34]. Based on (5), (14), and (13), I2, 1
ηn

, and ξn are bounded, so that
|Λn| < δn, t < t1. Through some algebraic manipulators, for V̇n1, it can be obtained that

V̇n1 ≤
ηn

σnξn
W̃T

n φn(x̄n) +
1

σnξn
(ωn − hnVn1)

V̇n2 ≤ −Vn2 +
1

2ln
WT

n Wn −
ηn

σnξn
W̃T

n φn(x̄n)

where hn = π
2 cn and ωn = 1

2cn
δ2

n. Accordingly, the bound of V̇n further satisfies

V̇n ≤ −Vn2 +
1

2ln
WT

n Wn +
1

σnξn
(ωn − hnVn1)

It is possible to demonstrate by classified discussion that

V̇n < −Vn + γn

γn =
1

2ln
WT

n Wn +
ωn

hn
+λ̄n + h̄n

whereλ̄n = σn0
πhn

. In this scenario

Vn < (Vn(0)− γn)e−t + γn, t < t1 (76)

Noticing that Vi1 = 1
π η2

i = Vi −Vi2 ≤ Vi, i = 1, . . . , n. Combining the results in (48),
(67), and (76), and considering the initial condition Vi(0) is bounded, we can see that

η2
i < πVi(0), t < t1

It is obvious that η1, . . . , ηn remains bounded on the interval [0, t1). In the light of
the definition of ηi in (14), it can be stated that for each error variable ei, |ei| guarantees
within the prescribed boundary function σi(t), i = 1, . . . , n. The conclusion (27) under
assumption (26) is in contradiction. Therefore, the assumption (26) is not reasonable, thus
justifying the conclusion (25).

Invoking (10) and combining (17) and (25) for i = 1, it follows that

lim
t→∞
|y(t)− yd(t)| < σ1∞ (77)

which demonstrates that the tracking error gradually diminishes until it reaches a residual
set in close proximity to 0. Based on (25) and using the same steps as before, it follows by
step-by-step derivation that the results of (48), (67), and (76) hold for all t ≥ 0, i.e.,

V̇i < −Vi + γi, i = 1, . . . , n

Further derived

Vi = Vi1 + Vi2 < (Vi(0)− γi)e−t + γi

With the aid of (23), we obtain ηi ∈ L∞ and
∥∥Ŵi

∥∥ ∈ L∞, i = 1, . . . , n. By (15), we
obtain αi ∈ L∞. From (11), (12), and (25), xi ∈ L∞, i = 1, . . . , n hold. Up to this point,
the boundedness of all signals in the closed-loop system is guaranteed.

Given that vstd is bounded, we can infer from (72) that (kσ|vstd(t)|+ kD)/(max{|χ̄(t)|, kc})
is also bounded. Consequently, we can determine t∗ = tι+1 − tι > 0, where t∗ is a bounded
minimum time interval, which implies that there will be no Zeno phenomenon [49]. Thus,
Theorem 1 can be established.
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5. Simulation Example and Analysis
5.1. Example Model 1

In this section, the effectiveness of our proposed method is verified by a numerical
example. Consider the following nonlinear system with input saturation as

ẋ1 = Φ1(x1) + x2
ẋ2 = Φ2(x̄2) + u(v)
y = x1

where the unknown nonlinear functions Φ1(x1) and Φ2(x̄2) are chosen as Φ1(x1) =
− 1

3 x3
1 + x1 + 0.74 cos(t) and Φ2(x̄2) = 0.1(x1 + 0.7− 0.8x2), respectively. The reference

trajectory is selected as yd = sin(t). Additionally, input u(v) is described by

u(v(t)) = sat(v(t)) =

{
sign(v(t))uL, |v(t)| ≥ uL

v(t), |v(t)| < uL

where uL = 4. According to (9), the Gaussian basis functions φi,q(X̄i) of the RBF NNs can
be defined as

φi,q(X̄i) = e
−

(X̄i−ζi,q)
T (X̄i−ζi,q)

Ξ2
i,q , 1 ≤ q ≤ 5, i = 1, 2

where X̄1 = X1, X̄2 = [X1, X2]
T , Ξi,q = 2, ζ1,q = 2 + q, ζ2,q = [2 + q, 2− q]T . The parame-

ters of the self-triggered mechanism are set as kσ = 0.02, kD = 0.12, kc = 0.5. The designed
controller, adaptive law, and auxiliary system are

α1 = −c1η1 − ŴT
1 φ1(x̄1)

α2 = −c2η2 − ŴT
2 φ2(x̄2)

˙̂W1 = −Ŵ1 +
l1η1

σ1ξ1
φ1(x̄1)

˙̂W2 = −Ŵ2 +
l2η2

σ2ξ2
φ2(x̄2)

˙̃Γ = −Γ̃ + I1 − vstd

where c1 = 1, c2 = 10, l1 = 5, and l2 = 5. The initial conditions for all variables are chosen
as follows: x1(0) = 0.07, x2(0) = 0.08, Ŵ1(0) = 0.5, Ŵ2(0) = 0.4, and Γ̃(0) = 0.3. With (17)
and (18), the performance bounds on e1 and e2 are designated as σ1 = (0.5− 0.01)e−t + 0.01
and σ2 = (1− 0.5)e−0.5t + 0.5, respectively.

The numerical simulation example of the research results in this paper is shown in
Figures 1–6, where Figure 1 shows the tracking error and user-specified error boundary,
which meet the transient and steady-state tracking behavior. Figure 2 illustrates tracking
error trajectories using the command filtering method. The control input trajectory of
the system is shown in Figure 3. Figure 4 displays the original input signal and the self-
triggered input signal, which demonstrates that the proposed self-triggered controller can
effectively conserve communication resources. Figure 5 shows the trajectory of the control
input u under the command filter control method for the same control effect. Figure 6
represents the trajectories of adaptive law.
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Figure 1. Tracking error y−yd and the error boundaries ±σ1.

Figure 2. Tracking error via the command-filtered control method.

Figure 3. Trajectory of self-triggered input vstd.
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Figure 4. Trajectories of self-triggered input vstd and original input χ.

Figure 5. Trajectory of control input vstd via the command-filtered control method.

Figure 6. Trajectories of adaptive law Ŵ1 and Ŵ2.
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5.2. Example Model 2

Consider a single-link mobile robot arm driven by a brushed DC motor with input
saturation, which can be expressed in the following form [50]

Hp̈ + Fṗ +Q sin(p) = I
Kİ +DI +Eṗ = U

where q represents the link position, and I and U represent the motor armature current
and input control voltage, respectively. Define p = x1, ṗ = x2, I = x3, and U = vstd.
Accordingly, the dynamic model can be further shown as

ẋ1 = x2
ẋ2 = x3 + Φ2(x̄2)
ẋ3 = sat(v(t)) + Φ3(x̄3)

where the unknown dynamics are Φ2(x̄2) = − F
Hx2− Q

H sin(x1) and Φ3(x̄3) = −D
Kx3− E

Kx2,
and the actual parameters are given as H = 1, F = 1, Q = 10, K = 2.5× 10−2, D = 5, and
E = 0.9. Furthermore, the desired reference trajectory is given as ẏd = −2yd +

π
2 . In addition,

the parameters of RBF NNs are chosen in accordance with example 5.1. The parameters of
the self-triggered mechanism are set as kσ = 0.1, kD = 1.2, and kc = 5.5, and the designed
controller and adaptive law are

α1 = −c1η1
α2 = −c2η2 − ŴT

2 φ2(x̄2)
α3 = −c3η3 − ŴT

3 φ3(x̄3)
˙̂W2 = −Ŵ2 +

l2η2
σ2ζ2

φ2(x̄2)
˙̂W3 = −Ŵ3 +

l3η3
σ3ζ3

φ3(x̄3)

where c1 = 1, c2 = 10, c3 = 20, l2 = 5, and l3 = 50. The initial conditions for all variables are
chosen as follows: x1(0) = 0.07, x2(0) = x3(0) = 0.08, Ŵ2(0) = 0.5, Ŵ3(0) = 0.4, yd(0) = 0,
and Γ̃(0) = 0.3. Next, we define performance functions as σ1 = (0.5− 0.01)e−t + 0.01,
σ2 = (1− 0.5)e−0.5t + 0.5, and σ3 = (2− 1)e−0.5t + 1.

The simulation results of the proposed controller being applied to the robot manipula-
tor are shown in Figures 7–10. The error of the link position p with the desired reference
trajectory yd is depicted in Figure 7, in which the transient and steady-state performance
guarantees within the boundaries ±σ1 can be seen. Figure 8 shows the trajectory curve of
I , and the convergence of the adaptive parameters W2 and W3 are illustrated in Figure 9.
The required armature motor voltage and self-triggering inputs are shown in Figure 10.
As can be observed, the suggested self-triggering method reduces the controller’s update
frequency while saving communication resources and increasing the effectiveness of data
transmission. Additionally, for the purpose of comparison, applying the command filtering
method under the same performance specifications and initial conditions, the tracking error
and system input are shown in Figures 11 and 12, respectively. From Figures 10 and 12, it
can be seen that the low-computation strategy in this paper requires a control input voltage
of 10 Vdc. However, the input voltage required by the command filtering method requires
a larger control action.
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Figure 7. Tracking error q−yd and the error boundaries ±σ1.

Figure 8. Trajectory of motor armature current I .

Figure 9. Trajectories of adaptive law Ŵ2 and Ŵ3.
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Figure 10. Trajectoryies of input control voltage U and self-triggered input vstd.

Figure 11. Tracking error via the command-filtered control method.

Figure 12. Trajectories of control input U via the command-filtered control method.

5.3. Discussion

From the simulation results, it is clear that despite the lack of information on the
reference signal derivative, the boundedness of the closed-loop signal and the specified
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tracking quality are guaranteed. It can be seen that the low-computation strategy in this
paper requires a control input voltage of 10 Vdc. However, under the same performance
specifications and initial conditions, the input voltage required by the command filtering
method requires a larger control action. Furthermore, the control system can effectively
achieve the tracking of the reference signal with the self-triggered input signal.

6. Conclusions

This paper investigates the problem of tracking control of uncertain network systems
against input saturation. To solve this problem, we introduce a low-computation adaptive
self-triggered control method using prescribed performance. The computational complexity
was reduced by using two novel error transformation functions instead of the command
filtering method. It is easier to implement in practical applications because the higher-order
derivative information of the reference signal is not required. In addition, our auxiliary
design system has effectively solved the input saturation problem, while ensuring that all
closed-loop system signals remain bounded. This paper considers a class of strict-feedback
systems, where a wide variety of engineering plants can be modeled in the form of strict
feedback or can be converted to strict feedback, such as jet engine compressors, aircraft
wing rocks, and single-link flexible robots. Finally, a numerical simulation and a practical
simulation confirmed the effectiveness of our proposed method. Since the control strategy
proposed in this paper is based on state feedback, which means that the system state is
required to be completely known, our future work will attempt to extend the results to
control schemes based on output feedback.
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