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Abstract: In this paper, we propose for the first time a novel feed approach to a tightly coupled
dipole array (TCDA). Firstly, compact zigzagging microstrip feedlines are utilized as baluns to feed
our array elements to obtain wideband impedance-matching characteristics. Secondly, this array is
designed on ultrathin substrates aiming at obtaining ultra-tight coupling between the dipole arms
of two neighboring elements. Some irreplaceable parasitic pads are developed and added to the
radiating arms to improve both the impedance and radiation characteristics of the TCDA. With these
technologies, a 12 × 12 TCDA prototype is designed, fabricated and measured for verification. The
array achieves an impressive impedance bandwidth spanning of 4–18 GHz for S11 < −10 dB. Its
radiation patterns and realized gain are measured to verify its stable electromagnetic characteristics.
Its realized gain is from 15 dB to 25 dB within the operating frequency band. Its efficiency is around
91%. Its measured results show good agreement with simulations.

Keywords: phased arrays; tightly coupled arrays; antenna feeds; balun; impedance matching

1. Introduction

Wideband antennas and phased arrays become the subject of strong interest when
the antenna platforms of radars, communications, remote-sensing, etc., shrink their sizes
greatly. These wideband arrays are required to cover a wideband operating frequency band,
produce multiple beams, have wide-angle scanning, and so on. In 1965, Wheeler proposed
a phased-array antenna made of an infinite current sheet [1,2]. As a practical realization of
Wheeler’s current sheet antenna (CSA) array, tightly coupled dipole arrays (TCDAs) [3–42]
are attractive candidates to meet these challenging requirements for wideband arrays.
Instead of avoiding the capacitive coupling between neighboring antenna elements of
traditional arrays, one TCDA utilizes the interelement coupling to achieve many desirable
properties, such as wide impedance and pattern bandwidth, a very low profile in cross
section, layered planar structure compatible with conformal applications, etc. [3] (p. 448).
In this way, TCDAs achieve wideband impedance matching and wide-angle scanning with
their low-profile natures. The integration of multiple antennas into a low-profile tightly
coupled dipole phased array on one antenna platform offers the potential of size, weight
and power reductions. There have been numerous investigations into improving the per-
formance of TCDAs. Firstly, some researchers have presented many novel antenna element
configurations [4–15]. A kind of magneto-electric (ME) dipole structure [4,5] has been
developed for TCDAs. Some two-dimensional planar arms [6–10] for TCDAs have been
designed. Furthermore, some three-dimensional vibrators [11–15] have been illustrated.
Secondly, creative feeding structures [16–21] have been introduced. A kind of Marchand
balun with comb-type perforated structure [16] has been reported. A feed structure with
a gamma-shaped probe [17] has been presented. A novel differential feed structure [18]
has been expanded. Thirdly, wide-angle impedance-matching (WAIM) structures [22–31]
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have been developed. Many new meta-surfaces have been designed as two-dimensional
WAIMs [22–28]. Vertically directive metamaterials have been utilized as three-dimensional
WAIMs [29–31]. Fourthly, the ground structures have been optimized to improve the
electromagnetic characteristics of TCDAs. On the one hand, some sorts of specially shaped
frequency-selective surfaces [32–35] have been applied to the ground structures. On the
other hand, the ground structures have been loaded with resistive frequency-selective
structures [36,37] or magnetic frequency-selective structures [38]. Finally, some efficient
design methods [39–42] for TCDAs have been presented.

In this paper, we propose an ultrathin low-profile tightly coupled dipole array. First
of all, to realize the impedance matching between the feeding coaxial lines and the dipole
antennas, novel compact zigzagging feedlines are developed as a balun to improve the
TCDA’s feed performance. Secondly, the thickness of the substrates for this TCDA is only
0.127 mm to enhance the capacitive coupling between neighboring elements. Three pairs of
parasitic pads with different dimensions are loaded to each dipole arm to further enhance
the capacitive coupling between neighboring antenna elements over a wide frequency
band. Based on these approaches, the balun design becomes simple and the capacitive
coupling between neighboring elements is greatly increased. Since our TCDA is developed
without WAIM, the profile of this configuration is lowered.

This paper is organized as follows. Section 2 presents the design methodology and
details of the TCDA element and the proposed array. Section 3 introduces the fabrication
and measurements of a 12× 12 array prototype. The impedance and radiation performances
are expanded and discussed in detail to verify the design. In the end, conclusions are drawn
in Section 4.

2. Design of the Proposed Array
2.1. Design of Compact Zigzagging Feedlines

Admittedly, the straight-and-parallel-strip-to-microstrip transition line is the easiest
way to feed two dipole arms etched separately on the two sides of one dielectric substrate.
The microstrip line is connected to a 50 Ω standard coaxial cable feed. The two parallel
strip lines are attached to the nearly 200 Ω dipole arms.

The characteristic impedance of the straight and parallel strip line is given by [43]
(pp. 429–433):

Z0 =
d
w

√
µ

ε
=

√
L
C

(1)

where d is the distance between these two straight and parallel strip lines and w is the
width of each parallel strip line. L is the inductance per unit length of the parallel strip
line and C is the capacitance per unit length of the parallel strip line. The inductance is
calculated by:

L = µ
d
w
(H/m) (2)

The capacitance is calculated by:

C = ε
w
d
(F/m) (3)

As shown in Figure 1, to achieve a 200 Ω characteristic impedance, the two parallel
strip lines should apparently be separated widely, which means that the distance d is
large, or the width of each line w should become ultra-small. Considering the fabrication
limitation, the minimum value of the width w can only be set to 0.1 mm. It is hard to reach
an ultra-small value for the width w under the methods of fabrication considered. Thus, the
distance d between the two parallel strip lines is studied and optimized, aiming to increase
its characteristic impedance. The value of d can be adjusted along the x direction or along

the y direction or both, since d =
√

d2
x + d2

y. Because the strip lines are separately etched on
the top and bottom layer, the distance dy is equal to the thickness of the dielectric substrate
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and is fixed. Instead, the distance d between two parallel strip lines can be adjusted along
the x direction, which is dx. Figure 1a shows the configuration of the strip lines when
dx = 0 and dy 6= 0. Figure 1b presents the case when dx 6= 0 and dy 6= 0.
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Based on the analysis above, in our design, the strip lines are no longer straight and par-
allel. They become zigzagging strip lines to increase dx and finally to obtain high impedance
Z0. Compared with the straight and parallel strip lines with the same electromagnetic
properties, this kind of zigzagging line is shorter. Thus, this novel zigzagging-strip-lines-to-
microstrip-lines transition structure is called a compact zigzagging balun (CZB), depicted
in Figure 2. The red region is etched on the top layer of the substrate with a thickness
t = 0.127 mm and relative dielectric constant εr = 2.2. The blue one is etched on the bottom
layer. The zigzagging strip lines consist of eight sections. Two neighboring sections, sec
i− 1 and sec i, are zoomed in and displayed in Figure 2. Each section has two straight and
parallel strip lines (SPSLs) etched separately on the top and bottom layers. The distance
between these two lines along the x direction is di

x(i = 1, 2, . . . , 8). It is studied and illus-
trated in detail later. Each SPSL connects to two oblique lines (OLs) along the z direction.
The SPSLs have the same length, lp. The oblique lines of two neighboring sections connect
with each other to form transition cross lines. The length of the cross lines along the z
direction is lc. Comparatively, the location of the frequency band on the spectrum is more
sensitive to the length lc than the length lp. When lc is increased, the whole operating
band moves towards the lower frequency area. To achieve a low-profile antenna array, it
is better to keep these two lengths lp and lc as short as possible once the frequency band
meets requirements.

The distance dy between two SPSLs along the y axis is fixed and equals the thick-
ness of the substrate, which is 0.127 mm. To obtain a large characteristic impedance Z0,
di

x(i = 1, 2, . . . , 8) can be gradually enlarged as the superscript index i increases to raise the
inductance in Equation (2) and reduce the capacitance in Equation (3) at the same time,
as shown in Figure 2. It is the key parameter to adjust the characteristic impedance of
the zigzagging strip lines. When di

x is gradually increased from Section 1 to Section 8, the
impedance is transformed from 50 Ω at port1 to 200 Ω at port2 within a wide frequency
band.

Port1 is connected to a 50 Ω standard coaxial cable feed. Port2 is attached to the 200 Ω
dipole arms. The CZB realizes two functions: the impedance transforming from 50 Ω to
200 Ω and from the unbalanced microstrip line to the balanced dipole arms. The optimized
dimensional parameters are given by Table 1 below.
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Table 1. Dimensions of the CZB (Units: mm).

Dimension Parameter Value Dimension Parameter Value

lgnd 5 lMSL 5
lc 1 lp 0.5

lCZB 12 d1
x = d2

x 0.4
d3

x = d4
x 0.5 d5

x = d6
x 0.6

d7
x = d8

x 0.7 w 0.2

2.2. Design of Pad-Loaded Dipole Arms

In consideration of avoiding the grating lobes over a wide frequency band, the distance
between two neighboring antenna elements has to be small. For this reason, the dipole arms
from these two elements cannot have enough area for capacitive coupling enhancement.
Figure 3a shows this sort of commonly unloaded dipole arm of a TCDA, which is fed by
the CZB.
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Figure 3. The evolution of the proposed dipole arms: (a) the oringinal unloaded dipole arms of a
TCDA; (b) the unloaded dipole arms and three pairs of pads; (c) the loaded dipole arms of a TCDA.

To solve this problem, three pads (pad #1~pad #3) are loaded to each dipole arm to
increase the coupling between two neighboring dipole arms which are separately located
on the top and bottom layers. The dipole arms before pad loading and after pad loading
are depicted in Figure 3b,c.

The centers of pad #1~#3 are correspondingly located at points A, B and C on the top
layer. The other three centers of pad #1′~#3′ on the bottom layer are separately located
at points A’, B’ and C’. The distances dAB, dBC, dA′B′ and dB′C′ along the z direction are
all equivalent to larm/2. The major and minor axes of each elliptic pad #i or pad # i’ are
separately represented by rai and rbi, i = 1, 2, 3.

Finally, part of our three-dimensional proposed TCDA is shown in Figure 4a and the
equivalent circuit for one antenna element is expanded in Figure 4b. Slots are cut on the
metallic ground plane. The 0.127-mm-thick dielectric substrate of each linear TCDA is
vertically inserted into the slots. To obtain a better view, the substrate is hidden.
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Table 2 presents all the optimized parameters of the loaded-pad TCDA shown in
Figures 3 and 4. The curve outline of each dipole arm is one arc of a circle with the radius
rarc = 15 mm and the angle θarc = 40◦, shown in Figure 3. dE is the E-plane (x-dimension)
element spacing, and dH is the H-plane (y-dimension) element spacing, shown in Figure 4a.

Table 2. Dimensions of the TCDA (Units: mm).

Dimension Parameter Value Dimension Parameter Value

larm 9.5 warm1 0.7
warm2 4 dE 8

dH 8 θarc 40◦

lend 1.7 dend 0.6
ra1 2.5 rb1 2
ra2 3.5 rb2 2
ra3 3.2 rb3 2

The equivalent circuit model of the loaded-pad TCDA is described by Figure 4b. The
pads and the loaded dipole arm consists of three pairs of LC circuits. Ccoupling and Ldipole
consist of Ci(i = 1, 2, 3) and Li(i = 1, 2, 3), respectively. On the one hand, the TCDA is
loaded by the ground plane which is represented by a short-circuit transmission line. The
input impedance of this transmission line Zgnd is given by [43] (p. 455):

Zgnd = jZ0tanβl (4)

where Z0 and β are the characteristic impedance and the propagation constant of the
dielectric substrate. The spacing between the dipole arms and the ground plane is l = lCZB.
The propagation constant for this line is given by [42] (p. 4539):

β = k0
√

εr cos θ (5)

where k0 is the free space wavenumber, and εr is the relative permittivity of the substrate.
The scan angle θ is illustrated in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 19 
 

 

  
(a) (b) 

Figure 5. Photograph of the manufactured 12 × 12 TCDA prototype. (a) Side view of the TCDA. 
(b) The antenna elements with their CZB. 

  
(a) (b) 

Figure 6. The simulated reflection coefficients of a 12 × 1 linear array: (a) the schematic of the 
excited antenna elements and the ones of connecting to matching loads; (b) the simulated results 
of the reflection coefficients of the excited elements. 

3. Prototype TCDA Construction and Measurement Results 
To verify the electromagnetic characteristics of this TCDA design, a 12 × 12 array 

prototype is manufactured. The photographs of the prototype TCDA are shown in Figure 
5.  

A 150 mm × 150 mm  ground plate consists of two layers. The first layer is 3 mm 
thick copper layer at the bottom of the array. Following this, 12 × 12 through holes are 
drilled on this layer. The outer conductors of the coaxial feedlines can be easily soldered 
to the copper layer. The inner conductors of the coaxial feedlines can go through these 
holes. A 5 mm thick aluminum layer is assembled on the top of the copper layer with 12 
slots. It is convenient for the inner conductors of the coaxial feedlines to be soldered to the 
microstrip lines on the TCDA boards. These slots prevent the inner conductors and the 
microstrip lines being shortened by the aluminum layer. Through these slots, the copper 
layer can be viewed. All the 0.127 mm thick TCDA boards are vertically inserted into the 
aluminum plate. Since the TCDA boards are ultrathin and soft, the dielectric brackets are 
mounted on the aluminum plate to support the TCDA boards. 

3.1. The Reflection Coefficients Measurement 

Figure 5. Photograph of the manufactured 12× 12 TCDA prototype. (a) Side view of the TCDA.
(b) The antenna elements with their CZB.

The TM mode is excited when scanning in the E-plane (ϕ = 0◦) and the TE mode
is excited when scanning in the H-plane (ϕ = 90◦). The characteristic impedance of
transmission line ZTM

0 and ZTE
0 in Figure 6 when scanning in the E-plane and H-plane is

given by [42] (p. 4539):

ZTM
0 = η

√
µr

εr

dE
dH

cosθ (6)
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ZTE
0 = η

√
µr

εr

dE
dH

1
cosθ

(7)

where η = 377 Ω is the characteristic impedance of free space. When θ = 0◦ and
dE = dH = 8 mm, there is no scanning and the characteristic impedances ZTM

0 and ZTE
0

are the same, Z0 = ZTM
0 = ZTE

0 = 254 Ω. The input impedance of the short-circuit trans-
mission line Zgnd is Zgnd = jZ0tanβlCZB = j7 Ω at 8.5 GHz. The L-C circuit with Ccoupling
and Ldipole is designed to raise the operating bandwidth of the TCDA: L1 = 57.7 nH,
C1 = 0.075 pF; L2 = 60.4 nH, C2 = 0.11 pF; L3 = 28.2 nH, C3 = 78.3 pF. Following
this, the input impedance of the TCDA is ZTCDA = Z0 = 254 Ω. Meanwhile, the TCDA is
connected to the coaxial feedline by a balun. The impedance of the coaxial feedline Z f eed is
Z f eed = 50 Ω. The impedance of the unbalanced microstrip line ZMSL is ZMSL = 75 Ω. The
terminal impedance of the CZB Zbal is Zbal = 254 Ω, which matches the input impedance
of the TCDA ZTCDA.
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3. Prototype TCDA Construction and Measurement Results

To verify the electromagnetic characteristics of this TCDA design, a 12× 12 array
prototype is manufactured. The photographs of the prototype TCDA are shown in Figure 5.

A 150 mm× 150 mm ground plate consists of two layers. The first layer is 3 mm thick
copper layer at the bottom of the array. Following this, 12× 12 through holes are drilled
on this layer. The outer conductors of the coaxial feedlines can be easily soldered to the
copper layer. The inner conductors of the coaxial feedlines can go through these holes. A
5 mm thick aluminum layer is assembled on the top of the copper layer with 12 slots. It is
convenient for the inner conductors of the coaxial feedlines to be soldered to the microstrip
lines on the TCDA boards. These slots prevent the inner conductors and the microstrip
lines being shortened by the aluminum layer. Through these slots, the copper layer can be
viewed. All the 0.127 mm thick TCDA boards are vertically inserted into the aluminum
plate. Since the TCDA boards are ultrathin and soft, the dielectric brackets are mounted on
the aluminum plate to support the TCDA boards.

3.1. The Reflection Coefficients Measurement

The simulated results of the reflection coefficients of the #1 linear array are shown in
Figure 6a. Antenna elements #1.1~#1.12 belong to the #1 linear array. Furthermore, #1.1,
#1.2, #1.11 and #1.12 in blue are loaded with the matching loads, and #1.3~#1.10 in red are
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excited. Other elements belonging to other rows in blue are all loaded with the matching
loads. The elements above the #1 linear array along the y direction are all hidden.

In Figure 6b, the reflection coefficients of the #1.3~#1.10 elements are almost uniform
and all lower than −10 dB from 4 GHz to 18 GHz.

The schematic diagram for the reflection coefficient measurement is shown in Figure 7a.
Por1 of the vector network analyzer (VNA) in red is directly connected to the #1.6 antenna
element in red to excite this element. Port2 of VNA in magenta is connected to the inputs
of the power divider (PD). The eight outputs of the PD are connected to the elements in
yellow to provide an active EM environment for the #1.6 element. The elements in blue
mean they are connected to the matching loads. The photograph of the measurement is
given in Figure 7b.
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The reflection coefficient of the central red radiator #1.6 is measured. The simulated
and measured results are shown in Figure 8.
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Figure 8. The simulated and measured results of the reflection coefficient of the excited element.

As shown in Figure 8, at 4 GHz, the active reflection coefficient S11 equals −9.19 dB.
When the frequency increases and is higher than 4.3 GHz, S11 decreases and is lower than
−10 dB. Thus, the array achieves an impressive impedance bandwidth spanning 4–18 GHz
for S11 < −10 dB.
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3.2. The Radiation Characteristics Measurement—The Radiation Patterns of the Linear and
Planar TCDAs

The radiation patterns of the linear TCDA and the planar TCDA are both tested. The
schematic diagram of the excitation of the linear array in the antenna aperture is shown
in Figure 9a. Only eight elements, #1.3~#1.10 of the #1 row, in the antenna aperture are
excited. The schematic diagram of the feeding structure for the linear TCDA is presented
in Figure 9b.
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Figure 9. The excitation schematics of the linear array. (a) The excited antenna elements in the array
aperture. (b) The cascading feeding configuration.

The E-plane and H-plane radiation patterns are separately given in Figures 10 and 11.
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Figure 10. The measured E-plane radiation patterns of the linear TCDA at different frequencies.
(a) at 4 GHz. (b) at 8 GHz. (c) at 12 GHz. (d) at 16 GHz.
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Figure 11. The measured H-plane radiation patterns of the linear TCDA at different frequencies.
(a) at 4 GHz. (b) at 8 GHz. (c) at 12 GHz. (d) at 16 GHz.

From Figure 10, it is concluded that in the E-plane (xoz plane), #1.3~#1.10 along the
x direction consists of a linear array, but in the H-plane (yoz plane), these eight antenna
elements work as one element in this plane. The measured E-plane beam widths are wider
than the simulated ones to some extent, especially at the lower operating frequencies
such as 4 GHz and 6 GHz. As seen in Figure 11, the H-plane beams are very wide and
the directivity is weak. The array elements beside the central excited row induced some
electromagnetic energy and radiate as well. The excited linear array and the induced linear
array generates destructive interference along some directions in space. Thus, the H-plane
patterns have some dips within the main beam such as the one at 4 GHz, or just beside the
main beam such as the one at 12 GHz. The directivity in the E-plane is much more obvious
than the one in the H-plane.

The whole TCDA has 12× 12 elements shown in the sketch map (Figure 12a). When
the edge effect is considered, the elements at the four edges are connected to the matching
loads, shown in blue. The elements of the #1~#8 rows in red are connected to the outputs
of eight power dividers named from #1 PD to #8 PD. The eight power dividers are fed by
another power divider named #0 PD. The input of #0 PD is connected directly to Port1 of
the VNA. Thus, actually, there are 8× 8 excited elements.

In Figure 12b, the power dividers from #2 PD to #7 PD and many connection lines
between ports of the power dividers are hidden for conciseness. The circle named “1” in
red of the VNA represents the port connected to the input port of #0 PD in red. The output
ports of #0 PD in red are connected to the input ports from #1 PD to #8 PD in red. The eight
output ports of each divider from #1 PD to #8 PD in magenta are connected to the antenna
elements of the planar TCDA in Figure 12a.

The radiation characteristics of this 12× 12 TCDA is measured in an anechoic chamber,
shown in Figure 13.
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Figure 13. The setup of the radiation characteristics measurement.

Based on the setup above, the radiation characteristics of this TCDA are obtained.
Figures 14 and 15 show the E-plane and H-plane patterns of the whole planar TCDA with
8× 8 excited elements depicted in Figure 12a.

The measured H-plane patterns of the linear TCDA in Figure 11 and the ones of
the planar TCDA in Figure 15 are apparently different; the E-plane radiation-pattern
characteristics of the linear TCDA and of the planar one are similar. The main beams of
the planar TCDA in the H-plane at different frequencies are much narrower than the ones
of the linear TCDA. The directivities of the whole planar TCDA in the H-plane greatly
increase. The planar TCDA has good directivities both in the E-plane and H-plane after
8 GHz.
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Figure 14. The measured E-plane patterns of the planar TCDA at different frequencies. (a) at 4 GHz,
(b) at 8 GHz, (c) at 12 GHz, (d) at 16 GHz.
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Figure 15. The measured H-plane patterns of the planar TCDA at different frequencies. (a) at 4 GHz,
(b) at 8 GHz, (c) at 12 GHz, (d) at 16 GHz.

3.3. Radiation Characteristic Measurement—The Scanning Patterns of the Linear and Planar
TCDAs

Eight phase-shift transmission lines (PSTLs) consist of a group of PSTLs and are
connected directly to the outputs of #0 PD, as shown in Figure 16a,b.
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Figure 16. The TCDA with PSTLs. (a) The TCDA with a group of PSTLs. (b) The schematic of a
group of PSTLs connected to #0 PD.

The lengths of PSTLs are different, but the differences between every neighboring
PSTL ∆l in one group of PSTLs are equivalent. When the main beam scans to a certain
direction θdeg in the E-plane or H-plane, the length difference ∆l can be obtained by the
following equation:

∆l =
λ0θdeg

360
(8)

where λ0 is the wavelength at the operating frequency in free space. Table 3 gives the
length difference ∆l when the beam scans to θdeg. When the lowest frequency fL in the
operating frequency band is fL = 4 GHz and the highest frequency fH is fH = 18 GHz,
the geometric mean frequency f0 equals f0 =

√
fL fH = 8.5 GHz. The wavelength λ0 is

λ0 = c/ f0 = 35.2 mm.

Table 3. Dimensions of the length difference ∆l.

θdeg = 30◦ ∆l = 2.9 mm
θdeg = 45◦ ∆l = 4.4 mm
θdeg = 60◦ ∆l = 5.8 mm

λ0 = 35.2 mm f0 = 8.5 GHz

The E-plane patterns and H-plane patterns when the beam scans to different directions
are shown in Figures 17–19. The operating frequency is 8.5 GHz.

Considering the phase-shift error and manufacturing error, especially from the PSTLs,
the measured results can be improved and achieve a better agreement with the simulated
ones when actual phase shifters are applied to this planar TCDA.

3.4. Radiation Characteristic Measurement—The Gain of the Planar TCDA

To measure the gain of this proposed TCDA, a standard wideband horn antenna is
needed and utilized in the measurement. Firstly, the electric level of this horn antenna
in the main beam direction is measured in the anechoic chamber. Following this, the
same measurement is performed for the TCDA. The electric level difference of these two
measurements is obtained. The gain of the standard horn antenna can be found from
its data sheet. Thus, the gain of the TCDA equals the gain of the standard horn antenna
plus the measured electric level difference. The measured gain of the TCDA is presented
in Figure 20. At 4 GHz, the measured gain is only 15 dB. From 9 GHz to 14 GHz, the
differences between the measured gain and the simulated one are relatively bigger. At
18 GHz, the measured gain reaches 25 dB. Referring to the formula G = 4πηS/λ2 and [44]
(p. 2340), the efficiency of the array is around 91%. G represents the gain, η is the efficiency,
S is the dimension of antenna aperture and λ0 is the wavelength at the central frequency.
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Figure 17. The beam scans to θdeg = 30◦. (a) E-plane plot at 4 GHz. (b) E-plane plot at 8 GHz.
(c) E-plane plot at 12 GHz. (d) E-plane plot at 16 GHz. (e) H-plane plot at 4 GHz. (f) H-plane plot at
8 GHz. (g) H-plane plot at 12 GHz. (h) H-plane plot at 16 GHz.
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Figure 18. The beam scans to θdeg = 45◦. (a) E-plane plot at 4 GHz. (b) E-plane plot at 8 GHz.
(c) E-plane plot at 12 GHz. (d) E-plane plot at 16 GHz. (e) H-plane plot at 4 GHz. (f) H-plane plot at
8 GHz. (g) H-plane plot at 12 GHz. (h) H-plane plot at 16 GHz.
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Figure 19. The beam scans to θdeg = 60◦. (a) E-plane plot at 4 GHz. (b) E-plane plot at 8 GHz.
(c) E-plane plot at 12 GHz. (d) E-plane plot at 16 GHz. (e) H-plane plot at 4 GHz. (f) H-plane plot at
8 GHz. (g) H-plane plot at 12 GHz. (h) H-plane plot at 16 GHz.
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Figure 20. The simulated and measured gain of the planar TCDA.

Table 4 summarizes the comparison of the proposed TCDA and other reported state-
of-the-art TCDAs. The work in [9,10] mainly focused on the circularly polarized TCDA,
while [18] proposed an improved balanced wideband impedance transformer feed. In [19],
a kind of tightly coupled balun and WAIM were utilized to improve the electromagnetic
characteristics of the TCDA. Much research on the novel WAIM was undertaken in [23].
Ferrite grids were applied in [38] to expand the low end of the antenna and further reduce
the overall profile.

Table 4. Comparison with the reported TCDAs.

Ref. Number of Elements Bandwidth Feed Structure Scanning Angle Range Efficiency

[9] 8× 8 3:1 Coaxial line ±45◦ >70%

[10] 8× 8 1.6:1 Corporate Fixed-beam >34%

[18] 8× 8 3:1 New balun ±60◦ -

[19] 8× 8 5:1 New balun ±60◦ -

[23] 11× 11 3.7:1 Coaxial line ±75◦ -

[38] 6× 8 10:1 New balun ±60◦ -

Present
Work 8 × 8 4.5:1 New balun ±60◦ 91%

4. Conclusions

In this paper, a kind of wideband tightly coupled dipole antenna (TCDA) element
loaded with three capacitive pads is presented. A novel compact zigzagging balun (CZB)
for this TCDA is developed and illustrated. Its equivalent circuit model is given and its
transmission characteristics are theoretically analyzed. A 12× 12 ultra-wideband and
ultrathin TCDA prototype fed by the newly CZBs is manufactured and measured. The
measured reflection coefficient of the central antenna element of the whole array, the E-
plane and H-plane patterns, the scanning patterns and the realized gain of the array are all
presented in this paper. The simulated and measured results show good agreement in most
situations. This TCDA array is a good candidate for UWB phase array applications.
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