
Citation: Liu, J.; Cai, Q.; Zou, F.; Zhu,

Y.; Liao, L.; Guo, F. BiGA-YOLO: A

Lightweight Object Detection

Network Based on YOLOv5 for

Autonomous Driving. Electronics

2023, 12, 2745. https://doi.org/

10.3390/electronics12122745

Academic Editor: Hüseyin

Kusetogullari

Received: 22 May 2023

Revised: 15 June 2023

Accepted: 16 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

BiGA-YOLO: A Lightweight Object Detection Network Based
on YOLOv5 for Autonomous Driving
Jun Liu 1, Qiqin Cai 1,2 , Fumin Zou 1, Yintian Zhu 2,* , Lyuchao Liao 1 and Feng Guo 1,3

1 Fujian Key Laboratory for Automotive Electronics and Electric Drive, Fujian University of Technology,
Fuzhou 350118, China; 2211301018@smail.fjut.edu.cn (J.L.); 20011080002@stu.hqu.edu.cn (Q.C.);
fmzou@fjut.edu.cn (F.Z.); achao@fjut.edu.cn (L.L.); n180310004@fzu.edu.cn (F.G.)

2 School of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
3 College of Computer and Data Science, Fuzhou University, Fuzhou 350108, China
* Correspondence: 2201905112@smail.fjut.edu.cn

Abstract: Object detection in autonomous driving scenarios has become a popular task in recent
years. Due to the high-speed movement of vehicles and the complex changes in the surrounding
environment, objects of different scales need to be detected, which places high demands on the
performance of the network model. Additionally, different driving devices have varying performance
capabilities, and a lightweight model is needed to ensure the stable operation of devices with
limited computing power. To address these challenges, we propose a lightweight network called
BiGA-YOLO based on YOLOv5. We design the Ghost-Hardswish Conv module to simplify the
convolution operations and incorporate spatial coordinate information into feature maps using
Coordinate Attention. We also replace the PANet structure with the BiFPN structure to enhance
the expression ability of features through different weights during the process of fusing multi-scale
feature maps. Finally, we conducted extensive experiments on the KITTI dataset, and our BiGA-
YOLO achieved a mAP@0.5 of 92.2% and a mAP@0.5:0.95 of 68.3%. Compared to the baseline
model YOLOv5, our proposed model achieved improvements of 1.9% and 4.7% in mAP@0.5 and
mAP@0.5:0.95, respectively, while reducing the model size by 15.7% and the computational cost
by 16%. The detection speed was also increased by 6.3 FPS. Through analysis and discussion of
the experimental results, we demonstrate that our proposed model is superior, achieving a balance
between detection accuracy, model size, and detection speed.

Keywords: object detection; lightweight network; attention mechanism; ghost module; CA;
BiFPN; YOLOv5

1. Introduction

Autonomous driving technology is one of the most prominent fields of interest in
recent years [1]. It provides people with safer, more convenient, and more efficient means of
transportation. In autonomous driving technology, not only is traffic condition prediction
technology [2–4] a component, but a more directly related and crucial technique is object
detection. Object detection is a crucial task that helps vehicles identify and track surround-
ing objects, thereby achieving autonomous driving. Object detection [5] is a critical topic in
computer vision that seeks to detect specific objects in images or videos. Numerous object
identification techniques have been proposed by researchers over the last few decades,
including feature-based methods, classifier-based methods, and regression-based methods.
However, these methods have limitations such as low accuracy, slow speed, and poor
performance in detecting small objects. Deep learning technology advancements in recent
years have resulted in new breakthroughs in object detection.

Among these, the existing image-based object detection algorithms are typically cate-
gorized into two groups. The first group consists of two-stage object detection algorithms
with candidate box generation, for example, RCNN (Region-based Convolutional Neural
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Network) [6]. The algorithm first extracts candidate boxes from the image and then obtains
detection results based on the candidate regions. Its characteristics are high recognition
accuracy and precision, but low recognition efficiency, and it requires large computing
resources, making it unsuitable for low-performance embedded devices. However, later
proposed object detection algorithms, such as Fast-RCNN [7] and Faster RCNN [8], also
suffer from the disadvantages of low accuracy and robustness. The second category is
one-stage object detection methods, along with their representative networks, such as the
SSD (Single Shot MultiBox Detector) series of detection methods [9–11], the YOLO series of
detection methods [12–14], and the RetinaNet [15].

The SSD method outperforms the R-CNN algorithm in terms of detection speed, but it
has limitations in detection accuracy. YOLO is a one-stage detection network that greatly
surpasses other CNN (Convolutional Neural Network) models in terms of detection speed
while maintaining accuracy, making it suitable for practical road scene detection methods.
However, in actual deployment, it is still difficult to achieve the resource processing
efficiency required for autonomous driving tasks when running the original YOLO network
on embedded devices. Additionally, the original YOLO still has issues with low accuracy
and robustness in road object detection.

The YOLO detection algorithm has been continuously improved in subsequent re-
search. For improving the detection accuracy, the YOLOv2 algorithm [16] mainly uses
operations such as batch normalization, high-resolution classifier classification, direct ob-
ject box position detection, and multi-scale training to improve the detection accuracy of
the model. YOLOv3 employs a novel Darknet-53 residual network in conjunction with a
FPN (feature pyramid network) [17] for multi-scale fusion prediction based on YOLOv2.
YOLOv4 fuses the backbone network with the CSPNet (Cross-Stage Hierarchical Network)
algorithm [18] to ensure detection accuracy while reducing network computation. It also
incorporates a feature pyramid network into the spatial pyramid pooling layer to address
the issue of shallow feature loss.

YOLOv5, a popular object recognition approach, is similar to YOLOv4, except the neck
network uses the FPN and the PAN (pixel aggregation network) structure [19]. YOLOv5 is
extensively employed for object detection tasks across various domains, with numerous
studies exploring its foundations. For instance, Zhu et al. proposed TPH-YOLOV5 [20]
as an enhanced model for object recognition in UAV (unmanned aerial vehicle)-captured
sceneries. This model added a prediction head to recognize objects of varying sizes, and the
initial prediction head was replaced with a TPH (transformer prediction head). The intro-
duction of the transformer module enhanced the ability to capture global information and
context, resulting in an approximately 7% improvement compared to YOLOv5. Similarly,
the Multi-scale YOLOv5 [21] approach enhances detection capabilities by incorporating
additional detection heads, introducing the novel SPD-CONV module, and utilizing a
standardized attention module, thereby improving the detection of minuscule objects in
traffic environments. YOLO-FIRI [22] addresses the issue of low recognition rates in in-
frared images due to distance and low resolution by compressing channels and optimizing
parameters, achieving outstanding results in infrared object detection. Benjumea et al.’s
YOLO-Z [23] network demonstrates a 6.9% increase in mAP for detecting smaller objects in
autonomous racing scenarios compared to YOLOv5s, at the cost of a 3 ms increase in infer-
ence time. Inam et al. proposed an intelligent infrastructure management framework based
on a two-stage deep learning approach [24], employing the YOLOv5 model to detect cracks
in bridge images, and comparing the performance of YOLOv5s, YOLOv5m, and YOLOv5L.
Mahaur et al. introduced an enhanced object detection model called iS-YOLOv5 [25]
for detecting small objects, such as traffic signs and traffic signal lights, in real-time
driving scenarios.

However, there are still some issues with these methods. Although most methods
improve detection accuracy in some cases, they have problems with large FLOPs, large
model files, and slow computation speed. Some lightweight models can effectively reduce
model parameters but cannot achieve a balance between accuracy and speed.
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Therefore, this paper proposes an improved YOLOv5 model aimed at improving the
accuracy and speed of autonomous driving object detection while lightening the model
architecture. Our model achieves a better performance by introducing new convolutional
module and attention mechanisms, as well as multi-scale feature fusion methods. In the
experiment, we tested and evaluated our algorithm using the KITTI dataset and compared
it with other object detection algorithms. The experimental results show that our algorithm
performs well in both accuracy and speed. The main contributions of this paper can be
summarized as follows:

• We introduce the Ghost module [26] and design the GHConv (Ghost-HardSwish Conv)
module as the main convolution method to simplify the model, and integrate the CA
(Coordinate Attention) [27] to capture the spatial dependency of image information in
order to more effectively extract features of targets in the image.

• We integrate the BiFPN (Bi-directional Feature Pyramid Network) [28] architecture,
which learns the features of different resolutions with different weights and horizon-
tally connects them with residual structures to fuse multi-scale feature information, to
improve the PANet architecture in YOLOv5.

• We propose the BiGA (Bidrectional-Ghost conv-Attention)-YOLO network by inte-
grating the above-mentioned improvement methods, and conduct experiments on the
KITTI dataset, achieving a mAP@0.5 of 92.2% and a mAP@0.5:0.95 of 68.3%. Further-
more, the model is simplified by 15.7% and detection speed is raised by 6.3 FPS, which
achieves a balance among model size, detection accuracy, and speed.

The rest of this work is organized as follows. We present the related groundwork in
Section 2. Section 3 introduces the overview of YOLOv5 and our BiGA-YOLO. Section 4
introduces the experiments and analyzes the results. Finally, we give the conclusions of
this paper and prospective future research work. For the reader’s convenience, we have
included some of the main abbreviations, and their corresponding full forms, used in this
paper in Table 1.

Table 1. The main abbreviations and their corresponding full names.

Abbreviation Fullform

CNN Convolutional Neural Network
RCNN Region-based Convolutional Neural Network

SSD Single Shot MultiBox Detector
FPN Feature Pyramid Network
PAN Pixel Aggregation Network
CA Coordinate Attention

CBAM Convolutional Block Attention Module
BiFPN Bi-directional Feature Pyramid Network
mAP Mean Average Precision

FLOPs Floating Point Operations

2. Related Works
2.1. CNN-Based Object Detection

Deep learning has become a commonly used technique for object detection due to the
rapid growth of CNN. They are classified as one-stage detectors or two-stage detectors
based on whether or not there are region proposals. Faster-RCNN and Cascade RCNN [29]
are two-stage detectors that produce region suggestions from the input image and then
feed them into the network for classification and regression. YOLO detectors abandon
region proposals to meet real-time detection requirements, showing advantages in speed
and accuracy, and providing effective methods for object detection applications in various
fields. To eliminate the limitations of anchors and pursue a larger and more flexible
solution space, anchor-free detectors have been proposed, including CenterNet [30], FCOS
(Fully Convolutional One-Stage Object Detection) [31] and Foveabox [32]. Recently, the
ARSL (Adversarial Residual Semi-Supervised Learning) algorithm [33], proposed for the
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ambiguity of semi-supervised object detection, has provided a new direction for the research
of one-stage object detection.

2.2. Attention Mechanism

Attention mechanisms play an important role in autonomous driving object detection
research. The core idea of this mechanism is to assign different weights to input features,
allowing the model to focus on the most influential parts for predicting results. Attention
mechanisms [34] were first proposed by Bahdanau et al. in 2014 to solve the problem
of long-distance dependencies in neural machine translation tasks. Since then, attention
mechanisms have achieved significant success in the computer vision field, especially in
object detection and image classification tasks.

In the realm of computer vision, there are now several typical attention techniques.
The first is spatial attention, which modulates the attention of each point in the feature
map to help the model focus more on specific areas, such as the STN (Spatial Transformer
Network) [35]. The second type of attention is channel attention, such as the SENet
(Squeeze-and-Excitation Network) and ECA (Efficient Channel Attention) [36], which
allocate resources on each convolutional channel and adjust the single dimension of the
z-axis. The third is spatial and channel integration, such as the CBAM (Convolutional Block
Attention Module) [37], and CA, which is used in this paper. CA can capture cross-channel
information while incorporating direction and position-aware information, which helps
the model to more accurately locate and recognize the objects of interest.

2.3. Model Lightweight

In the context of autonomous driving, real-time performance and computational
resource limitations are critical factors. Therefore, lightweight models have significant
importance in autonomous driving object detection. Lightweight models aim to reduce the
number of model parameters and computational complexity, thereby reducing computa-
tional resource requirements and improving inference speed.

To achieve a lightweight YOLO algorithm, various strategies can be used. One method
is to use lightweight CNN architectures, such as MobileNet [38], ShuffleNet [39], or Effi-
cientNet [40]. MobileNet adopts depthwise separable convolution to minimize the amount
of parameters and computations. ShuffleNet achieves its light weight by group convolution
and channel shuffle. EfficientNet was proposed by Tan and Le in 2019, which adapts the
network’s depth, width, and resolution to achieve an efficient light weight.

Another method is to use network pruning techniques to decrease the model size by
removing unimportant neurons or connections. The representative work of this method is
Deep Compression [41], as proposed by Han et al. in 2015. In addition, model quantization
is also an effective lightweight strategy, which reduces computational resource requirements
by lowering the precision of weights and activation values. The representative work of this
method is XNOR-Net [42], proposed by Rastegari et al. in 2016.

By combining attention mechanisms and lightweight model strategies, the YOLO al-
gorithm can be effectively improved, making it higher performing in real-time autonomous
driving object detection tasks.

3. Method
3.1. Overview and Key Components of YOLOv5

Like popular single-stage detection models, YOLOv5 has strong feature extraction
capabilities, fast detection speed, and high accuracy. The YOLOv5 series provides four
model scales: YOLOv5-S, YOLOv5-M, YOLOv5-L, and YOLOv5-X, where S stands for
small, M for medium, L for large, and X for extra large. The network structure of these
models is unchanged, but the modules and convolution kernels are scaled proportionally,
which changes the complexity and size of each model. In this paper, we studied the
basic network architecture of YOLOv5s because it is more balanced with regard to model
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size and performance, making it suitable for use in object detection scenarios such as
autonomous driving.

Figure 1 illustrates the basic architecture of YOLOv5s, which is organized into four
major parts: input, backbone, neck, and output. In the following sections, we will briefly
introduce these parts and their key modules.
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3.1.1. Input

In YOLOv5, the input performs adaptive image padding and Mosaic data augmen-
tation on the image data. The input end also integrates adaptive anchor box calculation,
which allows the model to obtain the initial anchor box size by clustering the label boxes
of the dataset, without the need for manual anchor box parameter settings before training
on different datasets. Mosaic is a data augmentation method based on Cutmix [43]. In
Cutmix, two images are combined, while Mosaic combines four training images into one for
training. In the previous YOLO series, prior box scales were extracted through clustering,
while YOLOv5 embeds the adaptive anchor box calculation function into the code, which
adaptively calculates the best anchor point box based on the dataset during each training.

3.1.2. Backbone

The backbone is the basic feature extraction network of YOLOv5, responsible for
extracting meaningful features from the input image. YOLOv5 uses CSPDarknet53 as its
backbone, which is an improved network based on Darknet53 that introduces the concept
of CSPNet. CSPNet divides the feature map into two parts and fuses them at different
stages, which helps to improve the feature expression ability and reduce computational
costs. It mainly consists of CBS modules and C3 groups, where the CBS module consists
of a convolutional layer, a batch norm layer, and a SiLU activation function, while C3
is composed of three CBS and multiple bottlenecks. The SPPF (Spatial Pyramid Pooling
Fusion) module principle is basically the same as spatial pyramid pooling. The architecture
diagrams of these modules are shown in Figure 2.
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3.1.3. Neck

The neck section of YOLOv5 is the feature pyramid network responsible for fusing
multi-scale features from the backbone. YOLOv5’s neck adopts the PANet structure, which
utilizes a bottom-up path aggregation to enhance the flow of information. PANet adaptively
fuses feature maps of various levels using an attention mechanism, thus improving the
performance of object detection.

PANet consists of multiple upsampling and downsampling modules, as well as lateral
connections. The upsampling module magnifies the feature maps to higher resolutions
using bilinear interpolation or transposed convolution, while the downsampling module
reduces the feature maps to lower resolutions using max pooling or convolution. The
lateral connections transmit information between feature maps of different scales to achieve
feature fusion.

3.1.4. Head

The head of YOLOv5 is responsible for generating the object detection results based
on the fused feature maps. YOLOv5’s head consists of multiple output layers, with each
layer responsible for detecting objects of different scales. YOLOv5 utilizes an anchor-based
approach, where a set of anchor boxes with predefined scales and aspect ratios are defined
beforehand. During training, the network learns to predict the target class, position offsets,
and scale changes for each anchor box.

The head includes multiple convolutional layers and activation functions. The con-
volutional layers are used to generate the prediction results, including the target class,
position offsets, and scale changes. Activation functions, such as Sigmoid and Leaky ReLU,
are used for non-linear transformations, helping to improve the network’s expression
ability. During inference, YOLOv5 uses NMS (Non-Maximum Suppression) to eliminate
overlapping detection boxes, resulting in the final object detection results.

In summary, YOLOv5 employs the Mosaic data augmentation, the CSPDark-net53 net-
work, the PANet feature pyramid network, and the anchor-based object detection strategy.
These key modules and methods collectively ensure YOLOv5’s excellent performance as a
popular object detector.

3.2. BiGA-YOLO

With reduced computational complexity, we propose a lightweight detection network
model based on YOLOv5s, named BiGA-YOLO, to improve the accuracy and speed of
object detection. The naming of BiGA-YOLO is primarily based on the abbreviations of
the innovative modules and features improved in our network. “Bi” represents bidirec-
tional information flow, indicating the enhanced expressive power of our network through
the BiFPN module. “G” represents Ghost conv, and “A” represents our CA attention
mechanism. The suffix “YOLO” indicates that our base network is part of the YOLO
series. Figure 3 depicts the structure of the improved BiGA-YOLO, which uses GHConv to
optimize the overall computational performance of the network and reduce the compu-
tational cost. To achieve a loss in accuracy, we introduce the CA attention group to form
the CAblock, which is used to extract image information from the previous convolution
and allocate different channel weights. The purpose of the CA module is to enhance the
network’s feature extraction ability by highlighting key information of the detection object,
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thereby improving the accuracy of detecting targets in various scenarios. Finally, we use
BIFPN to weight and fuse the corresponding features of the image feature maps with
different resolutions. Our BiGA-YOLO network achieves a good balance in object detection
map, speed, and model lightweight.
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3.2.1. GHConv Module

The author of GhostNet, Kai Han, found that some of the feature maps generated after
convolution are similar. Therefore, he suggested that we can reduce the computational cost
of feature map generation by using inexpensive linear transformations. The two sets of
feature maps are then concatenated together to form the desired feature map. This structure
uses standard convolution and point convolution for channel reduction.

GhostNet is a lightweight convolutional network that can reduce network compu-
tational costs while scarcely reducing detection accuracy. The network designs a Ghost
module, which can increase the number of feature maps while reducing parameters. From
the Figure 4, we can see that the core idea of this module is to divide the original convolu-
tion operation into two stages. The first stage is a conventional convolution calculation,
where the number of convolution kernels needs to be controlled to avoid an increase in the
model’s parameter size. The second stage is a cheap feature map operation. In this stage, it
performs another linear convolution operation on the intermediate feature maps generated
in the first stage, thereby generating a large number of feature maps.

In the calculating process, assuming the size of the input feature map is h × w × c,
where c represents the number of channels, and h and w represent the height and width,
respectively, the calculation formula of n generated feature maps for any convolutional
layer is shown in Equation (1).

Y = X ∗ f + b (1)

where ∗ denotes convolution operation, b represents bias, Y represents a feature map of size
h’ × w’, f is the convolution filter, and k × k is the kernel size of the convolution filter f. The
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number of FLOPs in the calculation process is n · h’ · w’ · c · k · k. The theoretical acceleration
ratio of the Ghost model compared to conventional convolution can be calculated as:

rs = n·h′ ·w′ ·c·k·k
n
s ·h′ ·w′ ·c·k·k+(s−1)· ns ·h′ ·w′ ·d·d

= c·k·k
1
s ·c·k·k+

s−1
s ·d·d

≈ s·c
s+c−1 ≈ s

(2)
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The GHConv module designed in this paper employs the HardSwish activation
function in place of the original ReLU activation function in Ghost module, which effectively
alleviates the gradient vanishing problem that exists in the convolutional layer caused by
the ReLU activation function and avoids the phenomenon of gradient saturation. As shown
in Figure 5, the negative half-axis of the ReLU activation function is 0, which results in
the inability to activate the negative half-axis, making it impossible for neurons to learn
effective features. On the other hand, the HardSwish function retains the characteristics
of the Swish function without an upper bound and with a lower bound, and replaces
the exponential operation of the Swish function with an approximate function, achieving
similar activation effects as the Swish activation function at a lower computational cost.
From the perspective of computational resources, it is more suitable for deployment on
embedded devices and real-time object detection scenarios, making it more suitable as
the activation function of the Ghost module in this paper. As shown in Figure 3, we
integrate the GHConv module into various parts of the backbone and neck, and use it as a
convolutional layer in the BiGA-YOLO architecture.
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3.2.2. CA Module

The CA mechanism was proposed for the reason that the channel attention mechanism
ignored important positional information, while CA retained positional information to
better capture features in the image. The structure of the CA module is shown in Figure 6.
CA decomposes channel attention into two 1D feature encodings and aggregates features
along two spatial directions. This way, remote dependencies can be captured along one
spatial direction while accurate positional information can be retained along the other
spatial direction. The generated feature maps are encoded into a pair of direction-aware and
position-sensitive attention maps, which complementarily enhance the representation of
attention objects in the input feature map. Therefore, the CA attention mechanism not only
considers channel information but also considers direction-related positional information,
which can adaptively learn the importance of each pixel in the image. Moreover, the
computational cost of the CA module is less than that of traditional attention mechanisms.
Therefore, we use the CA Block as part of the improved network. As shown in Figure 3, our
CABlock is placed before the SPPF module in the backbone of the BiGA-YOLO network. By
preserving direction-related positional information through CABlock, the representation
ability of object features is enhanced.
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3.2.3. BiFPN

Extracting and fusing effective information from multi-scale features is crucial for
object detection, as complex and diverse detection targets exhibit significantly different
features across different scales. Based on deep learning, CNNs can extract low-level and
high-level features from high-resolution images, and then we need to fuse these multi-scale
features in the network. Although PANet in YOLOv5 can also achieve different feature
fusion through upsampling and downsampling, it has a large computational cost. In
contrast, the BiFPN used in EfficientDet is a typical complex bidirectional feature fusion
FPN structure. The comparison of the two structures is shown in Figure 7. BiFPN removes
the two intermediate nodes of the highest and lowest-level feature layers that enter the FPN
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structure on the basis of traditional bidirectional feature fusion FPN, and adds a residual
edge map connecting the input features and each feature layer in the middle of the output
feature map.
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Since the size of the detected targets in different images is different, features of different
resolutions will be generated during training. PANet essentially and simply adds different
features, which will lead to unequal weights for different-sized features of the same type
in the fused output features. Since the contribution weights of different input features
to the output feature map should be different at each node during feature fusion, BiFPN
introduces a weight to adjust the contribution of different inputs to the output feature
map during training, enhancing the expression ability of features. During training, at
each feature fusion node, the input feature map will obtain the weight that achieves
the best performance of the object detection algorithm. Overall, BiFPN achieves simple
and fast multi-scale feature fusion, simplifying the structure of FPN to some extent. In
this paper, we integrate the BiFPN architecture into BiGA-YOLO, as shown in Figure 3.
The integrated BiFPN architecture is located in the neck part of BiGA-YOLO and fuses
upsampled feature maps with feature maps obtained through downsampling via a residual
structure. Additionally, the expression ability of each feature part is adjusted by weights to
obtain the best feature representation for object detection after training.

4. Experiments

In this section, we will introduce the data preprocessing, experimental settings, and
analysis of experimental results to verify the effectiveness and superiority of the proposed
model in this paper.

4.1. Experimental Introduction
4.1.1. Data Description

We employed the KITTI [44] traffic object dataset as the source for network testing.
The dataset was jointly created by the Karlsruhe Institute of Technology in Germany and
the Toyota Technical Institute in the United States. It contains real traffic images captured
by in-vehicle cameras and sensors in various complex traffic scenarios, such as city roads,
highways, and campuses. The dataset is suitable for use in computer vision tasks such
as object detection, optical flow, and 3D tracking. The dataset labels are subdivided into
several categories, including Car, Van, Truck, Pedestrian, Person_sitting, Cyclist, Tram,
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Misc, and Dontcare. This paper selects the 2D object detection dataset, which includes 7481
images. As moving targets in traffic environments are mostly vehicles and pedestrians,
and to reduce the detection difficulty of lightweight models, vehicle types and pedestrian
poses are not further categorized. The original dataset labels are reorganized, where “Van”,
“Truck”, and “Tram” labels are merged, and “Person_sitting” labels are merged into the
“Car” and “Pedestrian” classes. The “Misc” and “Dontcare” categories are ignored, and the
final selected labels for detection are “Pedestrian”, “Cyclist”, and “Car”. The KITTI dataset
with annotated images is randomly divided into a training set (5985 images), a validation
set (753 images), and a test set (753 images) in an 8:1:1 ratio.

4.1.2. Implementation and Settings

The experiment was conducted on a server equipped with NVIDIA A10, with the
experimental environment consisting of CentOS 7.6, Python 3.8, Pytorch 1.10.0, and CUDA
11.2. In the training phase, a stochastic gradient descent optimizer was used for training.
The learning rate was initialized to 1 × 10−2 using cosine lr schedule, the momentum factor
was set to 0.90, the weight decay was set to 0.0005, and the training epoch was set to 300.

The resolution ratio of the experimental images was uniformly set to (640, 640). To
increase the diversity of samples and improve the performance of the network, Mo-
saic image data augmentation (scaling, image flipping, mosaic, and mixing) was used
for training.

4.1.3. Evaluation Metrics

To evaluate the performance of the proposed model, mAP@0.5, mAP@0.5:0.95, model
weights, FLOPs, and FPS were used as performance metrics. The average precision of each
category is obtained by calculating the area under the precision curve and recall curve;
precision and recall are defined by Equations (3) and (4), respectively:

P =
TP

TP + FP
(3)

R =
TP

FN + FP
(4)

where TP denotes the number of true positive examples, FP denotes the number of false
positive examples, FN denotes the number of false negative examples, and TN denotes the
number of true negative examples.

The calculation formulas for mAP@0.5 and mAP@0.5:0.95 are as follows:

AP =
∫ 1

0
P(R)dR (5)

mAP =
∑N

i=1 APi

N
(6)

where mAP@0.5 represents the average AP across all categories at an IoU of 0.5, and
mAP@0.5:0.95 represents the average mAP at different IoU thresholds ranging from 0.5 to
0.95 with a step size of 0.05. mAP@0.5:0.95 can better reflects the model’s generalization
and robustness. FPS is used to evaluate the speed of object detection, i.e., the number of
images that can be processed per second.

4.2. Results

The experimental models in this paper include YOLOv5,Fast-RCNN, SSD, YOLOv5-
Mobilev3, YOLOv5-Shufflenetv2, Multi-scale YOLOv5s, and our BiGA-YOLO. For the
Multi-scale YOLOv5s network, we followed the architecture proposed in the original paper.
MobileNetv3 [45] is a lightweight and efficient network designed for mobile and embed-
ded devices that uses depth-wise separable convolutions instead of regular convolutions,
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significantly reducing FLOPs compared to regular convolutions. ShuffleNetv2 [46] is the
latest version of the ShuffleNet series, also a lightweight network structure. This structure
proposes two mechanisms: pointwise group convolution and channel shuffle, which effec-
tively reduce computational costs while ensuring detection accuracy. Two models were
obtained by replacing the backbone of YOLOv5 with the backbone networks of the above
two models, and the comparison of these models better demonstrates the effectiveness of
our experimental models. The experimental results on the KITTI dataset are presented in
Table 2.

Table 2. Performance results on KITTI.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) FLOPS (G) Weights (M) FPS (Hz)

YOLOv5s 90.3 63.6 16.5 14.0 108.6
Fast-RCNN 76.9 44.9 223.4 160.1 70.5

SSD 74.3 42.2 93.57 131.0 101.3
YOLOv5s-MobileNetv3 87.6 57.8 6.3 7.2 106.3
YOLOv5s-Shufflenetv2 88.4 59.9 8.0 7.7 110.2
Multi-scale YOLOv5s 91.1 63.9 32.1 31.8 98.7

Ours 92.2 68.3 13.8 11.8 114.9

From Table 2, it can be observed that, although the computational complexity and
model size of YOLOv5 is significantly reduced by 61% and 51%, respectively, by re-
placing the backbone network with lightweight architectures such as MobileNetv3 and
ShuffleNetv2, there is also a noticeable decrease in its model accuracy, particularly with
mAP@0.5:0.95 decreasing by 5.8% and 3.7%, respectively. However, our improved model
shows a reduction in computational complexity and model size by 16% and 15.7% com-
pared to YOLOv5s, respectively, while achieving improved model accuracy and detection
speed. Specifically, it shows an increase of 1.9% in mAP@0.5 and 4.7% in mAP@0.5:0.95,
with a corresponding improvement in FPS by 5.8%. Table 3 shows the mAP@0.5 values of
each model for different object categories in the KITTI dataset. Among them, our BiGA-
YOLO achieves a remarkable 98.1% mAP in the Car category and a substantial lead in the
Pedestrian category, with a slightly lower performance in the Cyclist category. By analyzing
the overall results, we can identify the strengths and weaknesses of each model.

Table 3. The mAP results for various object categories on KITTI.

Model Car Pedestrian Cyclist

YOLOv5s 97.2 83.6 90.1
Fast-RCNN 84.8 70.5 75.4

SSD 80.3 68.5 74.1
YOLOv5s-MobileNetv3 96.7 80.7 85.4
YOLOv5s-Shufflenetv2 96.1 82.3 86.8
Multi-scale YOLOv5s 96.5 87.3 89.5

Ours 98.1 91.5 87.0

These results demonstrate that our model achieves superior performance while being
lightweight, outperforming both YOLOv5s and the aforementioned lightweight architec-
tures. Thus, our results confirm the superiority of our proposed model. More visualizations
of the training process data for BiGA-YOLO are shown in Figure 8, where we can observe
that the loss curve tends to converge at around 300 epochs.
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4.3. Comparisons

To further verify the effectiveness of the proposed model, we compared the visual
effects of the network using Grad-CAM. Grad-CAM can represent the degree of attention
of the network to the input image information through a heatmap. After inputting the two
networks into Grad-CAM for testing, the heatmaps of the networks’ attention to target
recognition are shown in Figure 9. It can be observed that the BiFPN structure of our BiGA-
YOLO has a higher heat map for the detection target position area compared to the PANet
structure of the original YOLOv5, and has a lower heat map for irrelevant environmental
information in non-target areas. This indicates that BiFPN can better extract the feature
information of the detection target to some extent while reducing the attention to irrelevant
information in the environment, which is reliable.

We compared the visual effects of the experimental results with the detection results
of the YOLOv5s model. As shown in Figure 10, the first row shows the visual effect of the
detection result of YOLOv5s, and the second row shows the visual effect of our proposed
BiGA-YOLO. It can be clearly seen that our proposed BiGA-YOLO has significantly im-
proved the confidence level of the detection boxes compared to YOLOv5s. Specifically, our
proposed model has significantly improved the confidence level of the detection boxes for
the three categories of targets, including cars, pedestrians, and cyclists.

Furthermore, we visualized the detection results of the model for the three targets of
cars, pedestrians, and cyclists in multiple different road scenarios, as shown in Figure 11.
To fully demonstrate the effectiveness of the model, we selected scenes with more complex
road conditions for visualization, and each scene contains multiple categories of detection
targets. From the visual effect, it can be seen that, in the detection of the three categories of
targets, the confidence level of the detection boxes generated by our proposed BiGA-YOLO
can reach over 0.9, which proves the effectiveness and reliability of BiGA-YOLO.
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4.4. Ablation Study

To analyze the differences in the combinations of components in the BiGA-YOLO
model, we conducted ablation experiments, and the results are shown in Table 4. We
gradually added the GHConv, CA, and BIFPN components. It can be observed that,
although using the Ghost module alone and using the improved YOLOv5 with GHConv
and CA architectures show a reduction in computational complexity and model size, there is
also a slight decrease in model detection accuracy, especially with mAP@0.5:0.95 decreasing
by 3.2% and 2.1%, respectively. Finally, the results of our improved model outperform all
other models in every aspect, demonstrating the superiority of the proposed architecture
that integrates these three modules. This architecture achieves a certain balance between
improving detection accuracy and maintaining lightweight models in two aspects.

Table 4. Comparison of ablation experiment results.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) FLOPS (G) Weights (M) FPS (Hz)

YOLOv5s 90.3 63.6 16.5 14.0 108.6
YOLOv5s + GHConv 89.6 60.4 12.3 11.3 110.4

YOLOv5s + GHConv + CA 89.4 61.5 12.6 11.4 110.1
Ours 92.2 68.3 13.8 11.8 114.9

4.5. Discussion

From Tables 2 and 3, it can be seen that compared to other YOLOv5s variants, such
as YOLOv5s-MobileNetv3, YOLOv5s-ShuffleNetv2, and Multi-scale YOLOv5s, our BiGA-
YOLO demonstrates superiority in detection accuracy, speed, and model complexity. Multi-
scale YOLOv5s slightly outperforms the baseline YOLOv5s by 0.8% in mAP@0.5, but falls
behind in computational complexity and detection speed. Although it improves detection
accuracy, it comes at the cost of substantial computational overhead and model size. In
comparison to our proposed network, our architecture offers advantages in detection
accuracy and speed while significantly simplifying computational complexity and model
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size. These results indicate that our proposed network architecture maintains a certain level
of superiority among other YOLOv5 variants in existing research, providing a valuable
reference for future studies on YOLOv5 in the object detection field.

5. Conclusions

In this paper, an improved model based on YOLOv5 called BiGA-YOLO is proposed,
which integrates GHConv, CA, and BiFPN. The model can effectively improve the accuracy
and speed of object detection while maintaining a lightweight architecture and a certain de-
gree of robustness. Our GHConv module can obtain feature maps at a lower computational
cost, CA can better consider spatial information, and BiFPN can better fuse multi-scale
object features through learnable weights. BiGA-YOLO improves the detection accuracy
of the overall model architecture, simplifies the model, reduces the requirements for plat-
form storage and computing resources, and makes it more suitable for object detection in
embedded devices and autonomous driving scenarios. At the same time, our proposed
method has certain limitations. It may not perform well in indoor object detection and,
like other detectors, its performance may decline in environments with weak lighting or
adverse weather conditions. In the future, our work can be extended to achieve good object
detection performance under complex road conditions and different lighting conditions.
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