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Abstract: The task of semantic segmentation holds a fundamental position in the field of computer
vision. Assigning a semantic label to each pixel in an image is a challenging task. In recent times,
significant advancements have been achieved in the field of semantic segmentation through the
application of Convolutional Neural Networks (CNN) techniques based on deep learning. This
paper presents a comprehensive and structured analysis of approximately 150 methods of semantic
segmentation based on CNN within the last decade. Moreover, it examines 15 well-known datasets
in the semantic segmentation field. These datasets consist of 2D and 3D image and video frames,
including general, indoor, outdoor, and street scenes. Furthermore, this paper mentions several
recent techniques, such as SAM, UDA, and common post-processing algorithms, such as CRF and
MRF. Additionally, this paper analyzes the performance evaluation of reviewed state-of-the-art
methods, pioneering methods, common backbone networks, and popular datasets. These have
been compared according to the results of Mean Intersection over Union (MIoU), the most popular
evaluation metric of semantic segmentation. Finally, it discusses the main challenges and possible
solutions and underlines some future research directions in the semantic segmentation task. We hope
that our survey article will be useful to provide a foreknowledge to the readers who will work in
this field.

Keywords: semantic segmentation; computer vision; deep learning; CNN; general; indoor; outdoor;
street scenes; SAM; UDA; CRF; MRF

1. Introduction

Semantic segmentation, which we sometimes encounter as visual scene understanding,
assigns each pixel in an image to predefined semantic labels. After this process, the input
image yields an output that turns into a raster map. In other words, it is used to semantically
group pixels and analyze data such as 2D, 3D and video. This paper [1] has demonstrated
how the semantic representation can be used as an input.

Semantic segmentation is closely related to image classification, object detection,
instance segmentation and panoptic segmentation tasks that are very popular in com-
puter vision. Each enables the identification of entities, objects, etc. within the input
data. However, each approaches the problem differently and provides different levels of
detail in the resulting output. Figure 1 illustrates aspects of these tasks that differ from
semantic segmentation.
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Image classification 

 
• Detects which objects are existing in the im-

age. 
• Does not look at the location of the  

objects. 

Object detection 

 
• Not only perceives which objects are ex-

isting in the image, but also where those 
objects are in the image. 

• Recognizes objects and positions them 
with bounding box. 

Instance segmentation 

 
• The pixels for each object are  

individually labeled.  
• In this example, one car pixel is colored in 

orange, another car in pink, and  
another car in green. 

 

Panoptic segmentation 

 
• Combines semantic segmentation and in-

stance segmentation. 
• Gives a comprehensive understanding of 

the scene at both the semantic level (car, 
building, road, etc.) and the instance level 
(car 1, car 2, etc.). 

Semantic segmentation 

 
• Assigns an object category/class label to each pixel in the image. 
• In this example, car pixels are colored in blue, person pixels in red and background pixels in 

gray etc. 
• Semantic segmentation handles objects belonging to the same class in the image as a single 

label, while instance segmentation handles objects belonging to the same class as separate 
instances. For example, if there are several cars in the example image, the semantic segmen-
tation algorithm assigns all pixels that belong to cars with the ‘car’ label without distinguish-
ing between different cars. However, the instance segmentation algorithm assigns related 
pixels to separate labels such as car 1, car 2 and car 3. 

• While object detection recognizes more specific and foreground objects (e.g., cars, people, 
etc. that are obvious in the example image), semantic segmentation not only classifies specific 
and foreground objects but also classifies unclear and background objects. Since, in contrast 
to object detection, semantic segmentation can provide pixel-level classification. So, it gives 
a more detailed output map. 

Figure 1. Comparison of image classification, object detection, instance segmentation, panoptic 
segmentation, and semantic segmentation. Figure 1. Comparison of image classification, object detection, instance segmentation, panoptic

segmentation, and semantic segmentation.
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Deep learning is perhaps the most popular and fastest growing area of machine
learning in recent times. It covers the development of new methods and the improvement
of existing methods for semantic segmentation. Most of the methods investigated in this
study have been created to solve pixel-based labeling problems based on “Convolutional
Neural Networks (CNN)” [2], one of the most commonly used techniques of deep learning.

The goal of deep-learning-based semantic segmentation is to estimate a class label for
each image pixel; this is an important but difficult task to understand the image. Recent
approaches have applied CNNs, the most popular model in deep learning, to the pixel-level
labeling task and had remarkable success. However, the classical CNNs used in image
classification are not effective in semantic segmentation. The main reason for this is that
CNN applies pooling and subsampling operations to the input data to classify the image.
These processes cause a loss of resolution and local and global information in the input
image. These losses are not a big problem in the classification task for most situations that
do not require very fine details because it is enough to give a global label as output in the
classification. However, for the semantic segmentation task, which requires a prediction of
a class label for each pixel and more detail, these losses negatively affect accuracy. To solve
these problems, different CNN architectures have been developed that recover the loss of
spatial, global and local information. Studies in this area have progressed by incorporating
local information obtained from CNN and global information obtained from deeper parts
of the network. It is explained in detail in Section 2.

The several important surveys on semantic segmentation can be summarized as fol-
lows: This paper [3] has categorized the architectures for semantic segmentation in deep
learning into ten distinct classes. These methods are based on: Feature encoder, Regional
proposal, Recurrent neural network, Up sampling / Deconvolution, Increase resolution of
feature, Enhancement of features, Semi and weakly supervised, Spatio-temporal, Methods
using CRF / MRF, Alternative to CRF. They have summarized approximately 100 models
and 33 publicly available datasets. The deep learning methods for semantic segmentation
have been classified by [4] based on varying degrees of supervision during the training
process. Furthermore, the authors have provided a concise overview of the techniques that
are specifically geared towards real-time segmentation, a topic that has received compara-
tively less attention in previous surveys. The paper [5] has presented the comprehensive
knowledge on deep learning required for semantic segmentation tasks. The survey, com-
prising of 28 datasets and 29 methods, has been presented. In addition to the models
using RGBD and 3D data, models that perform instance segmentation are also mentioned
in the study. This paper [6] has provided a summary of the advancements made in the
field of semantic segmentation, specifically in the areas of weakly supervised learning,
domain adaptation, multi-modal data fusion, and real-time processing. This paper [7] has
divided semantic segmentation methods into three categories: Region-based, FCN-based,
and Weakly supervised. Moreover, an overview of the strengths, weaknesses and signifi-
cant challenges associated with these approaches has been provided. This paper [8] has
provided an overview of segmentation models that utilize semi-supervised and weakly
supervised learning techniques. The emphasis has been placed on the fundamental aspects
of the model’s structure, operational mechanism, and primary functionalities. This pa-
per [9] has focused on the decade-long progression observed in this domain, which can be
classified into three distinct chronological phases: the pre- and early-deep-learning era, the
fully convolutional era, and the post-FCN era. This paper [10] has focused on studies that
performed semantic segmentation using deep learning for autonomous driving. The study
includes a comparative analysis of 14 frameworks, 12 datasets, various data augmentation
and domain adaptation techniques, and the benefits of these techniques. According to
the chronological progression of image segmentation technology, Ref. [11] have sorted the
classic segmentation algorithms (e.g., Edge Detection, Clustering Method, Random Walks),
Co-Segmentation Methods (e.g., MRF-based, Object-Based) and the presently popular deep
learning algorithms.



Electronics 2023, 12, 2730 4 of 49

The goals and main contribution of this paper can be mentioned as follows: Our
review has involved a comprehensive and structured analysis of approximately 150 meth-
ods of semantic segmentation based on CNN. We have classified and categorized these
methods as shown in Figure 2. Nevertheless, these categories ought not to be viewed
in isolation from one another, as there are no clear demarcations between them. There
exist mutually advantageous commonalities between the categories, and an approach may
potentially belong to multiple categories. Then, we have created a table for each category,
in chronological order. These tables have summarized to include the network structures,
the backbone networks of these models, the datasets used and their accuracies. Then, we
have compared and analyzed the performance evaluation of the most popular backbone
networks, the pioneering methods, and the state-of-the-art methods for each category.
Moreover, the study scrutinizes 15 widely recognized datasets in semantic segmentation.
Furthermore, the paper references various modern methodologies, including SAM, UDA
and conventional post-processing algorithms such as CRF, MRF and Random Walker. The
article ultimately addresses the primary obstacles, potential remedies, and prospective
avenues for further investigation in the realm of semantic segmentation.
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We have aimed at comprehensively addressing deep neural networks related to se-
mantic segmentation. During the process, we tried to relate all the reviewed methods with
respect to the architectural design, and we handled them in chronological order. Addition-
ally, we have attempted to indicate the advantages and disadvantages of the methods. We
hoped that this article would provide a general understanding of semantic segmentation
for researchers who intends to conduct work in this field.

The remainder of this article is organized as follows: In Section 2, an overview is
provided of deep network semantic segmentation techniques that rely on fully supervised
learning. In Section 3, an overview is provided of deep network semantic segmentation
techniques that rely on weakly supervised learning. In Section 4, several recent techniques
for semantic segmentation are presented. Section 5 overviews the common post-processing
algorithms in this area. Section 6 reviews well-known scene parsing datasets that in used
semantic segmentation. Section 7 pertains to the comparison of state-of-the-art methods
and common backbone networks on the most widely used datasets. Furthermore, an
analysis is presented regarding the performance comparison of all datasets referenced
in Section 6. Section 8 discusses the common challenges faced by the current methods,
possible solutions and underscores some future research directions in the field. The paper
concludes in Section 9.

2. Fully Supervised Semantic Segmentation

Fully supervised methods require many original images and corresponding pixel-
based semantically annotated images. That is, there must be sufficient labeled training data.
These approaches can be divided into two types according to the mode of operation: Region-
Proposal-based and Fully Convolutional Network (FCN)-based methods. Region-Proposal-
based methods structure is given in Figure 3 and its explanation is given in Section 2.1.
The structure of the FCN network model is shown in Figure 4, and its explanation is
given in Section 2.2. Region-based networks assign a category label to each proposal after
converting images into a set of region proposals. FCN-based methods take the entire image
as input and predict labels on a pixel-by-pixel basis (without removing region suggestions)
by mapping them directly to the relevant segmentation results with fully convolutional
layers. In addition, they can be trained end-to-end, as they consist of convolution, pooling
and upsampling layers.
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Figure 3. “R-CNN: Regions with CNN features”. (Reproduced with permission from authors, Rich
feature hierarchies for accurate object detection and semantic segmentation [12]. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 2014).

The methods based on FCN semantic segmentation have been organized into the
following categories: Section 2.1. Region-Proposal-Based Approaches, Section 2.2. Fully
Convolutional Network (FCN)-Based Approaches.
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2.1. Region-Proposal-Based Approaches

Region-based methods take an arbitrary-size image as input, extract a series of region
proposals from that image, and then transform region-based proposals into pixel estimates
by labeling a pixel according to the region with the highest score it contains.

In “R-CNN” [12], semantic segmentation is performed according to object recognition
results. This model generates about 2000 category-independent region proposals from the
input image. It then uses CNN to extract fixed-size features for each proposal and finally
classifies each region using “a linear Support Vector Machine (SVM)” [13]. “R-CNNs”
can also be built on top of any CNN structure, such as “VGG” [14], “GoogLeNet” [15],
“ResNet” [16] and “AlexNet” [17]. Since the original “R-CNN” is computationally expen-
sive and slow, newer architectures such as “Fast R-CNN” [18] and “Faster R-CNN” [19]
have made this approach faster. “Mask R-CNN” [20] has extended “Faster R-CNN” with
a branch for forecasting an object mask in parallel to the available branch for bounding
box detection. This advanced method is mentioned within the instance segmentation
subject that is both semantic and a form of detection. The “Path Aggregation Network
(PANet)” [21] is based on the “Mask R-CNN” and improves it in important aspects. Har-
iharan has argued that the “R-CNN” algorithm is fine-tuned to classify bounding boxes
(i.e., to extract features for all regions), but is inadequate to extract foreground features.
To address this problem, they used a jointly trained CNN to develop a model based on
region proposal classification using features extracted from both bounding boxes and
foreground regions. Moreover, based on the proposed “Convolutional Feature Masking
(CFM)” layer [22] has explored two possible ways to do this. Aforementioned studies using
region-proposal-based approaches are given in Table 1.

Table 1. Region-proposal-based approaches.

Paper, Year Method Backbone Network Dataset Accuracy mIoU (%)

[12]
(2014)

Regional CNN
(R-CNN) AlexNet [17] Pascal VOC 2010

Pascal VOC 2012
53.7
47.9

[23]
(2014)

Simultaneous Detection&
Segment. (SDS) MCG [24] Pascal VOC 2010

Pascal VOC 2012
52.6
51.6

[18]
(2015) Fast R-CNN VGG-16 [14] Pascal VOC 2010

Pascal VOC 2012
66.1
65.7

[22]
(2015)

Convolutional feature
masking (CFM) VGG + MCG Pascal VOC 2012 61.8

[25]
(2016)

Multi-scale, overlapping
regions VGG-16 Pascal Context

SIFT Flow
49.9
64.0

[26]
(2020)

Region Attention Network
(RANet) ResNet-101 [16]

Cityscapes
Pascal Context

COCO Stuff

81.9
54.9
40.7

2.2. Fully Convolutional Network (FCN)-Based Approaches

A classic CNN consists of two components: Convolutional layers and fully connected
layers located at a deeper level of the network. Convolutional layers operate as a floating
window, are not bound to a fixed-size image, and can create feature maps of arbitrary-size.
Fully linked layers, on the other hand, must have a fixed-size input. This requirement can
reduce recognition accuracy for images and sub-images of arbitrary size. In this approach,
the fully connected layer is removed and replaced by the fully convolutional layer, thus
converting CNN to FCN. Thus, it is ensured that CNN takes images of arbitrary size as
input and obtains an output of arbitrary size.

This study [27] is pioneering work in this area. In their work, they have adapted
classification networks such as “VGGNet”, “GoogleNet” and “AlexNet”, which have
been very popular in recent years, to fully convolutional networks. The backbone net-
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work involves the primary structure of the network, which is produced for the image
classification task. These structures, essentially, perform feature extraction for the task of
semantic segmentation. These classification networks are called backbone networks within
our study.
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The basic FCN-based method [27] has major limitations for semantic segmentation.
Low-level features from shallow layers of the network contain more detailed information
at higher resolution, i.e., they have richer spatial details. High-level features from the
deeper part of the network have higher semantic information, but due to the pooling
layer, the feature map resolution is lowered; that is, spatially detailed information is
lost. For this reason, an encoder-decoder network has been developed to extract the
features, which reduces the spatial size and then gradually recovers the spatial size of the
features obtained through upsampling. Another restriction is that the FCN has a predefined
fixed-size receptive field because of the convolution operation. This ignores the global
information in the image when it encounters an object larger or smaller than the receiving
field. To use this global information, that is, to include the semantic context, methods based
on generating features with larger receptive fields without sacrificing spatial resolution
have been developed. Dilated convolution methods use dilated/atrous convolutions in
FCN to expand the receptive field of convolutions and enable dense predictions, feature
fusion methods fuse high-level low-resolution and low-level high-resolution features,
thereby visibly improving performance, multi-scale methods combine multi-scale/stage
features by modeling local and global information from different layers and pyramid
methods significantly increase performance by expanding the receptive field by multi-
resolution pyramid-based representations and methods using “Recurrent Neural Networks
(RNN)” [28] and “Long Short-Term Memory (LSTM)” [29] capture long-range semantic
dependencies in images. A graphical model, the “Conditional Random Field (CRF)” [30]
has also been used to introduce global context into an FCN and improve output accuracy.
In these studies, segmentation performance is often improved by applying the CRF to the
CNN as a post-processing step or by fully integrating the CRF into the CNN to train the
entire network end-to-end [31–33].

CRFs can model contextual relationships between different pixels to maximize label
conformity. The studies using CRF have been indicated in the tables.

2.2.1. Encoder-Decoder Network

This network has two parts: an encoder and a decoder. On the part of the encoder,
features with different receptive fields are extracted from each convolutional layer of the
image, while on the part of the decoder, segmentation is made of the features generated
by the encoder. The encoder module is a typical CNN that has layers such as convolution,
pooling, and nonlinear activation. The pooling layer in this part causes a smaller feature
map than the original image. Next, the pooling layer is removed in the decoder part, and
then the feature map is expanded (spatial dimension is recovered) using up-sample layers
to obtain high-resolution prediction. In addition, skip connections between the encoder
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and decoder have provided more accurate results by fusing low-level information with
high-level information. An example architecture is shown on Figure 5.
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60.5 
63.1 

[46] 
(2016) 

Efficient neural network 
(ENet) 

no ResNet CamVid  
Cityscapes  

55.6  
58.3  

Figure 5. The architecture of SegNet. The figure is reproduced from [34]. (Licensed under CC BY 4.0).

“DeconvNet” [35], one of the most important studies in this area, is an approach with
components that complement the simple FCN-based approach, which is good at extracting
a general form of the object. On the other hand, “DeconvNet” collects the proposals in
descending order of size and effectively renders multi-scale objects by identifying finer
object details. The innovation of “SegNet” [34,36] is in the way the decoder upsamples
feature maps with low spatial dimensions. Additionally, “SegNet”, can store the max-
pooling indexes of the encoder feature maps and use them in the decoder network, so
its performance is quite good. Ref. [37] have introduced a probability-based pixel-based
framework, which they named “Bayesian SegNet”, by modifying the “SegNet” architecture.
The technique they have used to construct a probabilistic encoder-decoder architecture is
dropout [38], which is utilized as approximate inference by “Bayesian CNN” [39]. This
paper [40] has proposed an architecture consisting of an encoder such as “SqueezeNet”
and then a decoder with enhancement modules such as “SharpMask”. The design of the
“RefineNet” architecture as presented by [41] enables gradient propagation that is useful
for efficient training between long-range connections. In their encoder-decoder structure,
all operations, including downsampling, are applied as a single stream. Ref. [42] have
presented “GridNet” to solve the loss of resolution problem. “GridNet” has followed a grid
pattern that allows multiple interconnected streams to run at different resolutions. Ref. [43]
has presented “IIE-SegNet” which enhanced boundaries based on image information
entropy. Ref. [44] has proposed a novel “SFANet” to alleviate the misalignment problem
between two adjacent levels of feature maps. Ref. [45] has constructed a new “Context
Aggregation Network (CANet)” employing shallow encoder-decoders to compensate for
local ambiguities while capturing sufficient global context and maintaining computational
efficiency. Aforementioned studies using encoder-decoder network-based approaches are
given in Table 2.

Table 2. Encoder-decoder network-based approaches.

Author, Year Method CRF Used? Backbone Network Dataset Accuracy mIoU
(%)

[35]
(2015) DeconvNet yes VGG-16 Pascal VOC 2012 70.5

[36]
(2015) SegNet yes VGG-16

CamVid
NYUDv2

KITTI

62.5
41.0
58.4
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Table 2. Cont.

Author, Year Method CRF Used? Backbone Network Dataset Accuracy mIoU
(%)

[37]
(2015) Bayesian SegNet no VGG-16 Pascal VOC 2012

CamVid
60.5
63.1

[46]
(2016)

Efficient neural network
(ENet) no ResNet

CamVid
Cityscapes
SUN RGBD

55.6
58.3
19.7

[40]
(2016) SqueezeNet + SharpMask no VGG-16 Cityscapes 59.8

[41]
(2017) RefineNet yes (just Pascal

dataset) ResNet-101

Pascal VOC 2012
Cityscapes
SUN RGBD

ADE20K

83.4
73.6
45.7
40.2

[42]
(2017)

Residual Conv-Deconv
Grid Network no ResNet-101 Cityscapes 69.4

[47]
(2017)

Label refinement network
(LRN) no VGG-16

Pascal VOC 2012
CamVid

SUN RGBD

62.8
61.7
33.1

[48]
(2018) DeepLabV3+ no ResNet-101 Pascal VOC 2012

Cityscapes
87.8
82.1

[49]
(2018)

Gated Feedback
Refinement Network

(G-FRNet)

yes (just Pascal
dataset)

VGG-16
ResNet-101

Pascal VOC 2012 70.4VGG16
79.3ResNet101

CamVid 68.0VGG16

[50]
(2018)

Dense Decoder Shortcut
Connections no ResNeXt [51]

Pascal VOC 2012
CamVid
NYUDv2

Pascal Context

81.2
70.9
48.1
47.8

[52]
(2019)

Stacked Deconvolutional
Network (SDN) no DenseNet161 [53]

Pascal VOC 2012
CamVid

GATECH RGBD
COCO Stuff

83.5
69.6
53.5
35.9

[54]
(2019)

Hierarchical adjacency
dependent network

(HadNet)
no Xception [55] + ASPP

[56] Pascal VOC 2012 87.9

[43]
(2021) IIE-SegNet no Deeplab-v3 [48] Pascal VOC 2012 89.6

[57]
(2021) HRNet yes ResNet + ASPP Pascal VOC 2012 79.5

[44]
(2021)

Stage-aware Feature
AlignmentNetwork

(SFANet)
no ResNet-18 [16] Cityscapes

CamVid
78.1
74.7

[58]
(2021) Segmenter no ViT-L/16 [59]

ADE20K
Pascal Context

Cityscapes

53.6
59.0
81.3

[60]
(2021)

Multi-level graph
conv.RNN (MGCRNN) no VGG-16 Pascal VOC 2012

Cityscapes
74.2
73.6

[45]
(2022)

Context Aggregation
Network (CANet) no ResNet-101

Cityscapes
CamVid

BDD100K

81.8
78.6
66.5
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2.2.2. Dilated/Atrous Convolution

This approach aims to remove the limitation of a fixed field of view in simple FCN-
based approaches. To this end, they have presented dilated convolutions to obtain feature
maps with a larger field of view without reducing the spatial size, i.e., resolution. This has
been achieved by placing holes between pixels in the standard convolution cores. Since
there is no need to increase the number of parameters during this process, the computation
time does not increase either. Compared with standard convolution, dilated convolution
increases the hyperparameter of the dilation rate. This hyperparameter represents the
number of intervals between cores. Thus, dense feature extraction has been achieved, and
significant progress has been made in improving spatial resolution.

DeepLab architecture is one of the pioneering studies in this field. “DeepLab-v1” [31]
has improved object boundary localization by integrating CRF and the responses from
the last layer of CNN. “DeepLab-v2” [56] has proposed “Sharp Spatial Pyramid Pooling
(ASPP)”, which parallelizes multiple atrous convolutions to obtain richer multi-scale con-
textual information. “DeepLab-v3” [61] has further enhanced DeepLab by strengthening
the “ASPP” algorithm with image-level features which encode global context. Based on
“DeepLab-v3”, Ref. [48] has proposed “DeepLab-v3+” by intensely connecting the decoder
component to the encoder. Ref. [62] have developed the “DeepLab-v3+” based “Cascade
Waterfall ASPP (CWASPP)” module to reduce the parameters and increase the segmenta-
tion performance. Ref. [63] have proposed “DilatedNet”, which uses dilated convolutions
with a “dilated rate” unlike the standard convolution operator. The dilated convolutions
have a larger receptive field without downsampling the feature maps much. However, the
performance of the network is adversely affected by the grinding artifacts it has. Therefore,
Ref. [64] have developed “Dilated Residual Networks (DRN)” to remove the grinding arti-
facts. Ref. [65] have proposed an optimized algorithm by combining “ASPP” method and
CRF. Ref. [66] have proposed “Dense Upsampling Convolution (DUC)” to create pixel-level
prediction that can seize and decode the elaborate information lost during upsampling
and “Hybrid Dilated Convolution (HDC)” to solve the gridding problem by enlarging
the receptive fields of the network. Dilated convolution process can be seen in Figure 6.
Aforementioned studies using dilated/atrous convolution-based approaches are given in
Table 3.
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Table 3. Dilated/Atrous convolution-based approaches.

Author, Year Method CRF Used? Backbone
Network Dataset Accuracy

mIoU (%)

[31]
(2014)

DeepLab-v1
(LargeFOV) yes VGG-16 Pascal VOC 2012 67.6

[63]
(2015) DilatedNet yes VGG-16 Pascal VOC 2012 67.6

[46]
(2016)

Efficient neural
network (ENet) no ResNet

CamVid
Cityscapes
SUN RGBD

55.6
58.3
19.7

[64]
(2016)

Dilated Residual
Network (DRN) no ResNet-101 Cityscapes 66.6

[56]
(2017)

DeepLab-v2
(ASPP) yes ResNet-101 Pascal VOC 2012

Cityscapes
79.7
70.4

[61]
(2017) DeepLab-v3 no ResNet Pascal VOC 2012

Cityscapes
85.7
81.3

[68]
(2017)

Depth fully-connected
CRF

(DFCN-DCRF)
yes VGG-16 SUN RGBD 39.3

[48]
(2018) DeepLab-v3+ no ResNet-101 Pascal VOC 2012

Cityscapes
87.8
82.1

[66]
(2018)

Dense upsampling
convolution (DUC) +

Hybrid Dilated
Convolution (HDC)

yes DeepLab-v2
ResNet-101

Pascal VOC 2012
Cityscapes

83.1
77.6

[69]
(2018)

Context Encoding
Network (EncNet) no ResNet

Pascal VOC 2012
Pascal Context

ADE20K

82.9
51.7
44.6

[65]
(2019)

Atrous Conv. + fully
connected CRFs yes ResNet-101 Pascal VOC 2012 77.6

[70]
(2020)

Multi-Receptive
Atrous Convolutional
Network (MRACN)

no ResNet-101 Pascal VOC 2012
DTMR-DVR

80.2
60.4

[71]
(2021)

Multi-source fusion
generative

adver.net.(SCAGAN )
no DeepLab-v2 Pascal VOC 2012 70.1

[72]
(2021)

SEgmentation
TRansformer (SETR) no T-Large [72]

ADE20K
Pascal Context

Cityscapes

50.2
55.8
82.1

[67]
(2021)

Efficient Spatial
Pyramid of Dilated

Conv.(ESPNet)
yes DeepLab-v2 Cityscapes 60.3

[62]
(2022)

Cascade Waterfall
ASPP Module

(CWASPP)
no MobileNetv2 [73] Pascal VOC 2012 73.3
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2.2.3. Feature Fusion

Dilated/Atrous convolution strategy has made significant progress to overcome the
spatial resolution loss problem. Still, however, FCN’s largest receptive field is not sufficient
to directly capture and model the global context as needed. Another way to add global
context is feature fusion. This technique aims to fuse the features extracted from the
previous layer of the network with the localized feature map extracted from the next layer.
There are two cases, early and late fusion, for combining the global context feature with
a local feature map. Refs. [27,31] have used skip connections to achieve a late fusion by
combining the two predictions into a single classification result. Another study, “Enhancing
Feature Fusion (ExFuse)” [74], has shown that incorporating semantic information with
low-level features and high-resolution details with high-level features is useful in late
fusion. Ref. [75] has proposed “ParseNet”, which adds global context directly to FCNs.
They have spatially separated the global feature into the same dimension as the local feature
map, combined them, and finally used the combined feature to learn the classifier for the
early fusion. Ref. [76] have proposed “RGB-D Fusion Network (RDFNet)” that effectively
extracts and fuses multi-level RGB-D features in very deep networks by extending the core
idea of residual learning to RGB-D semantic segmentation. Ref. [77] have used the feature
fusion method to improve the feature information extracted by the model. Aforementioned
studies using feature fusion-based approaches are given in Table 4.

Table 4. Feature fusion-based approaches.

Author Method CRF Used? Backbone
Network Dataset Accuracy

mIoU (%)

[75]
(2015) ParseNet yes DeepLab-v1 Pascal VOC 2012

Pascal Context
65.8
36.6

[76]
(2017)

RGB-D fusion
network (RDFNet) no ResNet-101 NYUDv2

SUN RGBD
50.1
47.7

[74]
(2018) ExFuse no ResNet-101 Pascal VOC 2012 86.2

[77]
(2021)

Self-attention
feature fusion

network
(SA-FFNet)

no ResNet-18 Cityscapes
CamVid

75.0
69.5

[67]
(2021)

Efficient Spatial
Pyramid of Dilated

Conv.(ESPNet)
yes DeepLab-v2 Cityscapes 60.3

2.2.4. Multi-Scale Feature and Pyramid Architecture

These approaches involve extracting features from multiscale or a set of nested regions.
Combining multi-scale features with FCN has outperformed single-scale features. In [78],
“a multiscale convolutional network” has been developed to extract intensive feature
vectors that encode multidimensional regions clustered around each pixel. “A multi-
scale network” proposed by [79] has predicted a coarse global output from the entire
input image, and then improved it using finer scale local networks. This model does
not use superpixels or contours while capturing image details. Ref. [80] have adapted
“DeepLab-MSc” to a share-network and proposed an attention mechanism that learns to
softly weight multi-scale features at each pixel location. According to [78,81], background
information can be effectively captured by combining features extracted by a multi-scale
network, thus improving performance for semantic segmentation. Ref. [82] has used “multi-
scale CNNs” [78] and the “floating pyramid pool” [83] to encode this rich background
information. The floating pyramid pool in the feature map can obtain information from
background regions of different sizes. Ref. [84] has suggested “a gated summation scheme”
to collect multi-scale features for each spatial location. The gates in this scheme check
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the flow of information about the various scaling features. Ref. [52] have produced a
“Stacked Deconvolutional Network (SDN)” in which the connections within and between
units have been designed to advance the flow of information and propagation of gradients
throughout the network. Inter-unit connections have made it efficient to reuse multi-scale
information between different units. Ref. [85] has proposed a method that entails the
creation of a multi-scale meta-relational network (MSNN). This network has utilized an
optimized initialization representation to augment the generalization capacity of learned
measurements. The “Multi-scale Relational Network (MSRN)” [86] algorithm involves
the removal of the fully connected layer from a four-layer CNN model, followed by the
stitching of thirty-four-layer feature maps in the depth direction to generate multi-scale
features [87]. The method also includes the integration of multi-scale features from the
target set of samples, followed by the computation of relational features through the
subtraction of elements and subsequent calculation of absolute values.

The multi-scale pyramid architecture has a multi-scale and pyramid structure that
detects objects of different scales. These studies have combined the pyramid strategy with
CNN. There are two common image pyramids, named Gaussian and Laplacian [88]. The
main problem with current FCN-based models is their inability to capture sufficiently good
features at the global image level. To address this shortcoming, previous studies have
developed “global pooling” [75], “floating pyramid pooling” [83] and “spatial pyramid
pooling” [89]. Ref. [90] have proposed a “Pyramid Scene Parsing Network (PSPNet)
(Figure 7)” that incorporates appropriate global features by region-based aggregation.
Those in [56] have developed the “Sharp Spatial Pyramid Pooling (ASPP)” method, which
performs multi-scale segmentation, inspired by the image pyramid strategy. Ref. [91] have
introduced “CiSS-Net” that have “Context Net (CNet)” and “Segment Net (S-Net)” named
subnets. The “C-Net” learns high-level semantic context information from p-maps, and the
“S-Net” incorporates the learned context into FCN-based semantic segmentation. Ref. [92]
has applied graphical convolution to solve a fixed receptive field problem because of the
convolution operation and has proposed an improved Laplacian. Graphical reasoning [93]
has been performed directly in the original feature space, which has been organized
as a spatial pyramid. Aforementioned studies using multi-scale feature and pyramid-
architecture-based approaches are given in Table 5.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 47 
 

 

Those in [56] have developed the “Sharp Spatial Pyramid Pooling (ASPP)” method, which 
performs multi-scale segmentation, inspired by the image pyramid strategy. Ref. [91] have 
introduced “CiSS-Net” that have “Context Net (CNet)” and “Segment Net (S-Net)” 
named subnets. The “C-Net” learns high-level semantic context information from p-maps, 
and the “S-Net” incorporates the learned context into FCN-based semantic segmentation. 
Ref. [92] has applied graphical convolution to solve a fixed receptive field problem be-
cause of the convolution operation and has proposed an improved Laplacian. Graphical 
reasoning [93] has been performed directly in the original feature space, which has been 
organized as a spatial pyramid. Aforementioned studies using multi-scale feature and 
pyramid-architecture-based approaches are given in Table 5. 

 
Figure 7. Overview of PSPNet. (Reproduced with permission from authors, Pyramid scene parsing 
network. in Proceedings of the IEEE conference on computer vision and pattern recognition [90] in 
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017). 

Table 5. Multi-scale feature and pyramid-architecture-based approaches. 

 Author Method CRF Used? Backbone 
Network 

Dataset Accuracy 
mIoU (%) 

M
ul

ti-
sc

al
e 

py
ra

m
id

 a
rc

hi
te

ct
ur

e 
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[82] 
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75.3 
43.3 
44.9 
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[95] 
(2016) 
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yes VGG-16 
ResNet-101 

Pascal VOC 2012 
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(2017) 

Pyramid scene parsing network 
(PSPNet) no ResNet-101 
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Figure 7. Overview of PSPNet. (Reproduced with permission from authors, Pyramid scene
parsing network [90]. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017).
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Table 5. Multi-scale feature and pyramid-architecture-based approaches.

Author Method CRF
Used?

Backbone
Network Dataset Accuracy

mIoU (%)

M
ul

ti
-s

ca
le

py
ra

m
id

ar
ch

it
ec

tu
re

[78]
(2012) Multiscale ConvNet yes ConvNet [94] SIFT Flow

Stanford Background
50.8 (MACC)
76.0 (MACC)

[82]
(2016) FeatMap-Net yes VGG-16

Pascal VOC 2012
Pascal Context

SIFT Flow
NYUDv2 (40 class)

75.3
43.3
44.9
40.6

[95]
(2016)

Laplacian Pyramid
Reconst.&Refine.

(LRR)
yes VGG-16

ResNet-101
Pascal VOC 2012

Cityscapes
74.7ResNet101

69.7VGG16

[90]
(2017)

Pyramid scene parsing
network
(PSPNet)

no ResNet-101
Pascal VOC 2012

Cityscapes
ADE20K

82.6
78.4
41.9

[91]
(2019)

Context-reinforced
Network (CiSS-Net) no ResNet-50

Cityscapes
ADE20K

Pascal Context

79.2
42.5
48.7

[92]
(2020)

Spatial Pyramid Based
Graph Reasoning

(SpyGR)
no ResNet-101

Cityscapes
COCO Stuff

Pascal Context

81.6
39.9
52.8

[96]
(2014)

Recursive Context
Propagation Network

(RCPN)
yes Multiscale

ConvNet [78]
Stanford Background.

SIFT Flow
78.8 (MACC)
48.0 (MACC)

[97]
(2015)

pure-node (PN) RCPN
tree-MRF (TM) RCPN

yes RCPN [96]

Stanford Background 64.0PN-RCPN
64.5TM- RCPN

SIFT Flow 30.2PN-RCPN
31.4TM- RCPN

[31]
(2014) DeepLab-MSc yes VGG-16 Pascal VOC 2012 71.6

[98]
(2016)

DeepLab-CRF-
Attention yes DeepLab-v1 Pascal VOC 2012

COCO Stuff
75.1
35.7

[56]
(2017)

DeepLab-v2
(ASPP) yes ResNet-101 Pascal VOC 2012

Cityscapes
79.7
70.4

[63]
(2015) DilatedNet yes VGG-16 Pascal VOC 2012 67.6

[79]
(2015)

Multiscale
Convolutional

Network
no AlexNet

VGG-16

Pascal VOC 2012 72.4VGG
(MACC)

SIFT Flow 48.2AlexNet
55.7VGG

NYUDv2 41.3AlexNet
45.1VGG

NYUDv2 (4 class) 79.1AlexNet
82.0VGG
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Table 5. Cont.

Author Method CRF
Used?

Backbone
Network Dataset Accuracy

mIoU (%)

M
ul

ti
-s

ca
le

py
ra

m
id

ar
ch

it
ec

tu
re

[81]
(2015) Zoom-out yes VGG-16 Pascal VOC 2012 69.6

[99]
(2015)

Multi-scale deep
ConvNet VGGM no VGG-16 NYUDv2 (4 class) 70.4 (PACC)

[100]
(2016)

A network composed
by four multi-scale

CNNs
no VGG-16 NYUDv2 49.5

[101]
(2016)

Quadratic
Optimization (QO) yes Deeplab-v1 Pascal VOC 2012 75.4

[61]
(2017) DeepLab-v3 no ResNet Pascal VOC 2012

Cityscapes
85.7
81.3

[102]
(2017)

Contextual deep
structured model yes VGG-16

Pascal VOC 2012
Pascal Context

SIFT Flow
Cityscapes
SUN RGBD

KITTI
NYUDv2

75.3
43.3
44.9
71.6
42.3
70.3
40.6

[103]
(2017)

Deep layer cascade
(LC) no IRNet [104] Pascal VOC 2012

Cityscapes
80.3 (PACC)

71.1

[84]
(2018)

Context Contrasted
Local (CCL) yes ResNet-101

Pascal Context
SUN RGBD
COCO Stuff

51.6
47.1
35.7

[52]
(2019)

Stacked
Deconvolutional
Network (SDN)

no DenseNet [49]

Pascal VOC 2012
CamVid

GATECH RGBD
COCO Stuff

83.5
69.6
53.5
35.9

[105]
(2020)

Parallel fully
convolutional neural

network
no FCN + HED

[96]

Pascal VOC 2012
Pascal Context

Cityscapes

66.7
43.6
67.1

[57]
(2021) HRNet yes ResNet + ASPP Pascal VOC 2012 79.5

[106]
(2017)

Structured patch
prediction (SegModel) yes ResNet-101

Pascal VOC 2012
Cityscapes
ADE20K

82.5
79.2
54.5

2.2.5. Methods Using Recurrent Neural Networks (RNN)

FCNs are limited to small, fixed-size filters that limit their ability to learn long-range
dependencies. Recurrent Neural Networks (RNN) are not affected by this restriction.
Thanks to its iterations, it spreads the activity, allowing them to model long-range depen-
dence. RNNs are artificial neural networks with cyclical connections. Thanks to these
loops, RNN networks can learn complex dynamics. Thus, sequential data can be processed.
For example, time series, video frames, etc. However, RNNs are difficult to train due
to vanishing gradients and overshooting. To overcome this issue, the Long Short-Term
Memory (LSTM) method, which is a type of RNN architecture, has been proposed. The
LSTM network is more successful than RNNs in solving the vanishing gradient problem
and processing data over a long period of time. Another difference between LSTMs and
RNNs is memory cells. In this way, they store status information for short or long periods
of time. Thus, for the semantic segmentation problem, RNN and LSTM models have be-
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come increasingly popular to model long-short-distance semantic dependencies (semantic
connections of local features) in the image using recurrent links.

Some of the most important studies in this field [107] have used a repetitive convo-
lution network that combines a coarser sampled image input with local prediction from
the previous iteration, where each iteration contains more and more context. This aspect
contrasts with the [79] approach, which first makes a global estimate and then iteratively
improves it. Ref. [108] has investigated a “2D LSTM RNN” architecture to efficiently
capture local (pixel by pixel) and global (label by label) dependencies (contextual infor-
mation) within a single model. Ref. [33] have presented “CRFasRNN”, which merges
the strengths of CNNs and CRFs into a single framework. More specifically, they have
formulated the mean field inference of dense CRF with Gaussian binary potentials as
an RNN. RNNs can improve the coarse output of a conventional CNN in the forward
pass while feeding error differences during training to the CNN. Ref. [109] have proposed
to extend the “ReNet” architecture [110], originally designed for image classification, to
extract contextual information from images using RNN. Ref. [111] has adopted “Undirected
Cyclic Graphs (UCGs)” to decompose pixel connectivity in images. Because of the cyclic
nature of UCGs, RNNs cannot be directly applied to UCG-structured images. Therefore,
they have decomposed the UCG into several “Directed Acyclic Graphs (DAGs)”. Next,
they have developed DAG-RNNs, a generalization of RNNs, to process DAG structured
images. Aforementioned studies using RNN-based approaches are given in Table 6.

Table 6. Methods using RNN-based approaches.

Author Method CRF Used? Backbone
Network Dataset Accuracy mIoU

(%)

[107]
(2014)

Recurrent CNN
(RCNN) no RCNN

Stanford
Background
SIFT Flow

69.5 (MACC)
30.0 (MACC)

[108]
(2015)

Two-dimensional
LSTM Network

(2D LSTM)
no Multidimensional

RNNs

Stanford
Background
SIFT Flow

68.2 (MACC)
22.5 (MACC)

[33]
(2015) CRFasRNN yes VGG-16 Pascal VOC 2012

Pascal Context
72.0
39.2

[112]
(2016)

Higher order
CRF-RNN yes VGG-16 Pascal VOC 2012

Pascal Context
77.9
41.3

[109]
(2016) ReSeg no ReNet [110] CamVid 58.8

[113]
(2016)

Directed acyclic
graph RNN
(DAG-RNN)

no VGG-16 SiftFlow
CamVid

55.7 (MACC)
78.1 (MACC)

[111]
(2017) DAG-RNN + CRF yes VGG-16

SIFT Flow
Pascal Context

COCO Stuff

44.8
43.7
31.2

[114]
(2018)

Dense RNN
(DD-RNN) yes VGG-16

Pascal Context
ADE20K

SIFT Flow

45.3
36.3
46.3
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Table 6. Cont.

Author Method CRF Used? Backbone
Network Dataset Accuracy mIoU

(%)

[115]
(2018)

Multi-Level
Contextual RNN

(ML-CRNN)
no VGG-16

CamVid
KITTI

SIFT Flow
Stanford

Background
Cityscapes

66.8
60.1
44.7
65.7
71.2

[116]
(2020)

Recursive conv.
with residual unit no VGG-16 Pascal VOC 2012

Cityscapes
55.1
44.0

[117]
(2020) CGBNet yes ResNet-101

Pascal Context
SUN RGBD
SIFT Flow

COCO Stuff
ADE20K

Cityscapes

53.4
48.2
46.8
36.9
44.9
81.2

[60]
(2021)

Multi-level graph
conv.RNN

(MGCRNN)
no VGG-16 Pascal VOC 2012

Cityscapes
74.2
73.6

3. Weakly Supervised Semantic Segmentation

The fully supervised deep learning models that have been examined so far are ap-
proaches that include pixel-level annotated segmentation masks and have achieved signifi-
cant success in this area. However, these methods require very large numbers of training
images, which are very laborious to obtain. To overcome this drawback, weakly supervised
techniques have been developed that are faster and less costly than pixel-level labeling.
This approach includes such techniques as bounding box, image level, point level and
scribble level for each class. A bounding box indicates the location of the object in the
image. An image level label indicates the presence or absence of semantic classes. A point
level puts a point at the object’s position. A scribble level scratches each semantic category
in the image. It then fine-tunes using the segmentation losses identified based on these
poor descriptions. The difficulty here is how exactly these annotations are mapped to their
corresponding pixels. To put it another way, the key task is how to directly relate high-level
semantics to a low-level view. An example of weak supervision is given in Figure 8.
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3.1. Bounding Box

A bounding box-level label provides the rough localization and size of an object in
the image but does not provide detailed shape information about the object. Each object in
the image is enclosed in the frame of the video with a rectangle to extract a segmentation
mask from each bounding box. With this rectangle, object locations are detected, and weak
annotations are extracted.

Ref. [118] has introduced a simple voting scheme to estimate shape guidance for
each bounding box. The derived shape guidance is used in the graph-cut-based formu-
lation. “Bounding Boxes to Supervise (BoxSup)” [119] has been proposed to create a set
of segments by iterating among automatically composing region proposals and training
convolutional networks. Through these two steps, segmentation masks are progressively
rescued to evolve the networks. According to [120], input label noise is a problem for weak
supervision. To eliminate this noise problem, they have proposed recursive training, where
the convnet predictions of the previous training round are used as supervision for the next
round. Ref. [121] have developed “Box-driven Class-wise Masking (BCM)” model that
they implement the BCM via segmentation-guided learning with box-like supervision. The
proposed BCM can help softly remove the irrelevant regions of each class. It also provides
an obvious hint of the foreground region, which could greatly contribute to segmentation
learning. Aforementioned studies using bounding box level-based approaches are given in
Table 7.

Table 7. Bounding box level-based approaches.

Author Method CRF Used? Backbone
Network Dataset Accuracy

mIoU (%)

[118]
(2013) DET3 no CPMC [122] Pascal VOC 2012test 48.0

[119]
(2015)

Bounding Boxes to Supervise
CNN (BoxSup) yes DeepLab-v1 Pascal VOC 2012val

Pascal Contextval

62.0
40.5

[120]
(2017) SimpleDoselt (SDI) no DeepLab-v1 Pascal VOC 2012val 65.7

[121]
(2019)

Box-driven class-wise masking
(BCM + FR-loss) yes DeepLab-v1

ResNet-101 Pascal VOC 2012val
66.8DeepLabv1
70.2ResNet101

[123]
(2020)

FCN+Cartesian/ Polar
Coordinate System (CCS) +

(PCS)
yes VGG-16 Pascal VOC 2012val 68.7

[124]
(2021)

Background-Aware Pooling
(BAP) and Noise-Aware Loss

(NAL)
yes DeepLab-v1 Pascal VOC 2012val 68.1

[125]
(2022) Pixel-as-Instance Prior (PIP) yes DeepLab-v1 Pascal VOC 2012val 67.9

3.2. Image-Level

• Multi-Instance Learning (MIL)

The image-level label only determines which classes are present without specifying
the location of the objects in the image. The first few studies in this section used the
“Multi-Instance Learning (MIL)” [126] framework, which diminished the level of super-
vision required, reducing the need for expensive annotations in tasks such as semantic
segmentation. Ref. [127] has represented each image as a bag of pixel-level-instances and
defined a pixel-wise multi-class matching of MIL for loss to learn the segmentation model
from image labels. Another example based on MIL, “Log-Sum-Exp (LSE)” [128], has not
been trained with pixel-label or annotations such as bounding boxes or scribbles. In place
of that, it just obtained a single object class tag for a given image and limited it to giving
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more weight to pixels significant for classification. Ref. [129] have developed the “Glob-
ally Weighted Ranking Pool (GWRP)” that is used by dilation loss to widen the object
seeds to regions of acceptable size. Since these MIL-based methods are just image labels,
they rely on classification networks to locate objects. On the other hand, since there is no
pixel-wise annotation, classification networks produce faulty and coarse object regions,
reducing semantic segmentation performance. Additional methodologies, such as CAM
and pseudo-labeling, have been devised to address this issue.

• Class Activation Maps (CAM)

The utilization of Class Activation Maps (CAM) enables the visualization of the specific
areas within an image that are prioritized by a CNN model in the process of classification.
The utilization of maps can be considered valuable in understanding the significant portions
of an image that a model finds essential for its predictive capabilities.

The utilization of CAM is feasible in a weakly supervised scenario within the domain
of semantic segmentation. Rather than utilizing a dataset that is completely annotated
with pixel-level labels for segmentation, it is possible to initially train a classification model
using image-level labels. The present model has the capability to produce CAMs that
effectively emphasize the most distinctive areas within the image that are utilized for the
purpose of classification.

Ref. [130] explained how to create CAM with CNNs’ global average pooling (GAP).
The discriminative image areas that the CNN utilized to identify a given category are shown
on a class activation map for that category. CNNs that have been trained for classification
can be taught to perform object localization without the need for bounding box annotations.
Using CAM, they can see the projected class scores for any given image and see where the
CNN found discriminative object features.

Another study about CAM, Erased CAM Supervision Net (ECSNet) method proposed
in [131]. They utilized connections between CAMs to suggest a unique weakly supervised
technique, which was motivated by the fact that removing differentiating features forces
networks to accumulate new ones from non-discriminative object areas. In this work,
they used segmentation supervision, driving networks, and the characteristics learnt from
deleted pictures to examine resilient representation. CAM-derived object sections are
initially removed from pictures. Erased CAM Supervision Net (ECSNet) creates pixel-
level labels by anticipating the segmentation outcomes of those processed pictures to
give segmentation supervision to other areas. Additionally, they developed the rule of
minimizing noise to choose trustworthy labels. Except for ground truth image-level labels,
their trials on the Pascal VOC 2012 dataset demonstrate that their ECS-Net outperforms
earlier state-of-the-art techniques, achieving 67.6% mIoU on the test set and 66.6% mIoU
on the validation set.

Most existing approaches to image-level labelling consist of two components. The first
component is the FCN, the second is the one that aims to provide an efficient pseudo-mask
at the label level. This mask is utilized to control the pixel level required by the training
process. Because of this, it is very important to acquire an effective mask for this part. The
CAM [130] has often been used to generate pseudo-masks and then train segmentation
models. CAM creates an attention map to localize the most distinctive regions of the
object. The approaches mentioned in the table as the CAM-based method have adopted
the CAM method to select the most distinctive regions. However, it has been observed that
CAM is successful for small objects but can localize only the small distinctive region of the
target object when faced with large-scale objects. This will reduce performance as every
undetected object will be labeled as background for the semantic segmentation task. To
address this problem, most studies in this group first utilized CAMs to locate objects in
each category and used salience detection techniques to select background regions. For
example, Ref. [66] has suggested “Saliency-Guided Refinement Method” that considers both
extended object regions and salience maps under a Bayesian frame. Refs. [132–134] have
focused on discovering invisible semantic objects with the “erasing strategy” they followed
in their studies. Unlike the others, Ref. [134] have used “attention maps” created by
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“SeeNet”, which they developed, not CAM. To solve the same problem, another study [135]
has proposed to transfer discriminant information from sparsely highlighted regions to
adjacent object regions, thereby creating dense object localization, which can essentially lift
segmentation model learning favorably. Refs. [136,137] have created “localization maps” of
the training images for classification. The localization maps are then used as pseudo-labels
to train a segmentation network.

As a weakly supervised learning method, pseudo-labeling uses the model’s own
predictions on unlabeled data as ground truth labels for further training of the model.
This method can be utilized in semantic segmentation tasks to make use of a significant
amount of unlabeled data, which is particularly useful in situations where completely
annotated data is insufficient. When using pseudo-labels in a semantic segmentation task,
the model is trained on labeled data, and predictions are made on unlabeled data using
the trained model. Pseudo-labels are assigned to the unlabeled data based on the model’s
predictions. Pseudo-labels can be improved via post-processing with CRFs and other
methods depending on the accuracy of the original model’s predictions. Adding pseudo-
labels to a true-label dataset makes for a more robust training set. Finally, the model is
retrained with both true and pseudo labels. This allows the model to make use of more data,
which may improve its overall performance. This procedure can be repeated. Following
each iteration of training, the model should be better able to predict the unlabeled data,
leading to more precise pseudo-labels and an overall boost in performance.

The web-based methods mentioned in the table have retrieved relevant videos auto-
matically from the web and generated fairly accurate object masks of the classes from the
videos to simulate supervision for semantic segmentation. Aforementioned studies using
image-level-based approaches are given in Table 8.

Table 8. Image-level-based approaches.

Content Author Method CRF
Used?

Backbone
Network Dataset Accuracy

mIoU (%)

M
IL

ba
se

d
m

et
ho

d

[127]
(2014)

Multiple instance learning
(MIL-FCN) no VGG-16 Pascal VOC

2012test
25.6

[138]
(2015) Constrained CNN (CCNN) yes VGG-16 Pascal VOC

2012val
45.1

[128]
(2015) Log-Sum-Exp (LSE) no OverFeat

[139]
Pascal VOC

2012val
42.0

[140]
(2016)

Built-in Fore/Backgr. Prior for
WSS yes VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

46.6
52.9

[129]
(2016)

Seed, Expand and Constrain
(SEC): yes DeepLab-v1 Pascal VOC

2012val
51.7

CAM used
method

[141]
(2017) (multi-class masks) +CRF yes VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

50.9
52.6

EM Alg. used
method

[142]
(2015)

Weakly Semi-Supervised
Learning (WSSL)

yes DeepLab-v1 Pascal VOC
2012val

60.6Bound.box

38.2Image-level
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Table 8. Cont.

Content Author Method CRF
Used?

Backbone
Network Dataset Accuracy

mIoU (%)

[143]
(2016) Augmented Feedback yes DeepLab-v1 Pascal VOC

2012val

52.6SS
54.3MCG

Ps
eu

do
m

as
k-

ba
se

d
m

et
ho

d

[144]
(2016) (HCP) [145]-(MCG) [24] no VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

41.9
43.2

C
A

M
us

ed
m

et
ho

d

[132]
(2017)

Adversarial erasing
(AE)-Prohibitive seg. learn. (PSL) yes DeepLab-v1

Pascal VOC
2012val

Pascal VOC
2012test

55.0
55.7

[133]
(2018)

Guided attention inference
Netw. (GAIN) yes VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

60.5
62.1

[134]
(2018)

Self-Erasing Network (SeeNet) yes VGG-16
ResNet-101

Pascal VOC
2012val

61.1VGG16
63.1ResNet101

Pascal VOC
2012test

60.7VGG16
62.8ResNet101

[135]
(2018)

Multi-dilated convolu-tional
(MDC) yes VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

60.4
60.8

[146]
(2018)

AffinityNet yes
DeepLab

ResNet-38
[147]

Pascal VOC
2012val

58.4DeepLab
61.7ResNet38

Pascal VOC
2012test

60.5DeepLab
63.7ResNet38

[148]
(2018)

Deep seeded region growing
(DSRG)

yes VGG-16
ResNet-101

Pascal VOC
2012val

59.0VGG16
61.4ResNet101

Pascal VOC
2012test

60.4VGG16
63.2ResNet101

[136]
(2019) Ficklenet no VGG-16

ResNet-101

Pascal VOC
2012val

61.2VGG16
64.9ResNet101

Pascal VOC
2012test

61.9VGG16
65.3ResNet101

[66]
(2018)

Mining Common Object Features
(MCOF)

no VGG-16
ResNet-101

Pascal VOC
2012val

56.2VGG16
60.3ResNet101

Pascal VOC
2012test

57.6VGG16
61.2ResNet101

[149]
(2019)

Online attention accumulation
(OAA)

no VGG-16
ResNet-101

Pascal VOC
2012val

63.1VGG16
65.2ResNet101

Pascal VOC
2012test

62.8VGG16
66.4ResNet101



Electronics 2023, 12, 2730 22 of 49

Table 8. Cont.

Content Author Method CRF
Used?

Backbone
Network Dataset Accuracy

mIoU (%)

Ps
eu

do
m

as
k-

ba
se

d
m

et
ho

d

[150]
(2021) PuzzleCAM yes ResNet-101

Pascal VOC
2012val

Pascal VOC
2012test

66.9
67.7

[151]
(2022)

Suppression Module (SUPM) +
Saliency Map Guidance Module

(SMGM)
yes ResNet-101

Pascal VOC
2012val

Pascal VOC
2012test

73.3
73.5

[152]
(2020)

Intra-Class Discriminator (ICD) yes VGG-16
ResNet-101

Pascal VOC
2012val

64.0VGG16
67.8ResNet101

Pascal VOC
2012test

63.9VGG16
68.0ResNet101

[137]
(2019)

Saliency& segm. network (SSNet) yes VGG-16
Densenet

Pascal VOC
2012val

63.3VGG16
57.1Densenet

Pascal VOC
2012test

64.3VGG16
58.6Densenet

[153]
(2016)

Distinct Class Saliency Maps
(DCSM)+CRF yes VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

44.1
45.1

W
eb

-b
as

ed
m

et
ho

ds

CAM used
method

[154]
(2017) Web-Crawled Videos no VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

58.1
58.7

[155]
(2016) Simple to complex (STC) yes VGG-16

Pascal VOC
2012val

Pascal VOC
2012test

49.8
51.2

[156]
(2017) WebS-i2 yes VGG-16 Pascal VOC

2012val
53.4

[157]
(2017) Dual image segmentation (DIS) no ResNet-101 Pascal VOC

2012test
86.8

[158]
(2017)

Weakly supervised Two-stream
Network yes VGG-16 Camvidtest

Cityscapestest

29.7
47.2

3.3. Scribble-Point Level

A scribble annotation is a set of pixels with a category label. Scribbles are provided
infrequently, and unannotated pixels are considered unknown. Compared to a box an-
notation, it can provide certain boundaries for objects, but scribbles are mostly labeled
on the insides of objects. Additionally, box annotations mean that all pixels outside the
boxes are not from the corresponding categories. This state does not exist for scribbles, and
the information from scribbles must propagate to all other unknown pixels. Compared
to image-level annotations, scribbles provide location information at a few pixels, which
should lead to better results.

Ref. [159] has addressed “Scribble Supervised Training (ScribbleSup)” by optimizing
a graphical model. The graphic model spreads information from scribbles to unmarked
pixels according to semantic content, appearance and spatial constraints. Meanwhile, an
FCN is trained, which is controlled by the emitted labels and provides semantic predictions
for the graphical model. They have formulated this model as a composite loss function and
developed an alternative method to optimize it. Ref. [160] have produced a “Random Walk-
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based Label Propagation Mechanism (RAWKS)” that has been shown to be differentiable
and usable in deep neural network architectures. Ref. [161] has introduced “point-level su-
pervision”, where every category is just related to one or many pixels. They have extended
CNN to include this point of supervision in its training loss function. Aforementioned
studies using scribble-point-level-based approaches are given in Table 9.

Table 9. Scribble-point-level-based approaches.

Content Author Method CRF Used? Backbone
Network Dataset Accuracy

mIoU (%)

po
in

t [161]
(2016)

Sem.Seg.with Point
Supervision yes VGG-16 Pascal VOC 2012val 42.9

sc
ri

bb
le

[159]
(2016)

Scribble-Supervised CNN
(ScribbleSup) yes VGG-16 Pascal VOC 2012val

Pascal Contextval

63.1
39.3

[160]
(2017)

Random-walk based label
propagation mech. (RAWKS) yes ResNet-101 Pascal VOC 2012val

Pascal Contextval

60.0
37.4

[162]
(2018) GraphNet yes VGG-16 Pascal VOC 2012val

Pascal Contextval

63.3
39.7

[163]
(2018) NormalCut yes ResNet-101 Pascal VOC 2012val 74.5

[164]
(2018) KernelCut yes ResNet-101 Pascal VOC 2012val 75.0

[165]
(2019)

Boundary Perception
Guidance (BPG) yes ResNet-101 Pascal VOC 2012val 76.0

[166]
(2021)

Progressive segmentation
inference (PSI) no ResNet-101 Pascal VOC 2012val

Pascal Contextval

74.9
43.1

4. Recent Approaches in Semantic Segmentation
4.1. Segment Anything Model (SAM)

The Segment Anything Model (SAM) [167] was developed by the Meta AI Research
team as an automated image segmentation model. It is based on foundation models and op-
erates with a high level of automation and requires minimal human assistance. Foundation
models refer to pre-trained models that have been trained on extensive amounts of data
and possess the capacity to generalize to novel tasks and data distributions through the
utilization of prompt engineering. Several deep learning methodologies require retraining
of the model in response to dataset modifications. SAM provides an adaptable image
segmentation model that is more comprehensive and effective.

The process of object segmentation in SAM can be achieved by choosing specific points
for inclusion or exclusion from the object through selection or clicking. Segmentations can
be produced by utilizing bounding boxes or polygon tools, which will align automatically
with the object. SAM exhibits the capability to produce numerous valid masks in instances
where there is uncertainty in the identification of the object that requires segmentation.

The System for Automated Masking (SAM) exhibits the ability to autonomously
identify and generate masks for all entities encompassed within an image.

By precomputing the image embeddings, the Segmentation Attention Module (SAM)
can efficiently produce a segmentation mask for a given prompt, enabling seamless interac-
tion with the model in real-time.

The authors in [168] gathered a total of 52 open-source datasets and utilized them to
construct a comprehensive medical segmentation dataset. This dataset comprises 16 modal-
ities, 68 objects and a total of 553K slices. A thorough examination of various strategies for
SAM testing was carried out. Experimental findings confirm that the utilization of manual
cues such as points and boxes enhance the efficacy of SAM in object recognition within
medical imagery, resulting in superior performance in the prompt mode as opposed to the
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everything mode. Furthermore, SAM exhibits exceptional proficiency in certain objects
and modalities, however, it demonstrates inadequacy or complete ineffectiveness in other
contexts. Eventually, an analysis was conducted to evaluate the impact of various factors
on the segmentation performance of SAM. Experimental studies confirm that the zero-shot
segmentation ability of SAM is insufficient for its immediate implementation in medical
image segmentation.

Ref. [169] have conducted a comprehensive assessment of the segmentation perfor-
mance of SAM on a diverse set of 19 medical imaging datasets that include different
modalities and anatomical regions. The performance of SAM, as reported, shows sub-
stantial variation based on the dataset and task when evaluated on individual prompts.
Furthermore, it has been observed that the performance of SAM is significantly enhanced
when utilizing box prompts as opposed to point prompts. SAM’s performance tends to
improve when iterative multiple-point prompts are given. In addition, several illustrations
were presented to demonstrate SAM’s efficacy across all evaluated datasets, its iterative
segmentation capabilities, and its response to prompt ambiguity. The researchers arrived
at the conclusion that the zero-shot segmentation performance of SAM is remarkable for
specific medical imaging datasets, while it exhibits moderate to inadequate performance
for other datasets. The utilization of SAM in medical imaging has the potential to yield
substantial advancements in automated medical image segmentation.

4.2. Unsupervised Domain Adaptive in Semantic Segmentation

The fully supervised methods require a significant amount of pixel-level annotations,
as previously stated. This is quite expensive and time-consuming. Weakly supervised
learning is a technique that leverages a restricted or imprecise set of labels, whereas
unsupervised learning operates without any labels whatsoever. However, as per the
existing literature, it is widely acknowledged that weak and unsupervised methods tend to
exhibit lower performance compared to their supervised counterparts. The “Unsupervised
Domain Adaptation (UDA)” approach has garnered significant attention in the semantic
segmentation area in recent times. The UDA semantic segmentation approach involves
adapting a model that has been trained on a source domain containing labeled data, to
effectively perform on a target domain that contains unlabeled data. This is achieved by
utilizing shared features between the two domains. Ref. [170] have inferred that utilizing
an UDA approach is a highly recommended method for training semantic segmentation
models that are intended to operate dependably and effectively in real-world scenarios,
utilizing both labeled and unlabeled data. This is particularly noteworthy given that the
acquisition of unlabeled data is considerably simpler and more cost-effective than that of
labeled data. The UDA process is generally like this:

• The process of source domain training involves the utilization of conventional super-
vised learning methods to train a model on labeled data obtained from the source
domain. The model that has undergone training is capable of accurately segmenting
images within the source domain.

• The process of feature alignment involves utilizing the model to extract features
from both the source and target domain data. The objective is to achieve a high
degree of similarity in the distribution of features across both domains. Typically,
this stage entails a form of adversarial training [171]. The approaches based on
adversarial training, such as [172–174] have made remarkable progress for UDA
semantic segmentation.

• Many UDA semantic segmentation techniques employ self-training or self-supervision,
whereby the model’s predictions on the target domain are utilized as pseudo-labels
for subsequent training. Typically, this process is executed meticulously and incremen-
tally, whereby the model’s highly assured predictions are employed to progressively
enhance its capacity to manage the intended field. Approaches based on self-training
or self-supervision such as [175–177] have demonstrated significant advancements in
UDA semantic segmentation.
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• The model is subjected to evaluation in the target domain, employing conventional seg-
mentation metrics such as pixel accuracy or ‘IoU’, followed by fine-tuning. If deemed
essential, the second and third steps are reiterated to achieve additional adaptation.

“DecoupleNet” has been proposed [178] as a means of mitigating the reliance on
data and prioritizing “UDA”. Two challenges have been identified in current domain-
invariant learning approaches, namely, task entanglement and source domain overfitting.
Additionally, the self-discrimination (SD) technique has been proposed, utilizing pseudo-
labels to enhance the acquisition of more discriminative features for the target domain.

Ref. [179] has introduced “HRDA” which is the first work to learn a multi-resolution
input fusion for UDA semantic segmentation. Because of the adaptability of small objects
and segmentation details is facilitated by high-resolution (HR) inputs, whereas the adapt-
ability of large regions is facilitated by low-resolution (LR) inputs, HRDA is designed to be
applicable to most UDA methods. The results have indicated that HRDA consistently en-
hances performance by a minimum of +2.4 mIoU, suggesting that the HRDA pseudo-labels
serve as a positive reinforcement for the UDA process.

Table 10 presents the comparison with state-of-the-art methods for UDA on the
Cityscapes dataset. Even though these methods have proposed new adaptation strategies,
they have mostly used ResNet-101 as the backbone network architecture. These outdated
networks have not provided a UDA performance gain. Ref. [180] has proposed a novel
“DAFormer” method and identified the transformer-based SegFormer as a powerful back-
bone architecture for UDA. DAFormer’s network architecture comprises a transformer
encoder and a decoder that fuse context-aware features at multiple levels. The stabilization
of training and prevention of overfitting to the source domain are facilitated by three
essential training strategies. The quality of pseudo-labels can be enhanced by rare class
sampling in the source domain, which helps reduce the confirmation bias of self-training
towards common classes. Additionally, feature transfer from ImageNet pretraining can
be promoted using a Thing-Class ImageNet Feature Distance and a learning rate warmup.
The DAFormer model constitutes a significant breakthrough in the field of UDA.

Table 10. Comparison with state-of-the-art methods for UDA on the GTA5→ Cityscapes benchmark.

Author Method CRF Used? Backbone Network Accuracy
mIoU (%)

[176]
(2018)

Class-balanced self-training
(CBST) no ResNet-38 48.4

[181]
(2021)

Domain Adaptation Cross
Sampling (DACS) no ResNet-101 52.1

[182]
(2021)

Correlation-Aware Domain
Adaptation (CorDA) no ResNet-101 56.6

[183]
(2021)

Prototypical pseudo label
denoising (ProDA) no ResNet-101 57.5

[184]
(2022)

Continual test-time adaptation
approach (CoTTA) no

ResNeXt-29 [51]
SegFormer [185]

32.5ResNeXt-29

58.6SegFormer

[180]
(2022) DAFormer no SegFormer 68.3
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5. Post-Processing Algorithms in Semantic Segmentation

Post-processing is an essential part of machine learning domains, including semantic
segmentation, which helps improve the output of the model, enhancing the quality of the
results and removing noise. In this section, the most common post-processing algorithms
used in semantic segmentation are briefly introduced.

5.1. Conditional Random Fields (CRF)

“Conditional Random Fields (CRF)” is a type of probabilistic graphical model that can
be effectively employed to represent the interdependencies among the output variables
in a structured prediction task. Within the realm of semantic segmentation, the resultant
variables are representative of the categorical labels assigned to individual pixels, with
the interdependence among these variables reflecting the spatial associations between
said pixels.

CRFs can represent complex interconnections and interdependencies among various
labels within a structured output. The mentioned attribute is an essential aspect that
makes them appropriate for applications such as semantic segmentation within the realm
of computer vision.

When assigning a class label to a pixel in semantic segmentation, CRFs are utilized to
consider the neighborhood context of that pixel. This is executed to enforce local consistency
in the labeling of the image: it is likely that two adjacent pixels that are part of the same
object will share the same class label.

Ref. [32] have examined the utilization of fully connected CRF models that are defined
on the entire set of pixels present in an image. The graphs that result from the process
exhibit a vast number of edges, rendering conventional inference algorithms unfeasible.
The primary contribution of our study is a notably efficient method for approximate
inference in fully connected CRF models. This method is specifically designed for models
in which the pairwise edge potentials are established through a linear combination of
Gaussian kernels. Ref. [186] have stated that CRF post-processing is no longer commonly
used in newer publications. They argue that this is because knowing the underlying CRF
parameters is challenging and that CRFs are slow during both training and inference.
They have proposed enhancing the fully connected CRF framework with the premise of
conditional independence to address both problems. They can then rewrite the inference
so that it uses convolutions, an operation that runs very quickly on GPUs. Inference and
training times are improved by an order of magnitude. Backpropagation can be used
to easily fine-tune all the convolutional CRFs’ parameters. The authors in [187] have
suggested the utilization of a Gaussian CRF model for semantic segmentation, as opposed
to the current methods that employ discrete CRF models. The authors introduce a new
deep neural network architecture, denoted as Gaussian Mean Field (GMF) network, in
which the individual layers execute mean field inference on a Gaussian CRF. The GMF
network under consideration possesses the desirable characteristic whereby every layer of
the network generates an output that is in closer proximity to the maximum a posteriori
solution of the Gaussian CRF in comparison to its respective input. The authors suggest
the integration of the proposed GMF network with deep CNNs to introduce a novel GCRF
network that can be trained end-to-end. Upon being trained end-to-end in a discriminative
manner and subsequently evaluated on the demanding Pascal VOC 2012 segmentation
dataset, the Gaussian CRF network proposed in this study surpasses several recent semantic
segmentation methodologies that integrate CNNs with discrete CRF models.
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5.2. Markov Random Field (MRF)

Markov Random Fields (MRFs) are a type of probabilistic graphical model that has
been widely employed in the field of semantic segmentation. This is related to their ability
to capture the spatial associations and interdependencies among adjacent pixels or regions
within an image. MRFs approach the task of semantic segmentation as a labeling problem,
in which the objective is to assign the most probable label to each pixel, considering the
observed image and the spatial context.

Each pixel within the image is regarded as a node by the MRF. The random variable
associated with the node represents the label that has been assigned to the pixel that it
corresponds to. The establishment of interconnections among nodes is facilitated by poten-
tial functions. The functions represent the cost or likelihood of a set of nodes embracing
labels. For instance, a conceivable algorithm may prioritize the similarity of labels between
neighboring pixels to enhance spatial coherence. The aim of the MRF is to assign a discrete
label to each pixel in a manner that minimizes the overall cost. The MRF inference process
is categorized as a problem of combinatorial optimization. Parameterization of potential
functions is a common practice in machine learning, which enables their acquisition from a
set of annotated training images. To accomplish this task, the parameters are optimized
such that the potential functions assign lower costs to the accurate labels. Ref. [188] has han-
dled semantic segmentation by combining high-order relations and label context mixtures
into MRF. The authors propose a solution to Markov Random Field (MRF) by introducing
a “Deep Parsing Network (DPN)” based on CNNs. This approach facilitates deterministic
end-to-end computation within a single forward pass. “DPN” is a technique that enhances
a contemporary CNN to effectively represent unary terms. In contrast to prior works
that require multiple iterations of MP during back-propagation, DPN can achieve better
results by approximating a single iteration of MF. “DPN” incorporates pairwise terms that
offer a comprehensive structure for encoding contextual information in high-dimensional
data, such as images and videos. “DPN” facilitates the parallelization and acceleration of
MF, thereby enabling effective inference. The accuracy of “DPN” is examined on conven-
tional semantic image and video segmentation benchmark datasets. Their results show
that “DPN” achieves state-of-the-art performance on Pascal VOC 2012, Cityscapes and
CamVid datasets.

5.3. Random Walker

The Random Walker algorithm is a semi-supervised learning methodology that is
predominantly employed for the purpose of image segmentation. The process of assigning
unlabeled pixels to labeled ones in an image is accomplished through the simulation of a
random walk process. In the context of image analysis, individual pixels are regarded as
nodes within a graph structure, with interconnections between nodes being established
based on their respective similarities. The process involves the emission of walkers or paths
from every unlabeled pixel towards its neighboring pixels, and this propagation persists
until a labeled pixel is reached. The assignment of a label to an unlabeled pixel is ascertained
based on the predominant label among the labeled pixels that have been reached.

In order to employ a random walker algorithm for semantic segmentation, a graph is
generated in which each individual pixel within the image is mapped to a corresponding
node within the graph. The interconnections linking each vertex are established based on a
similarity in pixels, where the magnitude of the edge denotes this resemblance. Following
that, certain pixels in the image are assigned labels. The labels mentioned indicate the
classification of the respective pixel. Conduct a random walk starting from every unmarked
pixel until a marked pixel is reached. The probability of the random walk traversing edges
with greater weights is higher. When the random walk arrives at a labeled pixel, the label
of the unlabeled pixel is determined. The selection of the label for the random walk can
be predicated on either the label that is most frequently encountered or the label that is
initially encountered. Iterate the process until all pixels have been labeled or until there is
no further change in the labels between iterations.
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The acquisition of training data for semantic segmentation poses a significant challenge
on a large scale, as it is comparatively costly when compared to other visual tasks. The
authors in [160] have suggested an innovative training methodology to tackle this challenge.
We utilize sparsely obtained image labeling to generate densely labeled images through
label propagation techniques. A segmentation network based on the CNN architecture is
trained to replicate the labeling. The process of label propagation is established through
the utilization of probabilities of random walk hitting, resulting in a parameterization that
is differentiable and includes estimates of uncertainty that are integrated into our loss
function. The authors demonstrate that through the joint learning of the label-propagator
and segmentation predictor, they successfully acquired knowledge of semantic edges
without the provision of explicit edge supervision. The conducted experiments demonstrate
that the performance of a segmentation network can be enhanced by training it using the
proposed method, as opposed to the conventional approach.

5.4. Domain Transform

The Domain Transform technique is a methodology that makes use of edge-preserving
filters to accomplish the objective of semantic segmentation. The utilization of edge-
preserving filters serves as a viable means to incorporate local features, thereby enhancing
the precision of semantic segmentation, particularly in instances where the segmentation
procedure is more arduous, such as object boundaries.

In the context of semantic segmentation, the domain transform process involves an
initial pre-processing step of the input image. This pre-processing step typically involves
the use of a CNN or another machine learning model to extract initial features and generate
a coarse segmentation. The concept of domain transformation involves the conversion of
a complex multidimensional image segmentation problem into a more manageable one-
dimensional problem by focusing on the edges of the image. This approach is preferred due
to the relative simplicity of solving one-dimensional problems. The preservation of image
edges is crucial for precise segmentation, a task that the process accomplishes. After the
completion of said tasks, an iterative filter that relies on the domain transform is employed
to disseminate data while retaining the integrity of the edges. This task is referred to as
an edge-preserving filter. This operation can be interpreted as a form of smoothing that
tends to integrate information within an object while minimizing the degree of blurring
across object boundaries. Finally, a refinement process is typically executed to enhance the
precision of the segmentation. This could potentially entail the utilization of supplementary
machine learning models or alternative image processing methodologies.

6. Datasets

Semantic segmentation is a topic with a wide variety of applications, so in recent
years, many datasets have been created for this task. Semantic segmentation is the primary
function for which these datasets are utilized. However, it can also be used for object
detection, instance segmentation, and other computer vision tasks. In this section, the
common data sets used in the studies examined within the scope of this study have been
explained. In Table 11, the datasets have been divided into four groups according to their
contents: general, indoor, outdoor and street scenes. Additionally, this table has provided
some useful information for these datasets, such as the number of classes, number of
images, training/validation/testing split, and image resolution. The images are split into
separate sets for training, validation, and testing. This allows researchers and developers to
train and evaluate their models effectively. In the parts marked ‘-’ in the validation set, there
is no validation set provided, and researchers often use the test set for validation purposes.
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• ADE20K

ADE20K [189] is a large-scale, diverse dataset that consists of over 20,000 indoor and
outdoor scene images with thorough pixel-level annotations. The categories include things
such as wall, building, sky, person, road, bed and many more. This dataset is used to
construct a scene parsing benchmark using 150 object and stuff classes. All the images have
been exhaustively annotated with stuff, objects, and object parts. Additional information
about the opacity, cropping, and other properties of each object has been provided. When
compared to the training set, the images in the validation set have more comprehensive
part annotations.

• COCO Stuff

The original COCO dataset [190] has been expanded by adding dense pixel-wise stuff
annotations, and the COCO-stuff dataset [191] has created. COCO-Stuff makes it possible
to explore deeply the connections between things and their stuff. This dataset contains
172 classes: 80 things, 91 stuff and 1 unlabeled class. The 80 things classes are the same as
in classic COCO. An expert annotator has chosen the 91 classes of stuff. If a label does not
fit into any of the 171 specified classes or if the annotator is unable to deduce the label of a
pixel, the class unlabeled is used. The ‘thing’ classes include such things as, Bear, Bicycle,
Stop sign, Knife, Person, Parking meter, Clock, Traffic light, etc. The ‘stuff’ classes include a
wide variety of materials, regions and other non-object categories. For example, Dirt, Fog,
Hair, Dots, Screen, Plastic, Grid, etc. The authors aimed to promote further investigation
into contextual relationships between stuff and thing by revealing this dataset.

• Pascal VOC (Visual Object Classes)

From 2005 through 2012, the Pascal VOC challenge has been held, and a new version
of the dataset has been released annually. It is the most popular dataset in the literature for
the semantic segmentation task. The dataset includes 20 different classes for annotation
divided into 4 categories: Animals (bird, cat, cow, dog, horse, sheep), Indoor (bottle, chair,
dining table, potted plant, sofa, tv), Person and Vehicles (aeroplane, bicycle, boat, bus, car,
motorbike, train). Additionally, the difficult object examples have been removed from both
training and test sets by masking these objects with the ‘Void’ label. So, in Pascal VOC
2012 [192], the total number of classes has increased to 21.

• Pascal Context

The Pascal Context dataset [193] is an extension of the Pascal VOC 2010 dataset. Pascal
Context differs from the PASCAL VOC 2010 dataset in two key respects: the larger number
of classes and the greater level of depth in the annotations. There are only about 20 distinct
types of objects annotated in Pascal VOC. In contrast, Pascal Context has 540 classes
(459 ‘stuff’ classes, 80 ‘thing’ classes and 1 ‘unlabeled’ class) that annotate images in far
greater depth. The images are all pixel-by-pixel annotated. The most important 59 of these
classes have been selected. These are both indoor and outdoor object classes, such as Bird,
Bottle, Cow, Person, Clouds, Floor, Snow, Sea, Wood, Window.

• NYU-Depth V2 (NYUDv2)

The NYUDv2 dataset [194] includes 1449 RGBD images, representing 464 indoor
scenes, classified into 26 scene types, collected from a wide variety of buildings in three
major US locations. Using Amazon Mechanical Turk, per-pixel labeling has been acquired
for every single one of the images. The dataset includes 40 different indoor classes such as,
Ground, Table, Bed, Television, Wall etc. This dataset’s inclusion of color and depth infor-
mation makes it especially useful for tasks that necessitate a more nuanced comprehension
of a scene’s 3D geometry.
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• SUN RGBD

Like the NYUDv2 dataset, SUN RGBD dataset [195] consists of color (RGB) images
that also contain depth (D) information for each pixel. The dataset consists of around
10,335 RGB-D video frames that have been captured in 41 different buildings, such as
homes, classrooms, stores and offices. The researcher has attached an ASUS Xtion PRO
LIVE sensor to a laptop for the capture process. This dataset contains 37 classes such as
Bed, Ceiling, Chair, Floor, Furniture, Lamp, Objects, Picture, Sofa, Table, Tv, Toilet, Window
and comprehensive pixel-level annotations. Both 2D bounding boxes and 3D point cloud
bounding boxes have been used to annotate objects in each image.

• Berkeley Deep Drive (BDD100K)

The BDD100K dataset [196] is a large-scale, diverse driving video dataset with exten-
sive annotations that can reveal the difficulties of street-scene understanding. The dataset
comprises 100k video sequences with a high resolution of 720p and a high frame rate of
30 fps. These videos have been collected from New York, San Francisco Bay Area, and
other regions. The dataset includes scenes (e.g., residential, city street, highway, tunnel),
different times of the day (e.g., day, night), and diverse weather conditions (e.g., clear, rainy,
snowy, foggy).

• The Cambridge-driving Labeled Video Database (CamVid)

The CamVid [197] is a road/driving scene understanding dataset that includes four
HD video sequences. Of these, three videos were recorded during daylight hours, while one
was recorded at night. The study has employed a Panasonic HVX200 digital camera with
3CCD and high-definition capabilities to capture frames at a resolution of 960 × 720 pixels
and a frame rate of 30 fps. The video resolution is low because it is a very old dataset.
The dataset comprises 32 distinct semantic classes that depict diverse objects commonly
observed in a road scene. These commonly used classes might include Bicyclist, Building,
Car, Fence, Sidewalk, Sky, Pavement, Pole, Road, Tree, Sign Symbol and Void (not labeled
and ignored in evaluation).

• Cityscapes

Over the course of several months, a vast number of frames were obtained from
a mobile platform, capturing the seasons of spring, summer, and fall across 50 urban
areas, predominantly in Germany but also in adjacent nations. The decision was made to
intentionally refrain from recording during unfavorable weather conditions, such as intense
precipitation or snowfall, due to the belief that such conditions necessitate specialized
methodologies and datasets. The images were captured utilizing a stereo camera with a
22 cm baseline, which was designed for automotive applications. The camera employed
1/3-inch CMOS sensors with a resolution of 2 megapixels, specifically the On Semi AR0331
model, and utilized rolling shutters. The framerate at which the images were recorded
was 17Hz. The dataset [198] contains 30 different classes for annotation divided into 8
categories such as Construction (building, wall, fence, etc.), Flat (road, sidewalk, parking,
e.g.), Human (person, rider), Nature (vegetation, terrain), Object (pole, traffic sign, traffic
light, etc.), Sky, Vehicle (bus, car, truck) and Void. Among these classes, 19 have been
used for evaluation. The remaining 11 classes have been included in the ‘Void’ class in
the evaluation.

• DTMR-DVR

The dataset [199] has been made available by the Department of Transport and Main
Roads (DTMR) located in Queensland, Australia. Digital Video Recording (DVR) data
has been collected through the utilization of cameras that are mounted on vehicles. The
team has curated a DTMR-DVR dataset for the purpose of semantic segmentation through
manual means. The methodology involves the extraction of image frames from the given
videos, followed by the utilization of Adobe Photoshop to annotate the extracted images,
thereby facilitating the generation of pixel-wise class labels. The dataset comprises a total
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of 13 distinct classes of roadside objects, including but not limited to Road, Line, Pole, Tree,
Grass and Light.

• KITTI

The KITTI dataset [200] is a popular benchmark dataset, specifically for tasks related
to self-driving vehicles. These data have been collected by the Karlsruhe Institute of
Technology and the Toyota Technological Institute in Chicago. Although the number of
classes for 2D and 3D object detection tasks varies, for semantic segmentation tasks, KITTI
has 19 classes such as Person, Truck, Terrain, Vegetation, Traffic light, Traffic sign, Train, etc.

• GATECH

The authors have presented a newly developed dataset that features pixel-level anno-
tations for the purpose of conducting geometric scene analysis of video. The dataset [201]
comprises a total of 20,000 frames from 160 outdoor videos. A portion of the videos have
been sourced from YouTube, while the remainder were captured by the researchers during
their urban excursions on foot or by vehicle. The duration of videos varies between 60 and
400 frames, while their resolution ranges from 320×480 to 600×800. The video content has
partitioned into three main geometric classes: Sky, Support and Vertical. These classes also
contain subclasses such as Buildings, Cars, Humans, Ground, Trains, Trees.

• SIFT Flow

The SIFT Flow dataset [202] is a subset of the LabelMe dataset [203]. This dataset
comprises a total of 2688 images that have been fully annotated. Most of these images
depict outdoor scenes, featuring various elements such as Bridge, Mountain, Road, Traffic
light, Tower, Water. The 33 most prominent object categories have been identified based
on the highest number of labeled pixels. Pixels that have not been assigned a label or
have been labeled as a different object category are regarded as the 34th category, which is
referred to as “unlabeled”.

• Stanford Background

The Stanford Background dataset [204] comprises 715 outdoor scene images that
have been selected from publicly available datasets, including Geometric Context [205],
LabelMe [203], MSRC [206], and Pascal [207]. The criteria employed for image selection
entailed a minimum resolution of 320 × 240 pixels, inclusion of at least one object in
the foreground and proper positioning of the horizon within the image, regardless of
its visibility. The annotations procured from Amazon Mechanical Turk exhibit a high
level of quality. This dataset has been annotated with class segmentations, and it uses 8
classes: Building, Foreground Object, Grass, Mountain, Road, Sky, Tree and Water. The
‘Foreground Object’ classification encompasses all objects that are not classified under the
initial seven categories.

Table 11. Summary of static scene parsing datasets.

Content Dataset, Year Number
of Classes

Number of
Images

Samples Image
ResolutionTraining Validation Testing

Generic

ADE20K [189]
(2017) 150 25k 20,210 2000 3352 2400 × 1800

COCO Stuff [191]
(2018) 171 164k 118k 5k 45k variable

Pascal VOC 2010
[207]

(2010)
20 1928 771 289 868 500 × 400

Pascal VOC 2012
[192]

(2012)
21 4369 1464 1449 1456 variable

Pascal Context [193]
(2014) 59 10,103 4998 - 5105 variable
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Table 11. Cont.

Content Dataset, Year Number
of Classes

Number of
Images

Samples Image
ResolutionTraining Validation Testing

Indoor

NYUDv2 [194]
(2012) 40 1449 795 - 654 480 × 640

SUN RGBD [195]
(2013) 37 10,335 5285 - 5050 variable

BDD100K [196]
(2020) 40 100k video

frames 70k 10k 20k 1280 × 720

CamVid [197]
(2009) 32 701 video

frames 367 100 233 960 × 720

Cityscapes [198]
(2016) 30 5000 2975 500 1525 2048 × 1024

DTMR-DVR [199]
(2020) 13 600 video

frames 400 100 100 1280 × 960

KITTI [200]
(2012) 19 580 289 - 290 1226 × 370

Outdoor

GATECH [201]
(2013) 84 20k video

frames 13k 7k 7k variable

SIFT Flow [202]
(2009) 33 2688 2488 - 200 256 × 256

Stanford Background
[204] (2009) 8 725 572 - 143 320 × 240

7. Evaluation

In this article, the studies are summarized by categorizing them according to their
methods. These summaries also include summary tables containing the accuracy rates of
the “Mean Intersection over Union (MIoU)” criteria type.

According to Table 12, the FCN-based methods have produced comparable outcomes
for Pascal VOC test set. For all that, it can be observed that the best FCN-based approach is
the “multi-scale and pyramid” approach because the use of multiple scales or a pyramid
structure can make the model more robust to changes in the size or scale of objects in
the image. This is particularly important in semantic segmentation tasks, where objects
of interest can vary greatly in size. Moreover, thanks to the utilization of multi-scale or
multi-level pyramidal image processing, the model can extract a more comprehensive array
of features. These features can capture fine details, thereby augmenting the overall efficacy
of the segmentation.

In addition, region-based methods have attained notably inferior rates in comparison
to FCN-based methods. The main reasons for this are: Firstly, FCNs are trained in an end-
to-end manner, enabling them to learn the capacity to map raw pixel values to semantic
labels through a unified model. This approach has the potential to yield more precise
segmentations in contrast to region-proposal techniques that split the problem into distinct
stages (e.g., initial region identification followed by classification) due to the possibility
of error propagation throughout the pipeline. Secondly, FCNs enables them to generate
output masks of the same size as the input images, regardless of their dimensions. In
contrast to region-based techniques, which frequently necessitate partitioning the input
image into patches or resizing it to a predetermined size, this approach differs. Thirdly,
FCNs are pixel-based methods, so they can predict the class of each pixel in the image.
Region-based methods typically unite neighboring pixels into larger regions and may not
accurately capture fine-grained details.
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Table 12. Comparison of pioneering methods on Pascal VOC test set. All methods in the table use
VGG-16 as the backbone network.

Method Model Structure Accuracy mIoU (%)

FCN-8s [27] FCN 62.2

Fast R-CNN [18] Region proposal 65.7

DeconvNet [35] Encoder-decoder 70.5 *

DeepLab-v1 [31] Dilated convolution 70.3 *

DilatedNet [63] Dilated convolution 67.6 *

ParseNet [75] Feature fusion 69.8 *

FeatMap-Net [82] Multi-scale and pyramid 75.3 *

CRFasRNN [33] RNN 72.0 *

BoxSup [119] Weakly (box) 64.6 *

SEC [129] Weakly (image) 51.7 *

Point-level [161] Weakly (point) 42.9 *

ScribbleSup [159] Weakly (scribble) 64.7 *
(Results marked with * have included the CRF method in their work).

By applying the CRF method to the related approaches as a post-processing step, the
accuracy rate has generally increased by around 2.5-3.0%. According to some researchers,
CRF improves object boundaries and contributes to increased performance, but it is too
long to process and computationally expensive. According to [80], “Domain Transform
(DT) filtering” is many times faster than CRF extraction.

Table 13 shows the comparison of VGG-16 and ResNet-101, which are the most
utilized backbone convolution models in this field. According to this comparison, it has
been observed that the use of ResNet-101 based on the network gives more successful
results than the use of VGG-16.

Table 13. Comparison of VGG-16 and ResNet-101 backbone on PASCAL VOC test set for weakly
supervised (image-level) methods.

Method

Backbone
Accuracy mIoU (%)

VGG-16 ResNet-101

SeeNet [134] 60.7 62.8

DSRG [148] 60.4 63.2

Ficklenet [136] 61.9 65.3

MCOF [66] 57.6 61.2

OAA [149] 62.8 66.4

ICD [152] 63.9 68.0

Accordingly, the use of ResNet-101 as a backbone network provides an approximately
3.0% performance increase compared to the use of VGG-16.

Table 14 indicates that the FCN-based methods have produced comparable outcomes
for Cityscapes dataset. Nevertheless, as can be seen in both Tables 12 and 14, weakly
supervised based methods have attained notably inferior rates in comparison to FCN-
based methods. The main two reasons for this are: Firstly, FCNs can accurately predict
the classification of each individual pixel, thereby producing high-resolution segmentation
masks. In contrast, weakly supervised techniques typically rely on labels that are less
granular in nature, such as labels at the image level, which may constrain their level of
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accuracy. Secondly, FCNs are typically trained using fully annotated data, resulting in
improved segmentation accuracy. In contrast, weakly supervised techniques may not
effectively leverage the complete set of available annotation data, which could result in
lower performance.

Table 14. Comparison of state-of-the-art methods on Cityscapes dataset.

Method Model Structure Backbone Accuracy mIoU (%)

CANet [45] Encoder-decoder ResNet-101 81.8

DeepLab-v3+ [48] Encoder-decoder + Dilated
convolutions ResNet-101 82.1

SA-FFNet [77] Feature fusion ResNet-18 75.0
SpyGR [92] Multi-scale and pyramid ResNet-101 81.6

CGBNet [117] Methods using RNN ResNet-101 81.2
Weakly super. Two-stream

Network [158]
Weakly supervised
(Image-level labels) VGG-16 47.2

DAFormer [180] UDA SegFormer 68.3

In addition, the “DAFormer” model, whose success rate is not very remarkable in
Table 14, is a UDA method. UDA methods that have surfaced in recent times have reached
a level of competitiveness with FCN-based methods. UDA techniques obviate the need
for procuring and annotating copious quantities of labeled data in the target domain. In
comparison to the FCN method, which necessitates a substantial quantity of annotated and
labeled data, this approach presents noteworthy benefits.

Table 15 displays the mean accuracy values of all the studies analyzed in this research,
across all the datasets considered. Upon the table, it can be observed that mean performance
rate of the datasets just Pascal VOC and Cityscapes have surpassed 70%. The Pascal VOC
and Cityscapes datasets are widely recognized as standard benchmark datasets, particularly
for the task of semantic segmentation. This facilitates the comparative analysis of diverse
methods and models. We think this is because the background complexity of Pascal VOC
dataset is less than the others because it includes twenty foreground object classes and one
background class. Moreover, it also includes high-quality images and labels. This facilitates
the learning process of the model by utilizing data with lower levels of noise, leading to
improved performance outcomes. The Cityscapes dataset is composed of images with
high resolution and pixel-level annotations of high quality. This situation can enhance the
robustness of the models trained on the dataset.

As per the data presented in the table, it can be observed that the COCO Stuff dataset
exhibited the least performance. The COCO-Stuff dataset contains 80 ‘thing’ and ‘91’ ‘stuff’
classes. Thing classes include objects that are usually countable, discrete and have a well-
defined structure. For example, ‘person’, ‘car’, ‘bus’, ‘bird’ ‘train’, etc. Stuff classes include
regions in an image that do not have a well-defined structure, are more ambiguous, and
are not countable. For example, ‘dirt’, ‘clouds’, ‘grass’, ‘sky’, ‘water’, etc. The current
models have not attained the intended level of performance, as they must also possess the
capability to recognize and segment regions that are less precisely defined. Consequently,
it was contended that the models ought to incorporate the extra layer of complexity.

According to another poor-performing ADE20K dataset, for segmenting to be effica-
cious, not only objects such as doors and glasses, but also their parts, such as door handles
and glass handles, must be recognized and localized. The dataset has 150 classes that
include object, object part and stuff. As an illustration, a car is an ‘object’, a wheel that is a
part of a car is an ‘object part’, and a rim that is a part of a wheel is a ‘stuff’. Considering
this scenario, it undoubtedly results in segmentation of higher quality. Nevertheless, this
shows the high annotation complexity of ADE20K dataset.
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Table 15. The performance comparison of the datasets.

Dataset Average Accuracy mIoU (%)

ADE20K 44.8

COCO Stuff 36.2

Pascal VOC 2012 74.0

Pascal Context 48.2

NYUDv2 44.0

SUN RGBD 38.1

BDD100K 66.5

CamVid 63.7

Cityscapes 71.9

DTMR-DVR 60.4

KITTI 62.9

GATECH 53.5

SIFT Flow 45.9

Stanford Background 64.8

Another of the lowest-performing datasets is SUN RGBD. The task of performing
semantic segmentation on 3D images presents greater challenges compared to its 2D
counterpart. Therefore, we consider the performance of the SUN RGBD, which consists of
3D data, to be poor. Additionally, Sun RGBD is known to have noisy labels at the object
level. This situation is likely to decrease the precision rate of the models.

Accuracy

The most popular performance evaluation metrics used for semantic segmentation
are the ones mentioned below. In this article, the approaches discussed within the scope of
semantic segmentation have been compared by taking mostly “mIoU” results from the main
evaluation metrics. “mIoU” is the most widely used metric in semantic segmentation as it
penalizes both over- and under-segmentation. In addition, “PACC” and “MACC” metrics
are rarely used. These metrics can be obtained by the equations as follows:

Let k + 1 is the number of semantic classes, pii is the number of correctly classified
pixels, ∑k

j=0 pij is the total number of pixels in class i, pij is the number of pixels which
belong to class i but predicted to class j. pji is the number of pixels which belong to class j
but predicted to class i.

Mean Intersection over Union (MIoU): The ratio of accurately classified pixels in a
class over the union set of pixels predicted to this class and ground truth. Next, the average
of all classes is calculated.

MIoU =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(1)

Pixel Accuracy (PACC): The ratio of the number of accurately classified pixels to their
total number.

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(2)

Mean Accuracy (MACC): The ratio of accurate pixels is calculated for each class. Next,
the average of all classes is calculated.

MA =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij

(3)
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8. Discussion and Future Directions

According to the data observed from this study, as methods have developed and new
methods have emerged, the success rate has increased. However, in general, an accuracy
rate above 90% (MIoU) has not been reached yet. The reasons for this are the constraints
and difficulties that exist in this field. It can be expected that the success rate will increase
with the clear identification of these problems, the development of solutions, and the
development of a suitable model. According to the literature reviewed in this study, the
main challenges, limitations and future directions in the field of semantic segmentation are:

(1) Loss resolution: CNN reduces the resolution of the image it receives due to its
structure. Lower-resolution images may not contain enough fine detail for accurate seg-
mentation. For networks to maintain high resolution information through layers, the
‘Encoder-decoder’ structure has been introduced (Section 2.2.1). However, a significant
amount of spatial information is lost during the down-sampling process in the encoder.

To tackle this issue, the ‘skip connections’ technique which was proposed by [27] has
been implemented. The fundamental idea behind this technique is to assist in the transfer
of more complex details and spatial information from the encoder to the corresponding
decoder layers, thereby enhancing the precision of localization and segmentation. The
“U-Net” architecture [208] and the “DeepLab” model series [31,48,56,61,98] are prominent
examples of this technique. Skip connections are utilized in these networks to connect
the layers of the encoder and decoder, thereby integrating low-level feature maps with
high-level ones. By utilizing features at multiple levels of abstraction, the network can
generate more accurate segmentation predictions, thereby enhancing precision.

Despite the important contributions of the ‘skip connections’, it has challenges and
limitations. First, this technique makes neural networks more complicated. The complexity
of a system could be a problem if there are not enough resources or if there are applications
that need to be processed in real time. Secondly, determining the suitable architecture can
pose a challenge, given the complexity of deciding the optimal placement and quantity of
skip connections. Making an inappropriate choice can result in suboptimal outcomes. Lastly,
the utilization of ‘skip connections’ in models enables the acquisition of complex features
while increasing the risk of overfitting, particularly in scenarios involving limited datasets.

Notwithstanding these limitations, skip connections persist as a pivotal component of
this field, and current investigations are concentrated on enhancing their efficacy. There are
a few potential future approaches that can be taken to address the restrictions that have
been outlined above. To begin, the computing requirements might potentially be reduced
by employing methods that generate sparser connections as an alternative to having each
layer be dependent on all the other layers. Creating a model where the network “learns”
which connections to employ during training can be quite effective as well. Second, it can
be solved by automating the process of determining the optimal number and positioning
of skip connections.

(2) Capturing boundary: The accurate identification of object boundaries is a crucial and
formidable task in semantic segmentation, as it directly impacts the proper classification of
individual pixels. The delimitation of boundaries in images can be facilitated using simple
or specific objects. However, accurately defining boundaries can be difficult, particularly in
complex images such as a street scene. Moreover, the depicted objects in the images may
display a variety of sizes and differing levels of proximity to the camera. So, the task of
delineating object boundaries can be challenging due to the significant variations in the
apparent size and shape of similar objects. Some of the future directions in to overcome
this problem:

At first, the post-processing and refinement modules can be used to capture more
accurate boundaries and enhance fine-grained details. Algorithms such as CRF, MRF and
Domain Transform have been utilized as post-processing techniques to enhance bound-
aries in certain architectures. Nevertheless, these techniques have certain challenges and
limitations. The utilization of CRF and MRF results in a significant increase in the computa-
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tional complexity of the model. This situation makes these algorithms less applicable in
applications with limited computational capabilities or in real-time applications.

Next, the optimal performance of both CRF and MRF necessitates meticulous parame-
ter tuning. The process can be laborious and necessitate a certain degree of proficiency in
said models.

Afterwards, some research [31–33] has emphasized the integration of CRFs in the pro-
cess of end-to-end training of deep neural networks. This has the potential to decrease the
necessity for post-processing procedures and potentially result in enhanced performance.

According to [80], “Domain Transform” is many times faster than CRF extraction.
Therefore, incorporating “Domain Transform”, such as CRF, directly into the learning
process may provide a direction for future research.

In short, in future studies, more research can be completed to come up with efficient
approaches that reduce the cost of computation while still giving good performance.

(3) Generalization: Although a model may be trained to execute a specific task, its
performance may not be consistent when applied to different datasets. For example,
the “ENet” [46] study achieved an accuracy of 58.3% on the Cityscapes dataset while a
significantly lower rate of 19.7% on SUN RGBD dataset. Many such examples can be
encountered in the tables. The main reasons for this are:

Large dataset: In the field of deep learning, a significant amount of data is frequently
associated with improved performance. Hence, a larger dataset has the potential to yield
more successful results. In our opinion, contributing to the development of existing datasets
for certain problems in this field should be as important as solving a problem. Some future
directions for this problem:

First, data augmentation techniques can be used to enlarge the dataset. Data aug-
mentation is a technique employed in deep learning with the aim of enhancing the scope
and magnitude of the training data, without the need for additional data collection. It has
many applications such as Cropping, Flipping and Rotation, Mixup, Cutmix [209]. Second,
synthetic data, possessing predetermined ground truth labels, can be employed for the
purpose of training. The advancement of domain adaptation techniques holds potential for
effectively addressing the gap in question.

Nevertheless, it should be noted that these techniques are not suitable for all data
types and cannot replace real-world data.

Scale Variation: The issue of scale variation poses a considerable obstacle in the context
of semantic segmentation, given that the objects depicted in images may exhibit a range of
sizes or be situated at varying distances from the camera. Thus, the datasets with objects
that demonstrate significant variations can make it difficult for the model to correctly
segment all objects. Future works can focus these directions:

First, the “multi-scale and pyramid networks” employ the input image at varying
scales or resolutions and the outcomes are subsequently integrated. This method facilitates
the neural network’s ability to identify objects of varying sizes. Future research endeavors
may concentrate on augmenting these structures to achieve superior multi-scale processing
capabilities. Second, future work could include making networks whose receptive fields
can change size based on the size of the object. This could help the model handle things of
different sizes better.

Background Complexity: When there are a lot of mixed textures, colors, and overlap-
ping things in the background of an image, the model can become confused. The difficulty
is to distinguish the target object from these background components. Therefore, the suc-
cess of two datasets can be different if one has simpler background images and the other
has difficult and complex data. The future directions for dealing with these problems:

Firstly, the development of loss functions that penalize misclassification of difficult or
ambiguous examples more than straightforward ones could result in models that are more
adept at handling complex backgrounds. Secondly, the inclusion of supplementary data
beyond RGB, such as depth data, could help to facilitate the discrimination of foreground
entities from complex backgrounds.
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Annotation Quality: The effectiveness of semantic segmentation is highly dependent
on the accuracy of the annotated data. So, in-depth annotations with extensive labels and
the level of detail required for pixel-level annotations have a significant impact. Creating
more effective and intuitive tools for data annotation can aid in enhancing the speed and
accuracy of the annotation process, and thus the quality of the annotations.

High resolution: Fine details are evident in high resolution images, while detailed
structures of the object are lost in low resolution images. In this case, higher success can
be achieved in datasets containing high-resolution images than in low-resolution datasets.
For this reason, conducting tests on datasets that comprise high-resolution images would
generate more robust outcomes for our forthcoming models.

Imbalanced classes: This common problem emerges when some classes within the
dataset are represented significantly more frequently than others. Thence, the accuracy of
the model may decrease in the dataset with underrepresented classes. Here are several
solution strategies:

Initially, incorporating hierarchical relationships between classes into the learning
process can enhance the model’s capacity to generalize from majority to minority classes.
Afterwards, changing the loss function to assign greater significance to minority classes
can potentially alleviate the issue of imbalanced class distribution. More effective class
balanced loss functions can be developed.

Consequently, future works should focus on developing models that exhibit strong
generalization capabilities across diverse datasets, considering these reasons.

(4) Lighting and weather conditions: Real-world data is complex and variable because
it includes good weather conditions as well as bad weather (e.g., rainy, snowy etc.) [210]
and bad lighting conditions (e.g., foggy, dark, night etc.) [211]. These adverse conditions
affect the appearance of objects in the scene, negatively affecting the accuracy of semantic
segmentation. However, this is not the case in the real world, and it is necessary to verify
the reliability and robustness of a trained model under different environmental conditions.
There are a few possible ways to deal with this problem in the future.

Firstly, “Unsupervised domain adaptation (UDA)” techniques (mentioned in Section 4.2)
can be employed to mitigate the distributional discrepancy that arises from variations in weather
and lighting conditions.

Secondly, “Meta-learning” strategies [212] involve training models not only to perform
the task, but also to rapidly adapt to new circumstances. This could be especially beneficial
for adapting to various environmental conditions.

Lastly, the various data types, such as infrared or lidar data, exhibit a relatively
lower susceptibility to lighting and weather conditions as compared to regular images.
Models that use this information in addition to standard images can be more resistant to
environmental changes.

(5) Annotation difficulty: Semantic segmentation requires many detailed pixel-level
annotations for training the model. As mentioned in this article, the main challenge in
preparing a data set is the labeling part rather than collecting the data. This process is
very time consuming and costly. Here are a few possible ways to tackle this problem in
the future:

We think primarily that weaky supervised and unsupervised methods with little or
no need for manual labeling should be focused on at least as much as fully supervised
methods. Thus, significantly larger datasets can be efficiently generated with minimal
reliance on human resources.

Next, the ‘UDA’ technique has focused on improving the ability of fully supervised
learning models to adapt to the weakly supervised learning domain. It has not achieved as
high a success rate as fully supervised learning methods, but despite being an unsupervised
method, it presents a promising avenue for further investigation.

At last, the approaches using ‘active learning’ technique [213] can be increased. In this
technique, the model is first trained on a limited dataset and then employed to estimate the
classifications of unlabeled data. Subsequently, the model’s instances of low confidence are
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manually annotated and incorporated into the training set, thereby reducing the amount of
manual labeling required. These developments can drastically reduce the dependence on
high-quality, fully annotated datasets.

(6) Real-time processing: Depending on the semantic segmentation applications, such as
autonomous driving, robotics and video surveillance, real-time processing may be required.
However, it can be difficult to simultaneously achieve real-time performance and high accu-
racy due to the computational complexity of semantic segmentation models. Some popular
methods “ENet” [46], “ICNet [214]”, “LASNet” [215], “SFANet” [44], “ShelfNet” [216] and
“BiSeNet” [217] have applied semantic segmentation methods in real time. For example,
ShelfNet and BiSeNet have achieved comparable segmentation accuracy to state-of-the-art
off-line models with a four to five times faster inference speed. The real-time performances
of these frameworks on the Cityscapes dataset are 74.8% and 74.7% mIoU, respectively,
while their non-real time performances are 79.0 and 78.9, respectively. According to the
results, the real-time performance of these models is about 5% lower than the non-real-
time performance. To improve performance, speed up processing time, and extend the
applicability of semantic segmentation models to real-time systems, we may focus on the
following directions in the future:

First, the ‘approximate computing’ technique [218,219], which aims to trade a balance
between computational accuracy and speed of computation, can be used. While some
applications necessitate high accuracy, many machine learning tasks can tolerate a certain
amount of error or approximation without considerably affecting the overall quality of
the result, according to the fundamental principle of this technique. Some ways in which
approximate computing can be applied are common model compression techniques such
as quantization, pruning and distillation [220]. Additionally, techniques such as ‘skip
connection’ and ‘early stop’ may allow for some models to predict early before the entire
model is calculated based on the outputs of the first layers. Thus, computational complexity
can be reduced thanks to these paradigms in real-time applications where speed and
efficiency are significantly more essential.

Second, the ‘dynamic computation’ technique [221] can be used to increase perfor-
mance and reduce the amount of computation. Dynamic computation aims to apply
computational resources selectively during model execution, as opposed to uniformly
applying the same computations to the entire input. One of the most popular techniques
involving dynamic computation is the ‘attention mechanism’ [222]. The ‘attention mecha-
nisms’ can enable the neural network to selectively attend to distinct regions of the input
image during various stages of computation. As an instance, a neural network could
acquire the ability to prioritize the salient objects within an image while minimizing its
attention towards the background.

Lastly, enhancing the runtime performance of models can be achieved by optimizing
their performance for hardware platforms, such as GPUs and TPUs. Moreover, the im-
plementation of techniques to distribute the processing workload among multiple CPUs,
GPUs, or devices could facilitate the real-time processing of larger models.

The mentioned techniques represent promising directions in the field of real-time
semantic partitioning. Nonetheless, it is crucial to consider the requirements of each
application when determining whether to employ these methods. In addition, there are
few real-time works in the literature. Therefore, future studies may focus on increasing
the number of these works and improving real-time performance by considering the
techniques mentioned.

(7) 3D semantic segmentation: The task of 3D semantic segmentation holds importance
in various applications such as autonomous driving, robotics, and augmented reality.
The depth dimension, which is added to the height and width dimensions, is crucial for
comprehending the scene. It entails labeling every point in a 3D point cloud or voxel grid
with a semantic label. Some of the challenges, limitations and future directions in this area
are mentioned below:
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The first of these, volumetric nature of 3D data, makes it larger and more complex
than 2D image data. This situation requires more computational resources for processing.
Therefore, real-time application of 3D semantic segmentation is a challenging task. Devel-
oping novel network architectures designed specifically for 3D data can aid in reducing
computational complexity. The popular new models such as “PointNet” [223], “Point-
Grid” [224], “RandLA-Net” [225], “RangeNet” [226], “SEGCloud” [227], “MFFRand” [228],
“LESS” [229] and “SQN” [230] developed in this field have tried to process more data and
effectively construct 3D spatial relationships between points or voxels. However, we think
that there is not enough work yet. In the future, 3D semantic segmentation models should
be able to compete with 2D semantic segmentation models.

Another of these, the process of annotating 3D data, is costly and time-consuming,
resulting in a lack of large, high-quality, labeled datasets for training models. The utilization
of the ‘active learning’ technique [213] can optimize the utilization of restricted annotated
data. The process of active learning involves training a model iteratively and then selecting
the most informative examples for annotation using the model so that it can achieve more
accuracy with fewer training labels.

Last, the recognition of objects in 3D data can pose a challenge for models due to
variations in scale resulting from differences in distance. The development of scale-invariant
models can be a potential solution to mitigate the problem of scale variation.

Finally, the progress in these domains may result in significant enhancements in
semantic segmentation, facilitating the development of more precise and effective models
that can process complex real-world images.

9. Conclusions

The paper offers an organized examination of roughly 150 CNN methods for semantic
segmentation that have been developed over the past ten years. In addition, it has examined
15 popular datasets that comprise general, indoor, outdoor and street scenes. Moreover,
this paper has referenced various contemporary methodologies, including SAM, UDA and
traditional post-processing algorithms such as CRF, MRF and Random Walker. Furthermore,
it has exhibited and discussed the outcomes of the frameworks and datasets in a tabulated
format. The article ultimately addresses the main challenges and possible solutions and
underlines some future research directions in semantic segmentation tasks.

In summary, it is necessary to enhance semantic segmentation models to effectively
address real-world challenges, despite the existence of several successful models. In the
coming years, it is possible that novel research projects will be proposed which may
introduce innovative approaches and methodologies related to semantic segmentation. The
review paper we are producing will serve as a fundamental reference for understanding
forthcoming research work.
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