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Abstract: One of the most significant graph data analysis tasks is graph classification, as graphs
are complex data structures used for illustrating relationships between entity pairs. Graphs are
essential in many domains, such as the description of chemical molecules, biological networks, social
relationships, etc. Real-world graphs are complicated and large. As a result, there is a need to find a
way to represent or encode a graph’s structure so that it can be easily utilized by machine learning
models. Therefore, graph embedding is considered one of the most powerful solutions for graph
representation. Inspired by the Doc2Vec model in Natural Language Processing (NLP), this paper first
investigates different ways of (sub)graph embedding to represent each graph or subgraph as a fixed-
length feature vector, which is then used as input to any classifier. Thus, two supervised classifiers—a
deep neural network (DNN) and a convolutional neural network (CNN)—are proposed to enhance
graph classification. Experimental results on five benchmark datasets indicate that the proposed
models obtain competitive results and are superior to some traditional classification methods and
deep-learning-based approaches on three out of five benchmark datasets, with an impressive accuracy
rate of 94% on the NCI1 dataset.

Keywords: large data; graph classification; machine learning; deep learning; graph embedding

1. Introduction

Graphs are a powerful and basic type of data structure, commonly used to describe
different relationships (referred to as edges) between objects (referred to as vertices). Most
real-world data may be represented using graphs, which can be utilized to describe the in
between data relationship [1,2]. For example, graphs can represent the nanotubes used in
nanoelectronics [3]. Additionally, chemical graph theory formulates chemical structures
as a molecular graph, where the graph’s edges represent the chemical bonds that connect
the compound’s atoms, and the graph’s nodes represent the atoms themselves [4]. In
bioinformatics, biological networks make a significant addition to the molecular structure
of proteins, genetic disease association networks, and protein interaction networks [5]. In
social networks, graphs are employed to implement newsfeeds, determine page rank, and
make online recommendations [6]. The functionality of human brains is examined using
graphs in the discipline of neuroscience [7]. There are numerous other applications in
various fields. These show why working with graphs is important.

In recent years, we have seen a tremendous increase in the size of graph data as well
as the rising importance of graph data mining [8]. The field of graph data mining, which
deals with processing, analyzing, and extracting valuable information from real-world
graph data, has recently seen a rise in interest [9]. Real-world problems, including web
document classification, a recommendation on a streaming service, and fraud detection
in banking, are all solved using graph data mining [10,11]. Some of the common tasks
involved in graph mining are community detection, node classification, graph classification,
link prediction, and graph embedding [12].
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Graph classification, a significant subfield of graph mining, has been used in numer-
ous real-world applications, including bioinformatics, chemoinformatics, social network
analysis, etc. In bioinformatics, it is used for determining enzymatic proteins, determining
whether cells are malignant, and determining altered DNA protein sequences. In the field
of chemistry, it predicts the toxicity and anti-cancer effectiveness of various chemicals. Fur-
thermore, social network applications and websites utilize graph mining to provide users
with recommendations for pages or friends according to the user’s connections [13,14].
As friends on the social network are treated as nodes in the graph, the connections be-
tween people who are friends or followers are represented by graph edges [15]. Graph
classification is used to identify the most likely class labels for unseen graphs based on the
constructed graph classification model [16].

Recent years have seen a considerable increase in research interest in deep learning
on graphs because graphs have a significant function and are frequently used in the real
world. DNN provides powerful tools for graph classification, allowing for the development
of complex models with high accuracy [14]. Subsequently, deep learning research has
numerous innovative applications in a variety of domains, including social networks, e-
commerce networks, computer vision, speech recognition, object detection, and NLP [17,18].
CNN, a type of deep learning model, demonstrated remarkable performance in numerous
computer vision and machine learning problems [19]. It is a type of feedforward neural
network that uses convolutional architecture to extract features from data [20].

Graphs are not only used to store information in a structured way but they are also
an important part of machine learning algorithms and data mining applications [21]. Ef-
fectively learning the complicated non-Euclidean structure of graph data is a significant
challenge [22]. Since graph data cannot be directly classified by traditional classifica-
tion algorithms, finding a way to include details about the graph’s structure in the ma-
chine learning model is the main problem when working with graphs [23]. Consequently,
embedding-based classifiers have gained interest because they allow us to perform node,
graph, and subgraph mining tasks using traditional machine learning methods. In order to
achieve this, a graph can be represented as a feature vector that can be used for community
detection, node classification, and graph classification [24,25].

Graph classification presents unique challenges due to the inherent structural com-
plexities and irregularities present in graph data. Therefore, numerous approaches have
been proposed to address graph classification, including graph kernel methods, frequent
subgraph mining methods, and deep learning methods. However, these methods suffer
from various limitations. It is challenging for graph kernel methods to identify an appropri-
ate kernel function that effectively captures the semantics of the structure while remaining
computationally tractable. The frequent subgraph mining approach encounters complex-
ities with implementation and the high computational costs associated with the mining
stage. Moreover, this approach becomes increasingly time-consuming as the amount of
data to be mined grows. On the other hand, deep learning approaches that act directly on
graphs can overfit easily and fail to achieve good accuracy in graph classification tasks.

To overcome these limitations, in this paper, we propose two supervised embedding-
based deep neural network (EBDNN) and embedding-based convolutional neural network
(EBCNN) classifiers. The basic idea of our methods is to represent each graph or subgraph
with an embedding vector, which automatically captures relevant features in the data, as
opposed to relying on manually crafted features found in graph kernels.

To this end, we begin by comparing various graph embedding methods. Each embed-
ding technique captures different aspects of graph structures, allowing for the extraction of
diverse and complementary features. The first method involves extracting a set of rooted
subgraphs to build a vocabulary of subgraphs, while the second method focuses on gener-
ating a subgraph vocabulary that preserves the neighborhood and structural properties
of each subgraph. Then, to learn graph embedding, after constructing the vocabulary, a
neural network is used to generate an embedding representation of each graph or subgraph.
Subsequently, both DNN and CNN classifiers are trained for graph classification tasks,
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aiming to improve the accuracy of graph classification. These classifiers utilize the learned
graph embeddings as input, enabling them to leverage the rich information encoded within
the embeddings.

The main contributions of our work are summarized as follows:

• Inspired by the Doc2Vec [26] models in NLP, we designed a neural network for
automatically learning graph and subgraph embeddings. These embeddings represen-
tation learning techniques aim to learn a mapping that embeds graphs or subgraphs as
points in a low-dimensional vector space. The embedding representation of a graph or
subgraph reflects its content and perhaps some latent semantic relationships within.

• We evaluated the performance when utilizing different graph and subgraph embed-
dings, with the goal of achieving more efficient results in graph classification based on
embedding.

• Additionally, we developed two efficient supervised classifiers, EBDNN and EBCNN,
to enhance classification accuracy.

• By conducting experiments on benchmark graph classification, we provided empirical
evidence showcasing the strong competitiveness of EBDNN and EBCNN classifiers in
comparison to traditional classification methods and numerous deep learning methods
for the graph classification task, particularly on large datasets.

The rest of this paper is organized as follows. The related work is presented in Section 2,
the details of the proposed approach are introduced in Section 3, and the experimental
results and implementation details are discussed in Section 4. Finally, Section 5 presents
the conclusions and discusses future work.

2. Related Work

Graph classification aims to create a model that can correctly predict the target class
for unseen graphs [27]. To solve the graph classification problem, many different strategies
have been presented, which generally fall into two categories: graph embedding methods
and Graph Neural Network (GNN) methods. Approaches to learning the low-dimensional
representations or embeddings that encode the properties of the graphs have become
increasingly popular in recent years [28]. Many graph-based tasks, including classification,
clustering, and link prediction, can be performed using the embedding vector, as processing
a whole graph is more difficult than working with vectors. In this section, we review some
of the previous work used for graph classification.

DeepWalk [29] was one of the earliest approaches that has been widely applied to
graph learning techniques. It used a graph as input, generated a feature representation
as an output, and then fed this representation into a traditional classifier such as Logistic
Regression (LR). It performed short random walks on the graphs to generate sequences of
nodes from the network and then passed the generated sequence through the skip-gram
model to generate embedding vectors.

Graph2vec [30], a graph embedding technique that is an unsupervised technique
that generates embeddings using the skip-gram model, was proposed. Then, data were
classified using the kernel algorithm as a Support Vector Classifier (SVC). Graph2vec
views rooted subgraphs as the elements that compose a particular graph. Sub2vec [25], a
subgraph embedding technique that aims to learn subgraph embeddings while maintaining
structural and neighborhood features, was introduced. Then, it classified with traditional
classifiers such as SVC. However, these methods only used traditional classifiers after
embedding.

A Deep Divergence Graph Kernels method [31], which first learns the structure of a
graph by training an encoder that is implemented as a fully connected DNN capable of
reconstructing its structure given partial or distorted information, was proposed. Then, it
trained a cross-graph attention mechanism that establishes a divergence score for each pair
of graphs and measures how well one graph’s representations can encode another. It used
these pairwise divergence scores to create an embedding space for all graphs and then used
SVC to classify them.
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A new graph classification method using graph structure learning that automatically
learns hidden representations of substructures to help in resolving the subgraph isomor-
phism testing issue was designed [32]. It built a vocabulary of rooted subgraphs for each
graph and extracted topological attribute vectors to be added to the output layer to help
the model learn the general information of the graph. Then, a graph embedding neural
network was trained to obtain the embedding vector, which was then used in SVC for
graph classification.

A graph classification method based on feature construction was applied [24]. The
topological feature vector of the graph, including node-level and global attribute features for
the complete graph, was extracted. It constructed a vocabulary of subgraphs using a four-
layer subgraph mining process and a subgraph isomorphism test to filter out subgraphs,
which were then used as input in training graph-embedded neural networks. Finally, it
classified graphs using two layers of DNN. The embedding not only reflected the features
of each graph itself but also included the relative relationships among the graphs.

A two-stage classification algorithm was illustrated [33]. First, it trained a classifier
and then aggregated, rather than the other way around. It used a multi-layer perceptron
classifier (MLP) to produce a predicted label vector using node features and then performed
multihop aggregation of the predicted labels to improve accuracy and handle larger graphs.
When employing node embedding for a graph classification task, all node embeddings
could be averaged to produce the graph vector, but information about the general structure
of the graph was missing.

GNNs have become a potential new learning framework that could bring the power
of deep learning to graphs. They are an example of a neural network model that can act on
graph structure data to express graph information. They efficiently mine the information
included in the graph data using the node and structure information of a graph [34]. The
fundamental concept behind GNNs is to compute a state for each node in a graph, which is
then repeatedly updated based on the states of the neighboring nodes. GraphSAGE, an
inductive framework that trains a collection of aggregator functions rather than individual
embeddings for every node to figure out the topology of each node’s neighborhood and
the distribution of the node attributes within it, was introduced [35].

DIFFPOOL, a graph pooling module that stacks GNNs and pooling layers to generate
a hierarchical representation of graphs, was proposed [36]. At each layer of a deep GNN,
it mapped nodes to a set of clusters based on their learned embeddings, forming the
coarsened input for the next GNN layer.

A study to analyze the expressive power of GNNs was proposed [37]. The authors
considered the relationship between GNNs and the Weisfeiler-Lehman graph isomorphism
test in identifying graph structures. They developed a straightforward neural architecture
called the Graph Isomorphism Network (GIN) to overcome the drawbacks associated
with various GNN architectures in terms of GNN expressive capacity for capturing graph
structures. The GIN employed neighbor aggregation and graph readout functions that
operate on a multiset of node features. It demonstrated that readout operations with an
MLP and summation can improve graph classification performance. When stacking more
GNN layers, the majority of GNNs experienced drawbacks including noise from neighbor
nodes and over-smoothing problems.

The Graph-of-Graph Neural Network Framework [38] was introduced to alleviate the
graph imbalance issue; it was composed of two modules, one from a global viewpoint and
one from a local viewpoint. First, it constructed a graph of graphs (GoG) based on kernel
similarity to establish a K-nearest neighbor graph and performed GoG propagation to
aggregate neighboring graph representations. Then, topological augmentation was locally
used by masking node features or removing edges using self-consistency regularization
to generate stochastic augmentations of each graph to make the model more general and
enhance graph classification.

CNN is one of the best-known DNNs and has been successful in a variety of domains;
it began with images and then expanded to work on graphs. CNNs have proven to be
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extremely effective at extracting complex information. A CNN architecture was developed
that was directly applied to graphs to learn the feature representations that can be used for
classification [39]. The authors extracted locally connected regions from graphs by choosing
a group of nodes to represent a sizable portion of the graph before creating normalized
neighborhood representations for each node.

A study using CNN’s architecture [40] for graph classification was presented. It
received graph data as input without converting it into tensors and designed a SortPooling
layer to sequentially read graph vertices in a meaningful and consistent order instead of
summing them up.

Two spatial CNN architectures [41] were applied, the first of which was a simple CNN
structure with two convolutional layers: a dense layer and a SoftMax layer. The other one
used the first CNN as the first layer followed by a channel concatenation layer to determine
the classification result of the entire graph according to the category of the neighborhood
graphs. The weighting method was used according to the central node sequence and a
combination of the local and global features of the vertices to construct the neighborhood
graphs. Then, each graph corresponded to a fixed-size tensor that acted as an input to the
CNN for graph classification.

An end-to-end deep graph CNN model for graph classification (up to 32 layers) was
designed to overcome the shallow structure of most graph convolution network models and
solve the over-smoothing problem when stacking too many graph convolution layers [42].
It was divided into four parts. The first stage used 16 layers of graph convolutional layers
to extract comprehensive structural information from the input graph, along with non-local
structural information from the input node. The second-stage graph convolutional layers,
which had another 16 layers, concatenated the node features extracted by the first stage
and the initial low-dimensional features as input to obtain deeper structural information
and node features and then defined a consistent vertex ordering. The third stage was
the SortPooling layer, which organized the node features discovered by the second stage
and unified the number of nodes as the input to the stage after it. The final stage was
one-dimensional convolution layers and dense layers that read the sorted continuous node
features for graph classification.

A subgraph CNN method [43] was proposed for predicting the mutability of molecular
graphs. This graph was divided by a graph partitioning algorithm according to its structure
and features. The partitioned and original graphs were converted into embedding vectors.
Finally, the embedding vectors were combined into one vector that goes to a classifier to
predict the mutagenicity of the graph.

The method proposed in this paper is based on Graph2vec [30] and Sub2vec [25]
for (sub)graph embedding. These methods utilize the (sub)graph neighbors as well as
the graph structure for generating the graph embedding vectors. Then, the embedding
vector is used as input for deep learning classifiers. The main aim of this method is to
evaluate the performance of utilizing graph and subgraph embeddings, with the goal of
achieving more efficient results in graph classification based on embedding. Many existing
methods heavily rely on manual feature extraction, which can be time-consuming and
labor-intensive and may fail to capture the complete representation of graph structures.
Additionally, some methods encounter challenges in effectively scaling with the increasing
size and complexity of graph data. As a result, when the volume of graph data is large,
substituting the traditional classifier with a deep learning model can increase classification
accuracy, as deep learning models can learn patterns on their own and can be applied to
different fields.

3. Proposed Graph Classification Algorithm

Embedding-based deep neural network (EBDNN) and embedding-based convolu-
tional neural network (EBCNN) classifiers are introduced to learn a model from labeled
graphs and use that model to classify unseen graphs. This is inspired by Doc2Vec [26],
which uses neural networks to learn document embedding. In the same manner, the
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Doc2Vec model for documents can also be modified for graph data to train graph embed-
ding. The text is very similar to the graph data. The graph is viewed as a document, and
the subgraphs that surround each node in the graph are viewed as words. In addition,
when training graph embedding, it is more suitable to use the structure of the PV-DBOW
model in Doc2vec. In the graph data, the subgraphs are viewed as words in the document;
therefore, there is no sequence relationship between the subgraphs, as it only considers
which words a document contains but not the order of words in the document.

In the following subsections, we first explain the method of graph embedding using
rooted subgraphs. Then, we explain the method of subgraph embedding with the goal of
preserving neighborhoods and the structural properties of subgraphs. Finally, the graph
classification framework is given. To boost the performance of graph classification, we
replace traditional classifiers with deep learning classifiers.

3.1. Problem Formulation

Graph classification is the problem of determining graph classes. Consider a collection
of undirected graphs, G = G1, G2, G3, . . . , GN, where N represents the number of graphs
and each graph, G = (V, E), is composed of a set of vertices (V) and a set of edges (E) as
well as their target labels. Our goal is to train a deep learning model that accepts the graph
embedding vector of the training graph and its corresponding class as an input to predict
the correct class label for unseen graphs; a previously unseen graph is one that was not
used for training and validating the model.

Accordingly, efficient supervised DNN and CNN embedding-based classifiers on
large-scale graphs are proposed. The fundamental concept is to represent each graph or
subgraph with an embedding vector, which is then fed into an embedding layer as inputs
in the graph classification framework using DNN and CNN.

Definition 1 (Graph Classification). Given a collection of graphs with their target labels,
G = {G1, G2, G3, . . . , GN}, where each Gi = (Vi, Ei) has Vi vertices and Ei edges; the goal is
to learn a function µ: G→ L, where G is the input graphs, and L is the set of graph labels.

Definition 2 (Graph Embedding). Given a set of undirected graphs {G1, G2 . . . , GN} and a pos-
itive integer d that determines the dimensionality of embedding, the goal is to learn a representation
vector for every graph. The matrix of the vectors of all graphs is denoted as ϕ ∈ R|G|×d. Learning
an embedding func-tion {f(G1), f(G2) . . . , f(GN)} that satisfies the following condition: as two
graphs, Gi and Gj, are semantically more similar, f(Gi) and f(Gj) become closer in the d-dimensional
vector space.

Definition 3 (Subgraph Embedding). Given a set of undirected graphs and a positive integer
d that determines the dimensionality of embedding, we extract a set of subgraphs S = {g1, g2, . . . ,
gn} from the same graph where gi (vi, ei) is a subgraph of the graph if vi ⊆ V and ei ⊆ E. Our
goal is to learn a representation vector for every subgraph, with the probability of maintaining the
neighborhood and structural features of each subgraph.

3.2. Graph Embedding

Graph embedding is a significant approach used for graph classification; it transforms
graph-structured data into a fixed-length feature vector. There are several embedding
approaches available, but we use Graph2vec and Sub2vec for our experiments [25,30].

Since a graph is complex and non-linear, we need to extract features from it that
capture information. Graph embeddings can be primarily divided into two categories. One
emphasizes node embedding while the other concentrates on whole graph embedding.
To accomplish classifications, we focus on graph and subgraph embeddings. Thus, we
construct an embedding matrix and provide it as input to the classifier. The embedding
matrix is a matrix with a row size equal to the number of unique graphs and a column
size equal to the embedding vector dimension. Graph embedding [30] is an unsupervised
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training technique that does not rely on the training dataset’s class label information but
instead uses the graph’s information and features.

Assuming we have a set of undirected, unweighted graphs, G = (V, E), we first use
the breadth-first search strategy to extract a set of rooted subgraphs (i.e., neighborhoods)
around each node for each graph, and we treat these rooted subgraphs as the vocabulary
of the graph. We consider each node in the graph as the root node, and then we find
its neighborhood to a certain degree of the intended subgraph d (up to degree 4). After
that, we aggregate all the rooted subgraphs of the four layers and eliminate the repeated
subgraphs to construct a vocabulary. Since the method of extracting rooted subgraphs
requires node labels, if the graph lacks any, we label the nodes using the Weisfeiler-Lehman
relabeling approach based on their degrees, by assigning a unique label from the alphabet
to every node.

Based on the document embedding model Doc2vec, each graph is represented by
a set of rooted subgraphs, just as each document is represented by a set of words. The
vocabulary of the graph is obtained by summing these rooted subgraphs and giving each
one of these rooted subgraphs a unique label. We train the Doc2vec model using the
skip-gram algorithm to learn graph embedding after extracting the rooted subgraphs
and constructing the vocabulary. It is a neural network with a single hidden layer. The
architecture of the graph embedding neural network is shown in Figure 1. The input layer
serves as the first layer in which the graphs (or rooted subgraphs) are inputs. It takes a
one-hot vector of the graphs, where the length of the vector is equal to the total number of
training and test graphs in the dataset. Then, the number of neurons in the hidden layer
corresponds to the dimensionality of the fixed-length feature vectors obtained after training
the graph embedding. The parameters between the input layer and the hidden layer of the
trained neural network are used as the embedding of the graphs we need to train. Finally,
the output layer corresponds to the vocabulary of the subgraphs. Since there are a lot of
rooted subgraphs, we train the skip-gram model using the negative sampling technique to
speed up the training process.
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Figure 1. The architecture of the graph embedding neural network.

The graph embedding procedure using a rooted subgraph is shown in Algorithm 1.
Algorithm 1 shows the process of learning graph embedding for all the graphs in the
dataset. Rsub(i) represents the extracted rooted subgraphs around each node, v; Vsub(i)
represents the vocabulary of rooted subgraphs after aggregation; Rwl(i) represents the nodes
after relabeling in the case of unlabeled nodes; and ϕ represents the embedding of each
rooted subgraph. Then, these embedding vectors are used to classify the graphs.
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Algorithm 1 Graph Embedding with Rooted Subgraph Extraction and Skip-Gram Model
(Graph2vec)

Input: G = {G1, G2, G3, . . . ., Gn}: Set of graphs such that each graph gi = (V, E) be a graph,
where V represents the set of vertices and E represents the set of edges in the graph.

n: number of graphs
k: desired embedding size

Output: A matrix of vectors representing the embedded graph.
1 Begin
2 For each gi in G:
3 Rsub(i) ← Extract rooted subgraph by performing a breadth-first search around

each node v in V of gi.
Rsub(i) = {Rv(i) | v ∈ V}, where Rv represents the rooted subgraph extracted
for node v.

4 Vsub(i) ← Construct the vocabulary of rooted subgraphs considering a maximum
degree of d.

Vsub(i) = {v’ | v’ is a rooted subgraph with maximum degree d}
5 IF gi does not have node labels:
6 Rwl(i)← Apply the Weisfeiler-Lehman relabeling method to assign labels to the nodes.

Rwl(i)={λ(v) | v ∈ V}, where λ(v) represents the relabeled label for node v in
graph gi.

7 ϕ← Generate embedding vectors, using the skip-gram model.
ϕ = {ϕV | v ∈ V}, where ϕV represents the embedding vector for each rooted
sub-graph.

8 End for
9 Return the matrix of vectors, ϕ, as an n × k matrix.
10 END

3.3. Subgraph Embedding

Subgraph embedding methods are simple but highly effective for converting graphs
into the optimal format for a machine learning task. They are an unsupervised training
approach to learning feature representations of arbitrary subgraphs.

Assuming we have a collection of undirected, unweighted graphs, we generate a set
of subgraphs, S = {g1, g2 . . . , gn}, from the same graph using two different frameworks
to preserve different properties of each subgraph. One framework preserves the neigh-
borhood features of each subgraph, and the other preserves the structural aspects of each
subgraph [25].

In the neighborhood framework, the neighborhood information for each node inside
a subgraph is captured. Thus, we establish a set of ID-paths annotated by the IDs of the
nodes that represent important connectivity data in each subgraph. As there are unlimited
paths in each subgraph, we use a random walk of fixed length L for each subgraph to
effectively produce samples of the pathways. Each series of nodes in the ID paths illustrates
how the subgraph’s neighborhood is changing.

In the structural framework, we create Degree-paths that capture the subgraph’s over-
all structure, as opposed to neighborhood properties, which only focus on local connectivity
data. First, we assign a degree to each node based on the number of edges adjacent to the
node in each subgraph. Then, the ratio of the degree of a node to the total number of nodes
in the subgraph is captured for the Degree-paths. Afterward, based on the ratio of degrees,
we assign a label to each node. After generating the labels for each node, we do a random
walk on each subgraph and generate a sequence of characters for the degree paths.

After generating the samples of the ID paths/Degree-paths in each subgraph by
running random walks, the vocabulary of the subgraphs is obtained, with each subgraph
having its own ID within the larger graph. Then, we feed this vocabulary into Doc2vec,
an unsupervised model that produces vector representations for subgraphs. It is a neural
network with a single hidden layer to obtain the embedding for each subgraph. This
neural network is similar to the PV-DBOW model in Doc2vec. Our main focus lies in
the embedding matrix between the input layer and the hidden layer in Doc2vec because
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they are the subgraph embeddings/vectors that we need to use. Finally, the output layer
corresponds to the vocabulary of the subgraphs. The intention is to ensure that the resulting
embeddings effectively preserve the neighborhood information or the inherent structural
relationships among nodes within the subgraphs. After the training converges, subgraphs
with similar structures are mapped to a similar position in the vector space.

The subgraph embedding procedure to preserve different properties of the subgraphs
is shown in Algorithm 2. Algorithm 2 shows the process of learning the subgraph embed-
ding for all the graphs in the dataset. E represents a walk set of all subgraphs in each graph,
and P represents samples of the ID paths/Degree-paths in each subgraph after running
random walks; then the walk list E is updated with P, and ϕ represents the embedding of
each subgraph. Then, these embedding vectors are used to classify the graphs.

Algorithm 2 Sub-graph Embedding (Sub2vec)

Input: Graph G, subgraph set S = {g1, g2, . . . , gn},
d: Dimension,

L: Walk length,
w: Window size

output: A matrix of vectors representing the embedded subgraph.
1 Begin
2 E← Initialize an empty dictionary for the walk set, where the key represents the

subgraph id and the value represents ID-paths/Degree-paths of each subgraph.
3 for gi in S do
4 P← Random Walk (gi, L)

E[gi]← P
5 end for
6 ϕ← Doc2vec (E, d, w)
7 Return the matrix of vectors, ϕ.
9 END

3.4. Graph Classification Framework

The input to the classification algorithm consists of a set of embedding vectors and
labels (xi, yi) for i ∈ T, where T ⊆ V is the set of training (sub)graphs. By stacking all the
(sub)graphs’ embedding vectors and labels, we form an embedding matrix X and a label
matrix Y.

The results obtained from the embedding neural network are combined with the final
classifier to form a complete graph classification framework based on graph embedding.
We develop DNN and CNN models for this study. A DNN is created with inspiration from
the neurons in the human brain. It is an extension of an artificial neural network (ANN)
with multiple hidden layers, enabling it to handle complex tasks. In a DNN, each layer is
exclusively connected to the previous one and is only connected to the next layer within the
sequential architecture. A CNN is one of the most common types of DNN architecture. It
utilizes convolutional layers to automatically learn the spatial hierarchies of features from
input data. It demonstrates exceptional proficiency in capturing local patterns by means of
convolutional operations and achieving downsampling through pooling layers. A CNN’s
architecture consists of a variety of building components, including convolutional layers,
pooling layers, and fully connected layers.

In the graph classification process based on graph embedding, first, we extract a
vocabulary of subgraphs, which are then used as input to the graph embedding neural
network. The parameters between the input layer and the hidden layer of the trained
neural network are taken out as the embedding representation of the training graph and
the test graph. Each subgraph corresponds to a fixed-length embedded vector. Finally, the
embedding of the training graph and its corresponding class are input into DNN and CNN
classifiers for training. An overview of the architecture of the proposed graph classification
framework is shown in Figure 2.
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Next, when making the proposed DNN and CNN models, it is important to choose
what the model’s architecture is. A DNN model has an embedding layer used as the first
layer of the model, which takes the embedding matrix as input. There are three necessary
arguments used to construct the embedding layer, which is the first layer of the DNN. First,
the size of the vocabulary, which refers to the total number of graphs in the dataset. Second,
the size of the vector space corresponds to the dimensionality of the output vector in which
graphs or subgraphs are embedded. Finally, the input length describes the length of the
input sequences. The embedded vectors are employed as data in the embedding layer for
the DNN and CNN models. Then, there are two hidden layers and the output layer.

In a CNN model, the embedding matrix is initially utilized by the embedding layer,
similar to a DNN model. Subsequently, two one-dimensional convolution layers are
employed to effectively learn features from the shorter segments of the entire dataset.
Max-pooling layers are incorporated to prevent overfitting of the learned features by
selecting the maximum value among several features within a predefined sliding window.
Following that, a final dense layer, also known as a fully connected layer, integrates the
learned features from all the combinations of the previous layers. Finally, there is an output
layer consisting of two neurons, along with their associated probabilities. As the amount of
graph data is large, replacing the traditional classifier with a deep learning model is also
helpful to improve the classification accuracy.

4. Experiments

We conduct our experiments on benchmark datasets to evaluate the performance
of EBDNN and EBCNN. First, we examine the impact of applying subgraph and graph
embedding. Then, the graph classification algorithm presented in this paper is compared
with graph classification methods based on traditional classifiers and methods based on
deep learning in terms of classification accuracy.

4.1. Datasets

We evaluate our proposed method using five bioinformatic benchmark graph datasets
with node labels: MUTAG, PTC, PROTEINS, NCI1, and NCI109. The chemical compounds
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of each dataset are transformed into graphs, where nodes stand in for atoms and edges for
chemical bonds.

1. MUTAG [44] is a dataset of 188 mutagenic aromatics. The aromatic compounds in the
graph set can be divided into two classes based on whether they have a mutagenic
effect on bacteria or not.

2. PTC [45] is a set of 344 chemical compounds that are presented as graphs with 19
distinct node labels that detail each compound’s ability to cause cancer in rats.

3. PROTEINS [46] is a collection of 1113 protein structures represented as graphs, where
the nodes are secondary structural elements (SSEs), and the edges are neighborhoods
in either a 3D space or an amino acid sequence. The graph’s nodes have three different
types of labels. Protein structures can be divided into two classes: enzymes and non-
enzymes.

4. NCI1 [47] is a large-scale balanced dataset of chemical compounds and has more than
4000 graphs in it. Each of the NCI anti-cancer screens poses a classification problem.
The chemical compounds in this collection are evaluated as either active or inactive
for lung cancer cells.

5. NCI109 [47] is a large balanced dataset composed of substances that inhibit the activity
of ovarian cancer cell lines that were published by the National Cancer Institute (NCI).
The information from the above five datasets is shown in Table 1.

Table 1. Dataset statistics including the number of graphs (#graphs), the number of graph labels
(#classes), the average number of nodes (#nodes), the average number of edges (#edges), the number
of node labels (node labels), the number of negative (#neg) samples, and the number of positive
(#pos) samples.

Dataset #Graphs #Classes #Nodes #Edges Node Labels #neg #pos

MUTAG 188 2 17.93 19.79 7 63 125

PTC-MR 344 2 14.29 14.69 19 152 192

PROTEINS 1113 2 39.06 72.82 3 450 663

NCI1 4110 2 29.87 32.3 37 2053 2057

NCI109 4127 2 29.68 32.13 38 2048 2079

4.2. Experimental Settings

This study proposes graph classification methods based on graph embedding that
utilizes the training of a neural network for graph embedding. We evaluate the model
based on the experimental results. Finally, we compare our graph classification methods
with traditional classifiers and other deep learning methods.

All experiments are developed in a hardware environment of NVIDIA V100 Tensor
Core GPUs with 16 GB RAM. We use the PyTorch library to implement the skip-gram
model for Graph2vec and the Gensim library to implement the Doc2vec model for Sub2vec.
The DNN and CNN classifiers are built using the Keras library. It is a high-level neural
network library that functions on top of TensorFlow, a Google open-source library primarily
created for deep learning applications.

We apply 5-fold cross-validation to every dataset, and we present the average accura-
cies achieved to validate the performance of our methods in graph classification. First, the
training set is randomly divided into five folds of equal size. As a result, four out of five
folds of the training set are utilized to train, while the remaining fold of the training set is
used to validate the training model’s performance. Hyper-parameter tuning is the process
of fine-tuning the best setting values to obtain the lowest generalization error and modify
the model’s practical capacity in accordance with computational resources. We configure
the optimal hyper-parameters via random search. We tune the number of hidden units
in each layer ∈ {256, 128, 64, 32}, learning rate ∈ {0.01, 0.001, 0.001}, batch size ∈ {8, 64},
optimization methods {SGD, Adam}, dropout ratio after the dense layer ∈ {0, 0.5}, and



Electronics 2023, 12, 2715 12 of 21

activation function in the hidden layers and the output layer for all models and report the
best parameters to achieve the best accuracy.

Our methods use the neural network in both the training graph embedding and the
classifier, where the parameter updating process is time-consuming. However, with the
acceleration of the GPU, the overall time has not increased much. Since the first approach
uses an embedding vector of size 1024, the other method uses an embedding vector of size
512, and the training time increases as the size of the embedding vector does, it is difficult
to compare the training times for graph and subgraph embeddings.

Additionally, by comparing three datasets of various sizes, including MUTAG
(188 graphs), PROTEINS (1113 graphs), and NCI1 (4110 graphs), the experimental re-
sults demonstrate that the classification time needed by the suggested approaches grows
linearly O(n) with the linear growth in data size. This is due to the methods used in this
research, which generate a different sub(graph) “vocabulary” for each graph. As a result,
the suggested methods have excellent stability, and the expansion of the dataset does not
result in a major rise in classification time.

A DNN classifier with two hidden layers is used; an embedding layer is used as the
first layer, in which the embedding matrix is passed as input. This embedding layer is
configured with specific parameters. Initially, it requires the input dimensions, representing
the total number of graphs in the dataset. For instance, in the case of the MUTAG dataset,
which contains 188 graphs, the embedding layer has an input dimension of 188. Then,
the output dimension corresponds to the size of the embedding vector. In the subgraph
embedding method (Sub2vec), the output dimension is set to 512, while in the graph
embedding method (Graph2vec), it is set to 1024. Finally, the input length, which represents
the length of the input sequences, is set to the same value as the output dimension.

After the embedding layer, a flatten layer is employed to transform the two-dimensional
vector into a one-dimensional vector, which is then used as an input to the next layer. Then,
two dense layers are followed by an output layer. The number of dense layers’ units is 256
and 32. A dropout layer with dropout rates (0.2 and 0.5) is applied after the dense layer to
prevent overfitting. Rectified Linear Units (ReLU) are used as an activation function in the
hidden layers, as they facilitate faster learning and better performance compared to other
activation functions. In the output layer, the Sigmoid activation function is used. Sigmoid
is preferred in binary classification tasks, as it updates more quickly when using a single
output unit.

The learning rate is chosen from (0.001, 0.0001) for different datasets, and the num-
ber of epochs is set to 100 in all datasets. Stochastic gradient descent (SGD) is used for
optimization. Binary Cross-Entropy is used as a loss function.

In the CNN classifier, we have the embedding layer as the first layer, in which the
embedded vectors are employed as data. The embedding layer of CNN shares the same
parameters as the DNN classifier. The embedding layer is followed by two one-dimensional
convolution layers; each convolutional layer has 64 and 128 filters of size 5, respectively.
After the convolutional layers, a maximum pooling layer with pool size of 2 is applied.
Next, there is a dense layer with 64 hidden units, followed by the output layer.

The parameters of the model are optimized by minimizing the difference between the
predicted outputs and the ground truth labels using an SGD algorithm. This optimization
process aims to improve the model’s performance and accuracy. As a loss function, Binary
Cross-Entropy is employed.

4.3. Experimental Results and Discussion

Through graph embedding training, every graph of the five datasets is converted into
a 512-dimensional embedding vector in the subgraph embedding method (Sub2vec), and
we set the length of the random walk to 100,000 and the default window size to two. In
the graph embedding method (Graph2vec), a 1024-dimensional embedding vector is used.
In addition, the learning rate is set to 0.0001 in the skip-gram model, and the number of
epochs in all datasets is set to 20.
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We transform each graph in the graph dataset into a fixed-length feature vector. To
observe the embedding result, we use the t-distributed Stochastic Neighbor Embedding
(t-SNE) approach to carry out nonlinear dimensionality reduction on graph embedding to
make it easier to observe the changed vector effect. Figure 3 shows the 2D visualization
results after the graph embeddings (Graph2vec) of the five datasets, and different colors
indicate different classes of graphs in the dataset.
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As demonstrated in Figure 3, the visualization outcomes of the different classes of
graph embedding are clearly distinguishable in the two datasets of MUTAG and PROTEINS
and are well-separated in each embedding space. However, the PTC_MR dataset, consisting
of two distinct classes, exhibits a complex and intertwined distribution of data, lacking
a clear clustering structure. On NCI1 and NCI109, even though there is not a clear line
between the two classes of graphs, they are not all mixed up together. Instead, one class can
be observed to be divided into multiple subclusters, and there is a noticeable distinction
between the subclusters belonging to different classes.

In summary, the training of graph embedding primarily relies on the substructure and
feature information within the graphs. Consequently, graph data with similar substructures
tend to be clustered together, while graph data with significant differences in substructures
are distanced from one another.
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While this approach demonstrates the potential of training and visualizing graph-level
embeddings, it is not practical in its current state. However, it highlights that a well-trained
unsupervised embedding can effectively separate graphs based on a specific training task,
which can then be visualized for further analysis.

We evaluate the model based on the experimental results and mainly compare our
graph classification methods in two aspects. On the one hand, we compare our proposed
method with traditional classifiers. On the other hand, we compare it with other deep
learning approaches. The abbreviations of the proposed and compared methods are
reported in Table 2. The abbreviations of the proposed methods are in bold.

Table 2. Definitions of abbreviations.

Abbreviation Definition

Deep Graph Convolutional Neural Network architecture for
graph classification DGCNNII

Capsule Graph Neural Network CapsGNN

Convolutional Neural Network CNN

Convolutional Neural Network-based graph embedding EBDNN-Graph2vec

Convolutional Neural Network-based subgraph
neighborhood embedding EBDNN-Sub2vecN

Convolutional Neural Network-based subgraph structural
embedding EBDNN-Sub2vecS

Deep Divergence Graph Kernels DDGK

Deep Graph Convolution Neural Network DGCNN

Deep Neural Network DNN

Deep Neural Network-based graph embedding EBDNN-Graph2vec

Deep Neural Network based subgraph neighborhood
embedding EBDNN-Sub2vecN

Deep Neural Network based subgraph structural embedding EBDNN-Sub2vecS

Embedding-based Convolutional Neural Network EBCNN

Embedding-based Deep Neural Network EBDNN

Feature Learning for Subgraphs Sub2vec

Graph Classification via Graph Structure Learning GC-GSL

Graph Embedding GE

Graph Isomorphism Network GIN

Imbalanced Graph Classification via Graph-of-Graph Neural
Network G2 GNN

Learning Distributed Representations of Graphs Graph2vec

PATCHY-SAN PSCN

Spectral Features SF-RFC

4.3.1. Comparisons with Traditional Classifiers for Graph Classification

We compare our proposed methods with the following traditional classifiers methods:

• Graph2vec [30]: extracted rooted subgraphs and the neural network are used to train
the embedding of graphs and use SVC to classify graphs.

• Sub2vec (Sub2vec-N, Sub2vec-S) [25]: specialize in subgraph embeddings by gener-
ating a set of subgraphs from the same graph based on structural and neighborhood
features and then classifying with traditional classifiers such as SVC.
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• Spectral Features (SF-RFC) [48]: assume the graph is connected; if it is not, find the
largest connected graph, obtain its normalized Laplacian, and use Random Forest (RF)
as a classifier.

• Learning Graph Representations for Deep Divergence Graph Kernels (DDGK) [31]:
create an encoder using DNN to learn a graph’s structure and the cross-graph attention
mechanism to calculate a divergence score for each pair of graphs that are used to
produce an embedding space and use SVC as a classifier.

• Graph Classification via Graph Structure Learning (GC-GSL) [32]: build a vocabulary
of rooted subgraphs for each graph and extract topological attribute vectors to be
added to the output layer; then, a graph embedding neural network is trained to
obtain the embedding vector and use SVC to classify graphs.

The average classification accuracy of the proposed methods and the traditional graph
classification methods mentioned above on five datasets are shown in Table 3. For the
other methods, we take the reported accuracy directly from their papers (“--” means not
available). The best results are shown in bold.

Table 3. Comparison of classification accuracy with traditional classifiers.

Methods
Dataset

MUTAG PTC PROTEINS NCI1 NCI109

Graph2vec 83.15 60.17 73.30 73.22 74.26

Sub2vec-N 74 59 92 95 90

Sub2vec-S 85 62 96 95 91

SF-RFC 88.4 62.8 73.6 75.2 --

DDGK 91.5 63.1 -- 68.10 --

GC-GSL 83.86 60.11 76.55 82.04 81.86

EBDNN-Graph2vec
(proposed) 91.2 63.1 76.5 88.2 90.3

EBCNN-Graph2vec
(proposed) 88.3 61.8 74.7 82.2 87.7

EBDNN-Sub2vecN
(proposed) 79.5 62.1 84.3 75.3 80.1

EBCNN-Sub2vecN
(proposed) 76.5 60.8 82.7 74.7 78.5

EBDNN-Sub2vecS
(proposed) 82.8 61.8 93.6 94 93.1

EBCNN-Sub2vecS
(proposed) 77.2 60.6 92.2 91.3 93.5

It can be seen from Table 3 that the classification results of the EBDNN-Graph2vec
model proposed in this paper demonstrate similar accuracy levels as the top-performing
method on the MUTAG and PTC datasets, which have smaller graph sizes. Additionally,
when comparing EBDNN-Graph2vec with the other methods, its classification performance
is always in the top 2 across all datasets. On the other hand, EBCNN-Graph2vec achieves
comparable classification results on all datasets except for the PROTEINS dataset.

Replacing traditional classifiers with deep learning classifiers using the Graph2vec
embedding technique enhances the accuracy of all datasets. However, on larger datasets
such as PROTEINS, NCI1, and NCI109, traditional classifiers with Sub2vec-N outperform
EBDNN-sub2vecN and EBCNN-sub2vecN.

Although the EBDNN-sub2vecS and EBCNN-sub2vecS models do not achieve the
highest accuracy on the PROTEINS and NCI1 datasets, they still achieve accuracy rates
above 90%, which is 9–20% higher than other graph classification methods.
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On the other hand, all the proposed methods achieve the highest accuracy on the
NCI109 dataset when compared to traditional classifiers. Additionally, the EBDNN model
also shows a slight improvement in accuracy over the EBCNN model, except for the NCI109
dataset.

The PROTEINS dataset is characterized by its large size and more complex internal
structure within each graph. Consequently, using the EBDNN-Graph2vec and EBCNN-
Graph2vec methods, which employ the rooted subgraph mining technique along with the
Weisfeiler-Lehman relabeling method and only focus on learning local graph information
and structures while neglecting the global graph structure, leads to the loss of significant
information. This, in turn, affects the subsequent classification results.

Analyzing the NCI1 and NCI109 datasets reveals that, despite having the largest
number of subgraphs, they also possess a higher number of node labels compared to the
average number of subgraph nodes in other datasets. As a result, numerous subgraphs in
NCI1 and NCI109 do not fully contain all types of nodes. Although the proposed methods
improve the accuracy of graph classification on these datasets, they do not achieve the
highest accuracy, except for the EBDNN-Sub2vecS and EBCNN-Sub2vecS models when
applied to the NCI109 dataset.

4.3.2. Comparisons with Deep Learning Approaches for Graph Classification

We compare our proposed methods with the following deep learning approaches for
graph classification:

• PATCHY-SAN (PSCN) [39]: chooses a node sequence from a graph; neighborhoods
are assembled and normalized for each node in the chosen sequence, and then the
convolutions are applied to the normalized neighborhoods graph.

• Deep Graph Convolution Neural Network (DGCNN) [40]: classifies graphs in three
stages: first, a convolutional layer that directly reads graphs to obtain multi-scale
vertex features, then a SortPooling layer that sorts the vertex features, and, finally,
convolutional and dense layers that classify the graphs.

• Capsule Graph Neural Network (CapsGNN) [49]: proposes a new vector propagation
by generating graph capsules and class capsules on the basis of node capsules that are
extracted from GNN; then, dynamic routing is applied to update weights over graph
capsules to generate final class capsules for graph classification.

• Graph Isomorphism Network (GIN) [37]: proposes a readout function that uses the
embeddings of individual nodes to produce the embedding of the entire graph and
then uses MLP and summation for graph classification.

• Graph Embedding (GE) [24]: builds a vocabulary of node-level and global attribute
features for the whole graph; then, a neural network is used to train the embedding of
graphs, and a DNN is used as the classifier.

• Imbalanced Graph Classification via Graph-of-Graph Neural Network (G2 GNN) [38]:
constructs a graph of graphs based on kernel similarity, performs propagation to
aggregate neighboring graph representations, and uses topological augmentation
locally by removing edges to generate stochastic augmentations of each graph used
for graph classification.

• A Deep Graph Convolutional Neural Network architecture for Graph Classification
(DGCNNII) [42]: designs a very deep graph CNN up to 32 layers to extract the graph’s
structure information and the nodes’ non-local structure information, concatenates the
node features and the initial low-dimensional features, and then uses the SortPooling
layer, 1D convolution layers, and dense layers to read the sorted continuous node
features for graph classification.

The average classification accuracy of the proposed methods and the graph classifi-
cation based on deep learning are shown in Table 4. The best results on each dataset are
shown in bold.
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Table 4. Comparison of classification accuracy with deep learning classifiers.

Methods
Dataset

MUTAG PTC PROTEINS NCI1 NCI109

PSCN 88.95 62.29 75.0 76.34 76

DGCNN 85.83 58.59 75.54 74.44 --

CapsGNN 86.67 -- 76.28 78.35 --

GIN 89.40 64.60 82.70 76.20 --

GE 90 -- 76 87 85

G2 GNN 83.01 46.61 67.39 64.78 --

DGCNNII 94.44 76.47 82.88 80.32 --

EBDNN-Graph2vec
(proposed) 91.2 63.1 76.5 88.2 90.3

EBCNN-Graph2vec
(proposed) 88.3 61.8 74.7 82.2 87.7

EBDNN-Sub2vecN
(proposed) 79.5 62.1 84.3 75.3 80.1

EBCNN-Sub2vecN
(proposed) 76.5 60.8 82.7 74.7 78.5

EBDNN-Sub2vecS
(proposed) 82.8 61.8 93.6 94 93.1

EBCNN-Sub2vecS
(proposed) 77.2 60.6 92.2 91.3 93.5

From the results in Table 4, we can see that the proposed EBDNN-Sub2vecS and
EBCNN-Sub2vecS achieve the highest classification accuracy on the PROTEINS, NCI1, and
NCI109 datasets when compared to deep learning methods.

However, the accuracy of EBDNN-Sub2vecS and EBDNN-Sub2vecN is relatively low
on small-size datasets such as MUTAG. This can be attributed to the limited size of the
dataset, which consists of only 188 graphs. The small dataset size results in an imbalanced
class distribution and relatively simple structural complexity, which impacts the accuracy
of the models in comparison with deep learning methods.

Comparing EBDNN-Graph2vec and EBCNN-Graph2vec with other methods, their
classification performance is always in the top 2 across all datasets except for PTC. However,
the accuracy rate of EBDNN-Graph2vec on the PROTEINS dataset is limited to 76.5%. This
can be attributed to the complex internal structure within each graph and the lack of node
labels, which impact the effectiveness of the embedding approach that employs node labels,
consequently affecting the subsequent classification results.

EBDNN-Sub2vecN and EBCNN-Sub2vecN show the lowest accuracy across all datasets,
except for the PROTEINS dataset where they achieve the highest accuracy compared to
other methods. This can be attributed to the PROTEINS dataset having a high number of
classes, making the neighborhood property more significant in determining the graph class.

On the PROTEINS dataset, EBDNN-Sub2vecS and EBCNN-Sub2vecS outperform
other baseline approaches. EBDNN-Sub2vecS achieves an accuracy of 93.6%, with an
average improvement of 10.8% to 26.21% in accuracy rates. Similarly, EBCNN-Sub2vecS
achieves an accuracy of 92.2%, with an average improvement of 9.4% to 24.8% in accuracy
rates. This indicates that utilizing structural subgraphs, particularly for datasets with
complex internal structures such as PROTEINS, enhances classification accuracy.

On the NCI1 dataset, EBDNN-Sub2vecS achieves an accuracy of 94%, while EBCNN-
Sub2vecS achieves 91.3%, surpassing the performance of all other baseline methods, none
of which have achieved an accuracy rate of 90%. The highest accuracy is also obtained
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on the NCI109 dataset, where EBDNN-Sub2vecS achieves 93.1%, and EBCNN-Sub2vecS
achieves 93.5%.

For large datasets such as NCI1 and NCI109, using EBDNN-Graph2vec and EBDNN-
Sub2vecS achieves the highest accuracy when compared with other deep learning methods.
This can be attributed to the large number of subgraphs present in the datasets, a significant
number of node labels, and both datasets being balanced.

Comparing the proposed methods, EBDNN-Graph2vec and EBDNN-Sub2vecS, it
becomes apparent that the latter performs better on large datasets, indicating that the
classification results of structural subgraphs have a greater influence on classification
accuracy compared to using a rooted subgraph representation for each graph.

To evaluate the impact of graph classification, we conduct an analysis of the classifi-
cation results obtained by EBDNN-Graph2vec and EBDNN-Sub2vecS in comparison to
previous methods across five datasets. The comparison results are presented in Figures 4
and 5.
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Figure 4a,b showcase the comparison of EBDNN-Graph2vec and EBDNN-Sub2vecS,
respectively, with traditional classifiers. It can be observed that the classification accuracy
of EBDNN-Graph2vec is about the same as that of the top-performing method on the
MUTAG and PTC datasets, which have smaller graph sizes. However, the improvement in
classification accuracy is not remarkable for the PROTEINS and NCI1 datasets. EBDNN-
Sub2vecS achieves the lowest accuracy with the small datasets, MUTAG and PTC. However,
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it demonstrates high accuracy on PROTEINS and NCI1, although not the highest accuracy.
Both EBDNN-Graph2vec and EBDNN-Sub2vecS achieve the highest accuracy on the
NCI109 dataset.

Figure 5c,d, on the other hand, depict the comparison of EBDNN-Graph2vec and
EBDNN-Sub2vecS, respectively, with deep learning classifiers. Figure 5c,d demonstrate
that EBDNN-Graph2vec and EBDNN-Sub2vecS outperform other deep-learning-based
approaches for graph classification on three datasets. This can be attributed to the fact that
in the PROTEINS, NCI1, and NCI109 datasets, the local structural features, such as the
active compounds in cells, are more obvious and easier to extract. Additionally, the larger
size of these datasets also contributes to the superior performance of EBDNN-Graph2vec
and EBDNN-Sub2vecS in classification tasks.

Overall, the experimental results highlight the effectiveness of EBDNN-Graph2vec
and EBDNN-Sub2vecS in graph classification, particularly on datasets with larger graph
sizes and distinct local structural features.

5. Conclusions

This paper proposes a new framework for graph classification on large-scale graphs
using supervised deep learning algorithms. Inspired by Doc2Vec in NLP, in the graph
classification problem, graphs and subgraphs are substituted for documents and words,
respectively, in the original model. Our approach combines two complementary procedures:
generating fixed-length embedding vectors to represent each (sub)graph and utilizing these
vectors for graph classification using DNN and CNN classifiers. Our proposed methods
offer several advantages for real-world problems with large datasets. They are easily
applicable and highly scalable and do not require complex implementation like other graph
classification methods. Additionally, they address the challenge of subgraph isomorphism
testing. The experimental results show that our methods achieve better performance on
different datasets than many traditional classifiers and deep learning methods.

However, a limitation of our embedding methods is that they focus on learning local
graph information and structures, neglecting the global graph structure. Despite this
limitation, our approach proves effective in practice. In the future, we plan to explore
alternative neural network architectures such as Recurrent Neural Networks (RNN) and
different DNN and CNN architectures. Additionally, we aim to apply our method to various
datasets and investigate strategies to improve the classification model as the quantity of
training graph datasets increases. Finally, we intend to explore parallelization techniques
to analyze massive amounts of graph data, thereby reducing the execution time on large
datasets in future studies.
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