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Abstract: Significant circulating currents in the modular multilevel converter (MMC) increase system
losses and complicate heat-sink design. Conventional PI and PR controllers can achieve steady-state
error adjustment, but are sensitive to parameter changes and model uncertainty, heavily relying on
coordinate transformations and careful design of model parameters. Model predictive control (MPC)
has the characteristics of simple design, good robustness, and excellent dynamic response; however,
it encountered the complexity of adjusting weighting factors. This paper proposed circulating the
current model predictive proportional integral control (MPPIC) method in abc reference frame. This
hybrid control solution utilized the predictive model and traditional PI algorithm to combine the
advantages of nonlinear and linear control. Compared with existing suppression methods, this
method avoided complex mathematical operations and a selection of weight coefficients, was easy
to implement, and can effectively suppress circulating currents under different modulation ratios.
Simulations were conducted on MATLAB/Simulink to verify the effectiveness of the proposed control
strategy. MPPIC can not only distinctly suppress the circulating currents, but also reduce the overall
voltage fluctuation of sub-modules capacitors under different modulation ratios, and had almost no
any adverse effect on the performance of MMC.

Keywords: modular multilevel converter (MMC); circulating current; model predictive control
(MPC); hybrid MMC; model predictive PI control (MPPIC)

1. Introduction

The modular multilevel converter (MMC) has broad application prospects in fields
such as high-voltage direct current transmission [1], photovoltaic grid connected inverters,
wind power generation and energy storage systems [2,3], and renewable energy micro-
grids containing MMC type solid state transformers in distribution networks [4,5]. With
the gradual implementation of relevant policies and programs such as “carbon peaking
and carbon neutrality”, the rapid development of new energy and promote clean and
low-carbon energy supply is vigorously promoted. Even though MMC has a wide range of
applications and numerous advantages such as high reliability, low switching frequency,
excellent output quality, high efficiency, and DC fault blocking ability [1–5], it still has
its own drawbacks. The switching of sub-modules on the arm inevitably causes uneven
voltage and circulating current between the phases [6]. The circulating current affects the
size of sub-module capacitors, and results in an increase in current stress and conduction
loss on the semiconductor device, causing a decrease in efficiency of MMC [7].

Control methods of circulating current can be categorized into two subbranches:
passive and active methods [8]. Passive methods include increasing the inductance of the
arm, installing passive filters, etc. However, these suppression methods are costly, inflexible,
and have a limited suppression effect. Active suppression strategies are mainly achieved
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through software methods to suppress circulating currents, which have the advantages
of economy, good suppression effect, and high flexibility. Therefore, it became a popular
suppression method. However, active suppression methods consume a certain amount
of MMC voltage, which reduces the maximum output voltage and power capacity of
MMC [8].

Controlling circulating current can be obtained through suppressing the second-order
harmonic currents [9–19] and minimizing voltage ripple in sub-module capacitor [20–24].
The most commonly used active suppression method is to use the Park transform to design
traditional proportional integral (PI) control based on negative sequence second harmonic
coordinate transformation [9,10]. PI control can successfully suppress the specific harmonic
component of circulating current in dq reference frame. Another popularly used active
suppression method is proportional resonance (PR) control, which amplifies the gain at the
frequency point that needs to be controlled, achieving a certain degree of suppression effect
on the circulating current [11,12]. The principle of PR control is simple and easy to apply
in engineering. However, the PR controller adds an additional notch filter to improve the
control effect, and stability analysis is required during parameter design. The method in
the literature [13] uses PR and PI controllers in abc reference frame to control the second
harmonic circulating current, which has a better suppression effect than separate PI in
dq reference frame or PR control in αβ reference frame. Although PI and PR controllers
can achieve steady-state error adjustment, they are sensitive to parameter changes and
model uncertainty, and heavily rely on coordinate transformations and careful design of
model parameters.

Another active method is repetitive control, which can effectively suppress periodic
interference signals and improve system stability and accuracy. However, repetitive con-
troller needs to store sampling errors from the last cycle, which leads to a delay in response
to a basic cycle and has a relatively slow dynamic response [14–16]. Ref. [16] proposed an
improved repetitive control scheme which reduces the data memory to an half of ordinary
repetitive control, thereby decreasing the response delay. Other active suppression methods
include a time-delayed filter-based approach [17], adjusting the number of total inserted
sub-module in arms [18], applying deadbeat control on MMC with level-increased nearest
level modulation (NLM) strategy [19], etc.

Injecting methods are feasible to suppress circulating currents, in which the second
harmonics are injected in three phases to reduce capacitor voltage ripples, since the circu-
lating currents decrease with the capacitor voltage ripples [20–24]. However, lookup tables
are required to produce the amplitude and phase for injection currents references.

Model predictive control (MPC), as a nonlinear controller, is suitable for multi-input
and multi-output systems. The fundamental principle of the MPC to control MMC is
to compute the predicted values of each control objective in all switch states at the next
moment and use the value function to select the corresponding switch state with the lowest
value function [1,23,25,26]. MPC has the characteristics of simple design, good robustness,
excellent dynamic response, and the ability to achieve flexible control of multiple objectives.
However, it encountered an explosive growth in complexity issues, where the complexity
of adjusting weighting factors sharply increases with the increase in system control ob-
jectives. The online and detailed MPC method may result in heavy computation for the
controller [27].

To address the issues with existing circulating current control strategies, this paper
presents an optimized circulating current model predictive PI control (MPPIC) method in
abc reference frame. This hybrid control solution utilizes a predictive model and traditional
PI algorithm to combine the advantages of nonlinear and linear control. Compared with
existing suppression methods, the proposed method avoids selection of weight coefficients,
extensive computation, and coordinate transformations, is easily implemented, and can
effectively suppress circulating currents under different modulation ratios.

The others of this article are as follows. The mathematical model of hybrid MMC is
presented in Section 2. Section 3 describes the principle of the proposed MPPIC method.
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Section 4 provides simulation verification. Finally, Section 5 ends with a conclusion for
this article.

2. Topology and Circulating Current Mathematical Model of MMC
2.1. Topology of Hybrid MMC

Half bridge sub-module (HBSM) cannot block DC faults such as full bridge sub-
module (FBSM); nevertheless, FBSM requires more electronic components, so it is uneco-
nomical due to higher costs and power losses than HBSM. The hybrid MMC composed of
HBSM and FBSM realizes the trade-off between economy and reliability, and has flexible
modulation index range and DC fault blocking capability. It was deployed in the ±800 kV
HVDC transmission project at the third end of Kunliulong in China.

Figure 1 displays the topology of hybrid MMC, with each phase containing upper
and lower arms, each arm containing an arm inductor and N sub-modules, in which there
were NH HBSMs and NF FBSMs. In Figure 1, uj and ij (j = a, b, c, the same below) represent
the AC side voltage and current of the converter, respectively; Larm and Rarm are the arm
inductance and resistance, respectively; ujp, ujn represent the voltage of the upper and
lower arm of the j-phase (p and n denote the upper and lower arm, the same below). Udc
and Idc are the DC voltage and current of hybrid MMC, respectively.
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Figure 1. Basic structure of hybrid MMC. 
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Figure 1. Basic structure of hybrid MMC.

By controlling the inserting and bypassing of the IGBTs, the output voltage of the
HBSM switches between uc and 0, and the output voltage of FBSM switches between −uc,
uc and 0. The switching relationship of sub-module is:

Sji =


0, usm = 0
1, usm = uc
−1, usm = −uc

j = a, b, c, i = 1, . . . . . . N (1)

The arm voltages are obtained:
ujp =

NH+NF
∑

j=1
(SjpiUcji)

ujn =
NH+NF

∑
i=1

(SjniUcji)

j = a, b, c (2)
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By adjusting sub-modules inserted and bypassed in a phase according to nearest level
modulation (NLM), the output voltages on the AC and DC side are:{

uj =
1
2 (ujn − ujp)

Udc = ujn + ujp
j = a, b, c (3)

Under ideal conditions, the sum of the upper and lower arm voltages in a phase is
equal to the DC bus voltage at all times, and the capacitor voltages of the sub-modules
equal the rated value. At this time, the circulating current of each phase only includes
the DC component Idc/3. In practical work, the sub-modules are continuously inserted or
bypassed, causing the capacitor voltage to deviate from the rated value. The DC output
voltages of the three parallel phases are not always equal, and at this time, circulating
currents of the AC component are generated inside the converter.

According to KCL, the current of each arm is composed of circulating current icirj and
AC side current ij. The relationship between the arm current ijp, ijn of each phase and the
circulating current is: {

ij = ijn − ijp
icirj =

1
2 (ijn + ijp)

j = a, b, c (4)

2.2. Circulating Current Harmonic Analysis

According to the analysis in [16], the upper and lower arm voltages of the phase are
deduced as:  ujp = NUc

[
1−m sin(ωt+ϕj)

2

]
− ucirj

ujn = NUc

[
1+m sin(ωt+ϕj)

2

]
− ucirj

(5)

where Uc is the average voltage of sub-module capacitor; ω and ϕj represent the fundamen-
tal angular frequency and the phase angle of the AC voltage; m is the voltage modulation
ratio and m = 2Um/Udc, in which Um is the amplitude of AC output voltage; ucirj is
defined as:

ucirj = Larm
dicirj

dt
+ Rarmicirj =

Udc
2

−
ujp + ujn

2
(6)

It can be clearly seen in (6) that the difference between the DC voltage Udc and ujp + ujn
ultimately is applied to the arm inductor and resistor, thus introducing internal circulating
current in the phases. The operation of inserting and bypassing sub-modules in an arm
inevitably causes circulating currents.

According to the single-phase MMC mathematical model in Figure 2, the equations are:

2Larm
dij

dt
= 2uj − (ujn − ujp)− 2Rarmij (7)

Larm
dicirj

dt
=

1
2
(Udc − ujp − ujn)− Rarmicirj (8)
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It can be seen that the difference between the voltage of the lower and upper arm
determines the AC current; the difference between the DC voltage and the superposition
voltage of the upper and lower arms determine the phase circulating current.

During the normal operation of symmetry conditions of MMC, the circulating current
icirj composed of the DC component Idc/3 and other AC components, as the equivalent
switching function is composed of DC components and other frequency components, it
generates fundamental, second-order, and higher even harmonic currents [9].

icira = Idc
3 + I2mcos(2ωt + ϕ2)+

∞
∑

h=3
ih

icirb = Idc
3 + I2mcos(2ωt + 2π

3 + ϕ2)+
∞
∑

h=3
ih

icirc =
Idc
3 + I2mcos(2ωt − 2π

3 + ϕ2)+
∞
∑

h=3
ih

(9)

where ϕ2 and I2m are the initial phase angle and the amplitude of the second harmonic
circulating current, separately. AC circulating currents just contain even-order harmonic
current components, and the negative sequence second harmonic current is the major
component. In the case of asymmetric AC side, the circulation has other zero sequence
circulating currents; and in the case of asymmetric, the upper and lower arms in a phase,
the phase current contains additional odd harmonic circulating components [28]. This
article only discusses and analyzes the symmetric situations for MMC.

3. Model Predictive PI Circulating Current Control Strategy
3.1. Model Predictive PI Circulating Current Control Strategy

The control diagram of the proposed optimized MPPIC strategy is shown in Figure 3.
It can be seen that MPPIC consists of four parts: model prediction, PI control, nearest level
modulation (NLM) strategy, and sub-module capacitor voltage holding factor balance strategy.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 

                    

njp

njn

Sjpi(k),Sjni(k)
ucjpi(k),ucjni(k)

ij(k),icirj(k)

ucj∑  (k+1)  

ucj_ave (k+1)
icirj(k+1)

ucji(k)
ipj(k)
inj(k)

m
uj_ref (k)

Sjpi(k+1)

Sjni(k+1)

Model prediction
(11),(12),(13),(14),
(15),(16,(17),(19)

PI
（14）

NLM
（18）

Holding factor  
voltage balance
(Bubble sorting)

MMC
(HBSM and FBSM)

 
Figure 3. The diagram of model predictive PI circulating current control strategy. 

3.2. Predictive Model of MMC 
Because the digital controller is in the discrete domain, in order to calculate the pre-

dictive values of voltage and current, the discretization of the time domain equation is 
necessary. This paper used the first order Euler forward difference equation for discreti-
zation of the control objective.  

The dynamic equation of capacitor voltage can be represented by the current ic flow-
ing through it as:  

c c= 1u i dt
C   (10) 

Use the first-order difference equation to predict the capacitance voltage of the MMC 
sub-module at the next sampling time. The i-th sub-module capacitor voltage discrete 
model of the upper and lower arm of phase j at time k + 1 can be obtained: 

s
c p c p p p

s
c n c n n n

( +1) ( )+ ( ) ( )

( +1) ( )= + ( )

=

( )

j i j i j i j

j i j i j i j

Tu k u k S k i k
C
Tu k u k S k i k
C







 (11) 

where ijp, ijn(k) represent the upper and lower arm current of the phase j at time k; ucji is the 
capacitor voltage; i is the sub-module serial number; C is the sub-module capacitance.  

A large of calculation is required to predict the sub-module capacitor voltage in the 
control. Therefore, considering implementing capacitor voltage balance control through 
other simple methods will greatly reduce the computational complexity. Here, the classi-
cal sorting algorithm of holding factor voltage is used to decrease the frequency of sub-
modules, which greatly reduces the computation of the proposed MPPIC.  

Based on the MMC mathematical model in (2), the predictive sub-module capacitor 
voltage is obtained by following equations: 

H F

H F

p p c
1

n n c
1

)

( ( (

(

1) ) )

1) ()(

N N

j j i i
i

N N

j j i i
i

u kS u

u S

k k

k k ku

+

=

+

=


=



 =

+

 +





 (12) 

Using the forward Euler method to Equation (8), the predictive circulating current is 
obtained: 

idccir arm c r
ar

p
m arm

n+1) +1) +1) )( ( ( ( (
2

s
j j

s
j ji Uk k k R

T
i k

L L
T

u u −= −−   (13) 

where Ts is the predicted time interval. According to Equation (11), the circulating current 
icirj (k + 1) at time k + 1 can be obtained by predicting the sub-module voltage by the upper 
and lower arms at the next time and the circulating current icirj (k) at time k. 

3.3. PI Control 
It can be observed from Equations (6) and (9) that the voltage mismatch between 

phase and DC output voltage in MMC results in even harmonics between the phases; so, 

Figure 3. The diagram of model predictive PI circulating current control strategy.

Arm modulation waves are the superposition of the reference signal uj_ref obtained
from outer system control and the output of the circulating current control. The nearest
level modulation (NLM) controls the output voltage of the converter by selecting the
nearest voltage level to the reference voltage, and the number of inserting modules nup
and ndown are then calculated. The sub-module capacitor voltages are balanced by holding
factor bubble sorting algorithm to obtain the final sub-module switching signal.

3.2. Predictive Model of MMC

Because the digital controller is in the discrete domain, in order to calculate the pre-
dictive values of voltage and current, the discretization of the time domain equation is
necessary. This paper used the first order Euler forward difference equation for discretiza-
tion of the control objective.

The dynamic equation of capacitor voltage can be represented by the current ic flowing
through it as:

uc =
1
C

∫
icdt (10)
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Use the first-order difference equation to predict the capacitance voltage of the MMC
sub-module at the next sampling time. The i-th sub-module capacitor voltage discrete
model of the upper and lower arm of phase j at time k + 1 can be obtained:{

ucjpi(k+1) =ucjpi(k)+Sjpi(k)
Ts
C ijp(k)

ucjni(k+1) =ucjni(k)+Sjni(k)
Ts
C ijn(k)

(11)

where ijp, ijn(k) represent the upper and lower arm current of the phase j at time k; ucji is
the capacitor voltage; i is the sub-module serial number; C is the sub-module capacitance.

A large of calculation is required to predict the sub-module capacitor voltage in the
control. Therefore, considering implementing capacitor voltage balance control through
other simple methods will greatly reduce the computational complexity. Here, the classical
sorting algorithm of holding factor voltage is used to decrease the frequency of sub-modules,
which greatly reduces the computation of the proposed MPPIC.

Based on the MMC mathematical model in (2), the predictive sub-module capacitor
voltage is obtained by following equations:

ujp(k + 1) =
NH+NF

∑
i=1

Sjpi(k)uci(k)

ujn(k + 1) =
NH+NF

∑
i=1

Sjni(k)uci(k)
(12)

Using the forward Euler method to Equation (8), the predictive circulating current
is obtained:

icirj(k+1) =
Ts

2Larm
(
[
Udc − ujp(k+1)− ujn(k+1)

]
− Ts

Larm
Rarmicirj(k) (13)

where Ts is the predicted time interval. According to Equation (11), the circulating current
icirj (k + 1) at time k + 1 can be obtained by predicting the sub-module voltage by the upper
and lower arms at the next time and the circulating current icirj (k) at time k.

3.3. PI Control

It can be observed from Equations (6) and (9) that the voltage mismatch between phase
and DC output voltage in MMC results in even harmonics between the phases; so, reducing
the difference of phase voltage can reduce the circulating current. The most important for
active circulating current suppressing method is to extract harmonics, thereby obtaining
the regulating voltage to compensate the reference voltage.

It can be observed from (6) and (9) that the voltage mismatch between phase and DC
output voltage in MMC results in even harmonics between the phases; so, reducing the
difference of phase voltage can reduce the circulation current. The most important for
active circulating current suppressing method is to extract harmonics in the circulating
current, thus obtaining the regulating voltage to compensate the reference voltage.

Figure 4 shows the diagram for obtaining the reference value of phase circulating
current with PI control, which is based on model prediction without decoupling. Where
icira_ref (k + 1), icirb_ref (k + 1), and icirc_ref (k + 1) are the reference values of the phase
circulating current at time k + 1, respectively; Ts is the control step time; uca∑(k + 1),
ucb∑(k + 1), ucc∑(k + 1) are the total voltage of each phase at k + 1, respectively:

ucΣa(k+1) =
NH+NF

∑
i=1

Ucapi(k + 1) +
NH+NF

∑
i=1

Ucani(k + 1)

ucΣb(k+1) =
NH+NF

∑
i=1

Ucbpi(k + 1) +
NH+NF

∑
i=1

Ucbni(k + 1)

ucΣc(k+1) =
NH+NF

∑
i=1

Uccpi(k + 1) +
NH+NF

∑
i=1

Uccni(k + 1)

(14)
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Figure 4. The control diagram of PI control.

As shown in Figure 4, the difference of the total voltage of the capacitors in each phase
is as the input of the PI controllers to obtain the reference value of the phase circulating
current in equations:

icira_ref(k+1) = (kp +
ki
s )[ucΣc(k+1)− ucΣa(k+1)]

icira_ref(k+1) = (kp +
ki
s )[ucΣa(k+1)− ucΣb(k+1)]

icirc_ref(k+1) = (kp +
ki
s )[ucΣb(k+1)− ucΣc(k+1)]

(15)

The difference in total voltage of each phase can be converted into a reference value
for the next time through the zero static error adjustment of the PI controller, to achieve
the goal of reducing the circulating current of each phase. According to Equation (6), the
regulation reference AC voltages are:

ucira_ref(k+1) = Udc − 2Larm
Ts

[icira_ref(k+1)− icira(k+1)]
ucirb_ref(k+1) = Udc − 2Larm

Ts
[icirb_ref(k+1)− icirb(k+1)]

ucirc_ref(k+1) = Udc − 2Larm
Ts

[icirc_ref(k+1)− icirc(k+1)]
(16)

3.4. Sub-Module Capacitor Voltage Modulation and Balance Strategy

The traditional holding factor sorting algorithm is utilized to equalize the voltage of
the sub-module capacitor, which can greatly reduce the switching frequency of the IGBTs
and the voltage prediction computation of the sub-module capacitor. The regulation of
the circulating current is the output of the proposed MPPIC. The three-phase reference
voltage from system control is urefj. According to Equation (5), if the upper and lower
arms simultaneously add or subtract the same voltage generated by the circulating current
control, the voltage on the AC side remains unchanged, which ensures that the circulating
current suppression does not affect the control of the system. Then, the reference voltages
of the upper and lower arms are acquired as below:{

ujp(k+1) =Udc
2 − urefj(k)− ucirj_re f (k+1)

ujn(k+1) =Udc
2 + urefj(k)− ucirj_re f (k+1)

(17)

{
njp = ujp(k+1)/Ucj_ave(k+1)
njn = ujn(k+1)/Ucj_ave(k+1)

(18)

where njp and njn are the number of sub-modules that need to be inserted in the control
loop. Figure 5 shows the voltage equalization algorithm for the upper arm in hybrid MMC.
HBSMs can output 0 and uc, while FBSM can output 0 and uc, and −uc, so their charging
and discharging time are not exactly the same. If the arm voltage is positive, both HBSMs
and FBSMs sort and insert on the basis of the direction of the arm current. Otherwise, only
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sort and insert FBSMs. ucj_ave(k + 1) is the average predictive sub-module capacitor voltage
according to:

ucj_ave(k+1) =
ucΣj(k+1)

2N
(19)
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The realizing of signals of pulse Sjp in Figure 5 for the MMC is according to Equation (1).
For the positive inserting sub-module, Sjpi = 1; for bypassing sub-module Sjp = 0; for negative
inserting submodule, Sjp = −1.

3.5. Comparison with Existing Circulating Current Control Methods

Traditional suppressing circulating current methods for MMC mainly have PI control,
PR control, and current injection method, etc. PI control combines proportional control
and integral control, making the control very timely and rapid, effectively reducing errors
and stabilizing the system, but it cannot handle model errors in the system. PR control
combines proportional control and resonant control, suitable for systems with fast response,
high accuracy, and high anti-interference requirements; however, it introduces noise ampli-
fication and sensitivity issues. Injecting methods need to make lookup tables in advance,
in which the amplitude and phase of the output current are used to generate injection
references. MPC can accurately control complex systems with multiple variables, non-
linearity, strong coupling, time delays or uncertainties; the optimal control scheme can be
developed by solving optimization problems for different control objectives and constraints.
Compared with PI/PR control, MPC has a larger computational workload and requires
more hardware resources and computational time. The proposed MPPIC combines the
merit of non-linearity of MPC and linearity of PI control, but the computation is slightly
larger than PI/PR control and far less than MPC.

The proposed controller for controlling the second circulating current is compared
with existing schemes as Table 1. The traditional holding factor sorting algorithm was
utilized to equalize the voltage of the sub-module capacitor in this paper. The larger
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the holding factor, the lower the switching frequency, and the lower computation of the
proposed controller, but the more unbalanced the capacitor voltage. The performance
of the proposed control strategy was between the only PI control and MPC method for
implementation and analysis of internal dynamics.

Table 1. Comparison with existing methods.

Methods Coordinate System The Number of
Controllers Computation Response Speed

PI dq 2 light quick
PR αβ 2 light quick

Injection abc 0 light quick
MPC abc 0 heavy slow
MPPI abc 3 medium medium

4. Simulations

According to reference [29], in order to eliminate DC side short circuit fault in hybrid
MMC, the ratio of FBSM must reach 43.3%. The larger the proportion of FBSM, the faster
the clearing speed of DC short circuit fault but the higher the cost and loss of MMC; so,
the proportion of FBSM was 50% in this paper. The main simulation circuit parameters for
simulation are listed in Table 2.

Table 2. Simulation parameters of hybrid MMC.

Item Symbol Value

DC voltage/kV Udc ±200
Arm inductance/mH Larm 20

The number of sub-modules in an arm NH, NF 10 + 10
Sub-module capacitance/mF C 7

The proposed control strategy MPPIC was enabled at t = 2.0 s. Figure 6a shows the
circulating currents; Figure 6b,c show the AC output voltages and currents. Figure 6d
shows the difference of average voltage of HBSM and FBSM of the upper arm in phase-a;
Figure 6e shows the voltages of the upper arm capacitors of phase-a. It can be seen that
after enabling MPPIC, the circulating currents were almost completely suppressed; The
fluctuation of capacitor voltages were reduced and there was no significant change on
the AC side; the voltages of the HBSMs and FBSMs were more balanced, which was an
additional benefit brought by the proposed control strategy, i.e., MPPIC. The simulation
verified the effectiveness of the circulating current control of the proposed MPPIC, and that
MPPIC has almost no any adverse effect on the external dynamic performance of MMC.
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According to [30,31], the higher the modulation ratio, the greater the circulating cur-
rent due to the imbalanced charging and discharging time between HBSMs and FBSMs. 
Therefore, the control effects of MPPIC with different modulation ratios are simulated in 
Figure 7. It can be seen that as the modulation ratio increased, the circulating current also 
increased, and the DC component was added to the circulating current, while the AC com-
ponents were distorted. However, the proposed MPPIC can suppress the circulating cur-
rent to a very small value and had a good suppression effect. 
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Figure 6. Waveforms of MMC before and after the proposed MPPIC enabled. (a) Three phases
circulating currents. (b) Three phases AC voltages. (c) Three phases AC currents. (d) The difference
of average voltage of HBSM and FBSM. (e) Voltages of 20 capacitors in upper arm of phase-a.

According to [30,31], the higher the modulation ratio, the greater the circulating
current due to the imbalanced charging and discharging time between HBSMs and FBSMs.
Therefore, the control effects of MPPIC with different modulation ratios are simulated
in Figure 7. It can be seen that as the modulation ratio increased, the circulating current
also increased, and the DC component was added to the circulating current, while the AC
components were distorted. However, the proposed MPPIC can suppress the circulating
current to a very small value and had a good suppression effect.
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Figure 8 shows the FFT analysis of circulating current in phase-a before and after
MPPIC was enabled in hybrid MMC for different modulation ratios of 1, 1.15, and 1.25.
It can be seen that the proposed MPPIC was effective for different modulation ratios; the
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larger the modulation ratio, the more uneven the capacitor voltages of the FBSMs and
HBSMs, the greater the voltage fluctuation of the sub-module capacitor, the greater the
circulation current, and the better the suppression effect of MPPIC. Overall, no matter how
much modulation ratio was, MPPIC was able to suppress the circulation current to less
than 2%.
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The performance of MMC is compared to the proposed method MPPIC and the method
of in [19], which proposed a circulating current suppression method using deadbeat control
for level increase NLM MMC. This method improved dynamic control performance while
suppressing circulating current, avoiding being detrimental to the output waveforms.
Figure 9a shows the circulating currents; Figure 9b,c indicate the three-phase voltage
output voltages and currents. The control strategy was activated at 2.0 s. The simulation
results’ comparison between the proposed MPPIC method and the method of deadbeat
control is presented in Table 3. The method in of deadbeat control adopted an NLM with
an increased level, and so, the output AC currents and voltages had a lower harmonic
distortion rate, while MPPIC had a better circulation suppression effect.

Table 3. Simulation results of the proposed MPPIC and deadbeat control for m = 1.

Methods
Proposed MPPIC Deadbeat Control

before after before after

Circulating current (A) 2-th 221.4 6.1 224.2 21.6
4-th 34.2 4.3 34.2 18.7

AC current (THD, %) 0.87 0.86 0.86 0.49
AC voltage (THD, %) 1.99 1.68 2 1.04
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5. Conclusions

Traditional circulating suppression methods PI/PR control require coordinate transfor-
mation and can only suppress specific harmonic circulating current. MPC encountered an
explosive growth in complexity of adjusting weighting factors which sharply increase with
the increase in system control objectives. In order to better utilize the superior transient
performance of model prediction and steady-state error adjustment of PI control, and
to avoid the problem of excessive computational complexity caused by traditional MPC
and sensitivity to model uncertainty by PI control, this article proposed a novel approach
MPPIC that combined the advantages of PI control and MPC in abc coordinate system.
The proposed MPPIC was easy to implement and can effectively suppress circulating
currents under different modulation ratios. It was combined with NLM and holding factor
equalization algorithm to achieve the control of MMC. A significant feature of MPPIC is
that it does not require adjusting weighting factors and calculating cost functions, which
significantly decrease computational complexity compared with traditional MPC. Finally,
the effectiveness of the proposed MPPIC was validated through simulation, and it was
compared with a typical circulation control method of deadbeat control.

This article only analyzed and achieved the suppression circulating current under the
case of the symmetry of MMC. We will further study if the proposed MPPIC is effective for
odd-order circulation current suppression under the asymmetry of the upper and lower
arms, and zero sequence circulation current under the asymmetry of the AC side.
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