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Abstract: Versatile Video Coding (VVC), the state-of-the-art video coding standard, was developed
by the Joint Video Experts Team (JVET) of ISO/IEC Moving Picture Experts Group (MPEG) and
ITU-T Video Coding Experts Group (VCEG) in 2020. Although VVC can provide powerful coding
performance, it requires tremendous computational complexity to determine the optimal mode
decision during the encoding process. In particular, VVC adopted the bi-prediction with CU-level
weight (BCW) as one of the new tools, which enhanced the coding efficiency of conventional bi-
prediction by assigning different weights to the two prediction blocks in the process of inter prediction.
In this study, we investigate the statistical characteristics of input features that exhibit a correlation
with the BCW and define four useful types of categories to facilitate the inter prediction of VVC.
With the investigated input features, a lightweight neural network with multilayer perceptron (MLP)
architecture is designed to provide high accuracy and low complexity. We propose a fast BCW mode
decision method with a lightweight MLP to reduce the computational complexity of the weighted
multiple bi-prediction in the VVC encoder. The experimental results show that the proposed method
significantly reduced the BCW encoding complexity by up to 33% with unnoticeable coding loss,
compared to the VVC test model (VTM) under the random-access (RA) configuration.

Keywords: bi-prediction with CU-level weight (BCW); complexity reduction; inter prediction;
multilayer perceptron (MLP); neural network; versatile video coding (VVC); video compression

1. Introduction

Due to the demand for diverse realistic video content on online video services, the data
traffic for video streaming over wireless or wired networks has been substantially increasing
in the field of various video-on-demand (VoD) or live services. Video compression is
required to reduce the amount of original data within a specified network bandwidth for
transmission while maintaining the visual quality of the original video as much as possible.
In 2020, Versatile Video Coding (VVC) [1] was developed by the Joint Video Experts Team
(JVET) of the ISO/IEC Moving Picture Experts Group (MPEG) and the ITU-T Video Coding
Experts Group (VCEG) as the latest international standard of video compression. The VVC
test model (VTM) [2] can achieve a coding performance of up to 41% when compared with
the high-efficiency video coding (HEVC) [3] test model (HM) under the random-access
(RA) configuration of the JVET common test conditions (CTC) [4]. To improve the coding
performance, VVC adopted new coding tools, such as quaternary tree plus multitype tree
(QTMTT), affine inter prediction, bi-prediction with CU-level weight (BCW) [5], adaptive
motion vector resolution (AMVR) [6], symmetric motion vector difference (SMVD) [7],
geometric partitioning mode (GPM) [8], merge with motion vector difference (MMVD) [9],
decoder-side motion vector refinement (DMVR) [10], and various intra-prediction tools.
Although it can significantly enhance the coding performance, the complexity of the VVC
encoder increases by up to eight times [11] compared with HEVC. Therefore, it is essential
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to reduce the encoding complexity of VVC for high-quality video services on hand-held
devices with limited hardware capacity.

As one of the essential methods in the conventional inter prediction of video coding,
bi-prediction can improve the coding efficiency compared with uni-prediction. In general,
it generates a better predicted block from both forward and backward prediction blocks
than a uni-prediction block, except for scene change or illumination change. VVC adopted
the BCW method to enhance the conventional bi-prediction by assigning different weights
between the two uni-prediction blocks to adaptively highlight either the forward or back-
ward predicted block. As shown in Table 1, it allows BCW to utilize the five different
weights according to the BCW index (BCW-Idx). While BCW can provide better coding
efficiency than the conventional bi-prediction, it causes the encoding complexity of the
bi-prediction to increase by up to five times due to the rate-distortion optimization (RDO)
computations for five weights. According to the tool-off test of BCW [12], the coding loss
and time savings were 0.40% and 9%, respectively.

Table 1. Five different weights according to the BCW index.

BCW-Idx 0 1 2 3 4

Weight −1/4 3/8 1/2 5/8 5/4

In addition, there are several limitations when applying the BCW mode. Firstly, when
combined with AMVR, it is only applied to 1-pel and 4-pel motion vector precision for
the current low-delay frame. Secondly, when combined with affine, it is performed only
when the affine mode is currently the best mode. Thirdly, in the case of paired prediction
using the same reference frame, the BCW mode is conditionally checked. Finally, the BCW
mode is not applied if specific conditions are met based on the POC distance, quantization
parameter (QP), and temporal level between the current frame and reference frame.

The formula for applying the weight of BCW is as follows:

Pbi = ((1− w)× L0 + w× L1 + 4)� 3 (1)

where w, L0, and L1 denote the BCW weight and the forward and backward prediction
block, respectively. Table 2 shows that the ratio of the chosen BCW to the average weight
(BCW-Idx 2) has a higher proportion of 60.41% than other BCW modes. BCW requires an
approximately 60% rate of unnecessary encoding complexity. Based on the biased ratio
of the BCW modes, we propose a fast BCW mode decision method using a lightweight
multilayer perceptron (MLP) in this paper. To reduce the RDO computation number of the
BCW, the proposed method determines whether to perform the BCW mode—except for
the average-weight BCW mode.

Table 2. Analysis of the ratio of BCW modes.

Class Sequence [4] BCW-Idx 0 BCW-Idx 1 BCW-Idx 2 BCW-Idx 3 BCW-Idx 4

A

Tango2 0.01% 26.41% 47.78% 25.80% 0.00%
FoodMarket4 0.02% 21.40% 54.46% 24.00% 0.12%

CatRobot 0.03% 25.00% 50.64% 24.30% 0.03%
DaylightRoad2 0.01% 20.86% 60.14% 18.98% 0.01%

B

MarketPlace 0.02% 16.35% 67.72% 15.90% 0.01%
RitualDance 0.04% 16.64% 67.23% 16.04% 0.05%

Cactus 0.01% 18.64% 62.94% 18.37% 0.03%
BasketballDrive 0.01% 17.13% 66.62% 16.23% 0.01%

BQTerrace 0.00% 18.89% 62.47% 18.63% 0.01%

Average 0.01% 19.96% 60.41% 19.59% 0.03%
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In order to develop the fast BCW mode decision method, we investigated six input
features to use as an input vector in the proposed MLP model, the so-called BCW-MLP. Its
design should consider the trade-off between the high accuracy and the low complexity to
be implemented on top of the VVC encoder (VTM-11.0). Therefore, the proposed method
was evaluated in terms of the complexity reduction as well as the coding loss on the JVET
test sequences in the middle of the development of BCW-MLP.

The remainder of this paper is organized as follows: In Section 2, we review the
related fast encoding schemes to reduce the computational complexity of the video encoder.
Subsequently, the proposed method is described in Section 3. Finally, the experimental
results and conclusions are presented in Sections 4 and 5, respectively.

2. Related Works

In terms of block structure, the VVC integrated coding unit (CU), prediction unit (PU),
and transform unit (TU) are provided by HEVC. In other words, CU is simultaneously
defined as PU and TU. In addition, the shape of the coding block is either a square or rectan-
gular shape. Therefore, VVC with a more flexible block structure can deal with numerous
complex textures through the adaptive block partitioning scheme. This implies that the
flexible block structure of VVC can provide better coding performance than that of HEVC.

While HEVC allows only a quad-tree (QT) structure split with a square shape, VVC
can support multi-type tree (MTT) structures to include binary tree (BT) and ternary tree
(TT) splits with a rectangular shape. The CU split structure of the VVC can be indepen-
dently encoded and decoded according to the quad-tree split (SPLIT_QT), binary vertical
split (SPLIT_BT_VER), binary horizontal split (SPLIT_BT_HOR), ternary vertical split
(SPLIT_TT_VER), and ternary horizontal split (SPLIT_TT_HOR) structures defined in the
VVC standard. For example, a QT node with a square shape can be further partitioned
into sub-QT or MTT nodes with a rectangular shape, whereas an MTT should be further
split into sub-MTT nodes. Here, the QT or MTT leaf nodes are considered as CU and are
encoded as PU and TU.

Figure 1 shows the CU encoding procedure in VVC. First, a CU performs the encoding
process according to the order of affine merge, regular merge, GPM prediction, and AMVP
prediction. In AMVP prediction, the five BCW weights are performed as the bi-prediction
within the loop of the four AMVR iterations. Finally, the optimal mode of the current CU is
determined after performing intra prediction.

Recently, several studies have aimed to reduce the computational complexity of VVC
encoders. These studies mainly focused on reducing the complexity of the new block
partitioning tools in VVC. In addition, studies utilizing convolutional neural networks
(CNNs) or multilayer perceptrons (MLPs) for complexity reduction have showed convinc-
ing results from the development of deep learning technology. Zhao et al. [13] proposed
the complexity reduction algorithm of VVC intra prediction based on statistical analysis
and a size-adaptive CNN (SAE-CNN) to determine whether to split CUs of different sizes.
Zhang et al. [14] designed a prediction tool using DenseNet to predict the probability of
whether the edges of 4 × 4 CU units are division boundaries and consequently reduce the
coding complexity of VVC. Yoon et al. [15] proposed an activity-based fast block partition-
ing decision method using the information of the current CU, minimizing the dependence
on the QP and utilizing the gradient calculation used in the adaptive loop filter (ALF).
Wang et al. [16] designed a multistage early termination CNN (MET-CNN) model to predict
the partition information of 32 × 32-sized CUs. In addition, they proposed the concept of
stage grid maps by dividing the entire partition into four stages to represent the structured
output and consequently predict all partition information of the 32 × 32-sized CUs and
their sub-CUs as the model outputs. Zhao et al. [17] proposed a support vector machine
(SVM)-based fast CU partition decision algorithm by analyzing the ratio of the split modes
of CUs of different sizes to effectively reduce the coding complexity of VVC. Jin et al. [18]
proposed a CNN-based fast QTBT partitioning method to predict the depth range of the
QTBT partition for 32× 32 blocks based on the inherent texture richness of the image rather
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than judging the split at each depth level. Pan et al. [19] proposed an early termination of
the QTMT-based block partition process using a multi-information fusion CNN (MFCNN)
model. In addition, a content-complexity-based early merge mode decision method was
proposed for the CU prediction residuals and the confidence of MFCNN. Liu et al. [20]
designed a CNN-based model for fast inter partitioning in VVC, limiting the QT split search
and avoiding partitions that are unlikely to be selected.
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tools added into VVC.

In VVC, complexity reduction studies of prediction tools were mainly conducted on
statistical characteristics. Jung et al. [21] proposed a fast affine prediction method that deter-
mines whether to perform a context-based affine prediction mode to reduce inter-prediction
complexity. Zhang et al. [22] proposed a fast GPM decision algorithm by comparing the
average values of the gradients in four directions of the CUs to determine whether to per-
form GPM in VVC. They used the Sobel operator to calculate the gradients and determined
six GPM candidate modes based on the gradient directions. Tun et al. [23] investigated the
relationship between the RD cost and the sum of absolute transformed difference (SATD)
of rough mode decision (RMD) to decrease the RDO calculations of intra-prediction modes.
Park et al. [24] proposed a method to reduce the encoding complexity of intra prediction,
which designed a light gradient boosting machine (LightGBM) model using the average
absolute sum of transform coefficients as a key feature to determine whether to perform
the ISP mode. Dong et al. [25] proposed a fast intra mode decision algorithm consisting of
two aspects of mode selection and prediction termination. Shang et al. [26] also designed a
fast intra-prediction algorithm based on statistical characteristics using the distribution of
neighboring coding regions and prediction modes to skip unnecessary splits and prediction
modes in advance. Although studies to reduce the complexity of intra-prediction tools
have been conducted in various aspects, more studies are needed to speed up the newly
adopted inter-prediction tools in VVC.

3. Proposed Method

To implement a fast encoding algorithm on the limited hardware platform, it is efficient
to use an MLP with lower complexity than a CNN. Therefore, the proposed method
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designed an MLP-based neural network that exhibits significantly lower complexity than
the CNN-based model.

As shown in Figure 2, the proposed method is divided into two processes: extracting
input features and determining whether to perform average weighting based on the output
of the BCW-MLP. First, we extracted six input features to be fed into the BCW-MLP
model. Subsequently, the BCW-MLP model outputted the y value to determine whether to
perform the BCW with average weight. If the output y value is greater than the predefined
threshold, the BCW-Idx 2 is performed; otherwise, the encoding process is performed for
all BCW modes.
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inserted into AMVP prediction with gray modules.

3.1. Feature Extraction for BCW-MLP

In this study, the proposed method defined the relationship between the parent and
neighboring CUs of a current CU, where the parent CU can be a square QT node or
a rectangular MTT node covering the area of the current CU. On the other hand, the
neighboring CUs refer to the left and above CUs, which complete the encoding and
decoding process.

The network input features are classified into four categories, all input features are
extracted during the encoding process, and each input feature is converted into a value
between 0 and 1. The first category shows the correlation of the BCW modes with the
parent and neighboring CUs, which can be related to the current BCW mode. The second
category includes base QP, slice QP, and temporal layers, which are features associated
with QP. The third category represents the current CU size, such as width, height, and
pixel ratios. Finally, the fourth category consists of AMVR and coded block flags (CBFs),
which are related to the interference of other prediction tools. Table 3 presents the detailed
definitions of the abovementioned input feature candidates.
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Table 3. Description of input feature candidates per category.

Category Features Description

BCW Mode

Parent BCW BCW mode derived from parent CU is divided by 6.

Neighboring BCW
If the BCW mode derived from the left CU has an average weight, the
value is increased by 0.5. Similarly, if the BCW mode derived from
the above CU has an average weight, the value is increased by 0.5.

QP

Base QP Base QP is divided by 63.

Slice QP Slice QP is divided by 63.

Temporal Layer Temporal layer is divided by 5.

Block Size

Width Ratio W/(W + H) 1

Height Ratio H/(H + W)

Pixel Ratio W × H/128 × 128

Prediction
AMVR AMVR mode is divided by 4.

CBF Coded block flag value is divided by 3.
1 W and H are the width and height of the current CU, respectively.

The proposed BCW-MLP model selects fewer input feature candidates to set the input
features based on a Pearson correlation coefficient (PCC) heatmap between the input feature
candidates and labels as illustrated in Figure 3. In the first category of Table 3, two input
feature candidates were selected as input features, because they have a strong relationship
with the current BCW mode. In the second category of Table 3, the slice QP has a higher
correlation with the label than the base QP and the temporal layer (TL). Additionally, strong
intercorrelations exist among features, for example, the PCC between the slice QP and TL
was 0.9822. The pixel ratio with the highest correlation in the third category was set as
the input feature. Finally, we used two candidates as input features in the fourth category.
Therefore, six candidates were used as input features to design the BCW-MLP model, which
are parent BCW, neighboring BCW, slice QP, pixel ratio, AMVR, and CBF, respectively.
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3.2. Fast Mode Decision Algorithm Using BCW-MLP

We implemented an MLP architecture before the BCW mode, defined as BCW-MLP,
to determine whether to perform the BCW mode—except for the average-weight BCW
mode. In the feature extraction stage, a one-dimensional (1D) column vector with six
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input features was generated as the input vector of BCW-MLP. As shown in Figure 4, the
BCW-MLP consists of six input nodes, two hidden layers with 30 and 15 hidden nodes, and
one output node, respectively.
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The output of the jth neuron is calculated as in Equation (2):

yj = f
(
∑ wjixi + bj

)
, where j = 1, . . . , ϕ (2)

where xi, wji, bj, and ϕ denote the ith input feature, the filter weight corresponding to the
ith input feature, the bias value of the jth node, and the number of nodes within each layer,
respectively. In addition, f (·) indicates activation functions of the hidden layer and output
layer, which are ReLU and sigmoid function, respectively, and yj denotes the output of
f (·) the jth neuron. The network output y has a value between 0 and 1. Note that when
the output values of the model are close to 1, then only the average-weight BCW mode is
performed among the BCW modes.

To establish an appropriate threshold, we investigated the ratio of average weighted
BCW modes to the output values of the network. Table 4 describes the ratio of optimal BCW
modes determined by the RDO process during encoding and the distribution by the range
of network output values. It can be observed that when the network output value was 0.6
or higher, the distribution of the average weighted BCW mode was over 90%. In this paper,
the threshold was set to 0.6. Then, the encoder performs only the average-weight BCW
mode when the output value is larger than the threshold.

Table 4. Ratio of BCW mode according to output value.

Output Range
Ratio of BCW Mode

Average Weight Other Weight

0.0~0.1 72% 28%
0.1~0.2 78% 22%
0.2~0.3 72% 28%
0.3~0.4 76% 24%
0.4~0.5 54% 46%
0.5~0.6 83% 17%
0.6~0.7 92% 8%
0.7~0.8 92% 8%
0.8~0.9 75% 25%
0.9~1.0 94% 6%
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4. Experimental Results

The proposed method was implemented on top of VTM-11.0 using the Keras2.2.4
library on Python 3.6.8. Table 5 shows the training environments of the proposed network.
The proposed network was trained using the BVI-DVC dataset [27] with a resolution of
3840 × 2160 pixels and the QPs were set to 22 and 32. The size of the training dataset
is 12,511,937 images, which were collected from various CU sizes during the encoding
process. In addition, 20% of the data were used as the validation set.

Table 5. Training environments of the proposed network.

Settings Options

Training Sequence BVI-DVC
Number of Sequences 12

Resolution 3840 × 2160
Number of Datasets 12,511,937

Quantization Parameters 22, 32
Framework Keras2.2.4

Table 6 lists the hyperparameters used to train the proposed network. While the
activation function of all hidden layers, except the final output layer, was set to ReLU, the
output layer used the sigmoid function to compute a floating value between 0 and 1. The
batch size, learning rate, and optimization method were set to 512, 0.01, and stochastic
gradient descent (SGD) [28], respectively. The weight initialization of the hidden layers
was performed according to Xavier’s normalized initialization procedure [29], whereby the
optimized model parameters were updated iteratively within a predefined epoch number
and the Mean Squared Error (MSE) was used as a loss function.

Table 6. Hyperparameters of the proposed network.

Hyperparameters Options

Optimizer Adam
Activation Function ReLU, Sigmoid

Loss Function Mean Squared Error
Learning Rate 0.01

Number of Epochs 100
Batch Size 512

Dataset Sampling Random Undersampling
Initial Weight Xavier

Figure 5 shows the training and validation results of the proposed network, which
measure the accuracy of the optimal BCW mode and loss functions according to the number
of epochs.

To investigate the optimal architecture of BCW-MLP, various ablation works were con-
ducted in terms of the number of input features, hidden layers, and nodes per hidden layer
as shown in Table 7. After considering both the accuracy and the loss of networks, BCW-
MLP has two hidden layers with 30 and 15 nodes in the first and second layer, respectively.

In addition, tool-off tests on the validation and training datasets were performed to
measure the effectiveness of the six input features. Table 8 represents the experimental
results obtained by omitting one of the six input features and shows that each input feature
has an effect on the performance of our network. In particular, the neighboring BCW is
observed as the most effective input feature of BCW-MLP.
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Table 7. Ablation works of the proposed BCW-MLP.

Network
Training Validation

Network
Training Validation

Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy

6 × 15 × 1 0.0955 0.8699 0.0957 0.8694 6 × 45 × 15 × 1 0.0941 0.8724 0.0942 0.8724
6 × 30 × 1 0.0940 0.8722 0.0940 0.8721 6 × 45 × 30 × 1 0.0941 0.8720 0.0945 0.8725
6 × 45 × 1 0.0941 0.8722 0.0940 0.8721 6 × 45 × 45 × 1 0.0941 0.8723 0.0942 0.8718
6 × 60 × 1 0.0940 0.8722 0.0941 0.8723 6 × 45 × 60 × 1 0.0941 0.8718 0.0945 0.8716
6 × 75 × 1 0.0941 0.8722 0.0941 0.8723 6 × 45 × 75 × 1 0.0942 0.8719 0.0944 0.8720

6 × 15 × 15 × 1 0.0941 0.8722 0.0938 0.8727 6 × 60 × 15 × 1 0.0941 0.8723 0.0940 0.8724
6 × 15 × 30 × 1 0.0942 0.8719 0.0940 0.8725 6 × 60 × 30 × 1 0.0942 0.8720 0.0943 0.8721
6 × 15 × 45 × 1 0.0942 0.8721 0.0941 0.8725 6 × 60 × 45 × 1 0.0942 0.8721 0.0944 0.8712
6 × 15 × 60 × 1 0.0941 0.8724 0.0939 0.8726 6 × 60 × 60 × 1 0.0941 0.8724 0.0940 0.8729
6 × 15 × 75 × 1 0.0941 0.8721 0.0941 0.8722 6 × 60 × 75 × 1 0.0942 0.8720 0.0939 0.8722
6 × 30 × 15 × 1 0.0940 0.8730 0.0940 0.8730 6 × 75 × 15 × 1 0.0942 0.8719 0.0940 0.8725
6 × 30 × 30 × 1 0.0947 0.8715 0.0944 0.8720 6 × 75 × 30 × 1 0.0941 0.8724 0.0939 0.8728
6 × 30 × 45 × 1 0.0939 0.8726 0.0943 0.8719 6 × 75 × 45 × 1 0.0942 0.8719 0.0941 0.8712
6 × 30 × 60 × 1 0.0943 0.8716 0.0943 0.8719 6 × 75 × 60 × 1 0.0941 0.8721 0.0939 0.8727
6 × 30 × 75 × 1 0.0941 0.8721 0.0940 0.8724 6 × 75 × 75 × 1 0.0940 0.8724 0.0941 0.8720

Table 8. Tool-off tests among the input features.

Network
Training Validation

Loss Accuracy Loss Accuracy

All Features 0.0941 0.8725 0.0939 0.8730
Tool-off of Parent BCW 0.0970 0.8689 0.0971 0.8693

Tool-off of Neighboring BCW 0.1548 0.7628 0.1547 0.7634
Tool-off of SliceQP 0.0952 0.8698 0.0950 0.8705

Tool-off of PixelRatio 0.1376 0.8140 0.1376 0.8142
Tool-off of AMVR 0.0956 0.8701 0.0954 0.8705

Tool-off of CBF 0.0942 0.8718 0.0940 0.8717
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All experiments were run on an Intel Xeon Gold 6230R 52-cores 2.10 GHz processor
with 256 GB RAM operated by the 64-bit Windows server 2019. In class A (3840 × 2160)
and B (1920 × 1080) sequences of JVET CTC, the performance of the proposed method
was evaluated under the random-access (RA) and the low-delay-B (LDB) configuration
and compared with VTM-11.0. Additionally, the trained model was converted to the C++
standard format and implemented in the VTM-11.0. To measure the coding loss, we used
the Bjontegaard Delta Bit Rate (BDBR) [30]. In general, a BDBR increase of 1% corresponds
to a BD-PSNR decrease of 0.05 dB, where the positive increment in BDBR indicates coding
loss. The weighted averages of the BDBR of the Y, U, and V color components were
measured as in Equation (3):

BDBRYUV =
6× BDBRY + BDBRU + BDBRV

8
(3)

where BDBRY, BDBRU , and BDBRV denote the BDBRs of the Y, U, and V color com-
ponents, respectively. To evaluate the encoding time (ET) reduction, the ETtool_o f f and
ETproposed are computed as in Equations (4) and (5):

ETtool_o f f =
1
4 ∑

QPi∈{22,27,32,37}

Torg(QPi)− Ttool_o f f (QPi)

Torg(QPi)
(4)

ETproposed =
1
4 ∑

QPi∈{22,27,32,37}

Torg(QPi)− Tproposed(QPi)

Torg(QPi)
(5)

where Torg, Ttool_o f f , and Tproposed indicate the total encoding times of the anchor, tool-off
test, and proposed methods, respectively. For comparison of the computational complexi-
ties, we measured the time savings of total encoding time (TET) and BCW encoding time
(BET) by Equations (6) and (7):

TET =
TETtool_o f f − TETproposed

TETtool_o f f
(6)

BET =
BETtool_o f f − BETproposed

BETtool_o f f
(7)

where TETtool_o f f , TETproposed, BETtool_o f f , and BETproposed mean the TET of the ETtool_o f f ,
TET of the ETproposed, BET of the ETtool_o f f , and BET of the ETproposed, respectively. For
reference, BET measures the time taken only for the portion of the VVC encoder process
that performs bi-prediction. In summary, the performance comparisons between the
proposed method and the anchor are presented in Table 9. Compared to the anchor, the
proposed method can achieve average time savings of 32% and 33% in terms of TET and
BET, respectively.

Table 10 shows the performance comparisons between the proposed method and the
anchor under the LDB configuration. In addition, the proposed method was tested for class
B. Compared to the anchor, the proposed method achieved average time savings of 35%
and 49% in terms of TET and BET, respectively. The experimental results show that the
proposed method achieves higher coding efficiency in the LDB configuration compared to
the RA configuration.
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Table 9. Coding performance of proposed method over VTM-11.0 under the RA configuration.

Class Sequences BDBRY BDBRU BDBRV BDBRYUV TET BET

A

Tango2 0.25% 0.47% 0.43% 0.30% 41% 39%
FoodMarket4 0.24% 0.38% 0.48% 0.29% 51% 39%

CatRobot 0.36% 0.50% 0.46% 0.39% 22% 15%
DaylightRoad2 0.05% 0.39% 0.09% 0.10% 28% 33%

Average 0.23% 0.43% 0.36% 0.27% 35% 32%

B

MarketPlace 0.19% 0.62% 0.08% 0.23% 23% 37%
RitualDance 0.28% 0.15% 0.22% 0.26% 25% 37%

Cactus 0.14% 0.07% 0.10% 0.12% 26% 18%
BasketballDrive 0.36% 0.41% 0.18% 0.34% 55% 47%

BQTerrace 0.33% 0.21% 0.14% 0.29% 21% 33%

Average 0.26% 0.29% 0.15% 0.25% 30% 34%

Total Average 0.24% 0.35% 0.24% 0.26% 32% 33%

Table 10. Coding performance of proposed method over VTM-11.0 under the LDB configuration.

Class Sequences BDBRY BDBRU BDBRV BDBRYUV TET BET

B

MarketPlace −0.10% −0.46% −0.45% −0.19% 44% 58%
RitualDance −0.02% −0.05% −0.28% −0.06% 21% 30%

Cactus 0.11% 0.20% 0.34% 0.15% 44% 62%
BasketballDrive 0.04% −0.10% 0.16% 0.04% 9% 33%

BQTerrace 0.27% 0.46% 0.95% 0.38% 54% 64%

Average 0.06% 0.01% 0.14% 0.06% 35% 49%

5. Conclusions

VVC has newly adopted the BCW method to enhance conventional bi-prediction. It
was possible to improve the coding performance compared to conventional bi-prediction,
but it caused high encoding complexity. In this study, the complexity reduction in BCW
was addressed with the decision rule of BCW-MLP. We proposed a fast BCW mode decision
method using a lightweight MLP to determine whether to perform the BCW mode—except
for the average-weight BCW mode. The proposed BCW-MLP consists of six input nodes,
two hidden layers with 30 and 15 nodes, and one output node. To reduce the encoding
complexity of BCW and minimize coding loss, six input features were investigated by
analyzing the correlation between the input features. In addition, various verification tests
were conducted to determine the optimal network architecture. The proposed method
was evaluated under the JVET CTC and compared with VTM-11.0 as an anchor. Our
experimental results show reductions in the average encoding complexity of 32% and 35%,
with unnoticeable coding loss compared to the anchor of RA and LDB, respectively.
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