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Abstract: During the long and high-intensity railway use, all kinds of defects emerge, which often
produce light to moderate damage on the surface, which adversely affects the stable operation of
trains and even endangers the safety of travel. Currently, models for detecting rail surface defects
are ineffective, and self-collected rail surface images have poor illumination and insufficient defect
data. In light of the aforementioned problems, this article suggests an improved YOLOX and image
enhancement method for detecting rail surface defects. First, a fusion image enhancement algorithm
is used in the HSV space to process the surface image of the steel rail, highlighting defects and
enhancing background contrast. Then, this paper uses a more efficient and faster BiFPN for feature
fusion in the neck structure of YOLOX. In addition, it introduces the NAM attention mechanism to
increase image feature expression capability. The experimental results show that the detection of
rail surface defects using the algorithm improves the mAP of the YOLOX network by 2.42%. The
computational volume of the improved network increases, but the detection speed can still reach
71.33 fps. In conclusion, the upgraded YOLOX model can detect rail surface flaws with accuracy
and speed, fulfilling the demands of real-time detection. The lightweight deployment of rail surface
defect detection terminals also has some benefits.

Keywords: image processing; rail surface defects; image enhancement; YOLOX

1. Introduction

In recent years, after continuous large-scale development, China’s rail transportation
industry has made remarkable achievements and stepped into a new development period.
In the process of train operation, seamless steel rails play a guiding and supporting role,
and pressure is continuously generated between wheels and rails; at the same time, high-
strength and high-density fatigue wear will lead to different degrees of surface defects on
the rails [1–4]. This will affect the smoothness of the track, the stability and the comfort of
train operation, and become an important factor that restricts the transportation efficiency
of rail trains and affects the safety of train operation [5–8]. The traditional rail surface defect
detection method mainly comprises manual inspection; this way is subjective, inefficient
and costly, and there are safety risks, which makes it difficult to meet operation and
development needs [9–11].

To solve the above problems, the nondestructive testing and evaluation of rail sur-
face defects is receiving increasing attention [12–14]. Common NDT techniques include
ultrasonic inspection [15,16], electromagnetic inspection [17,18], and machine vision in-
spection [19–21]. Machine vision inspection is faster, more efficient, and completely non-
invasive compared to other inspection techniques, making it more suited to the job of
locating flaws on the rail surface. Yu et al. [18] suggested a coarse-to-fine model (CTFM)
to discover flaws at several sizes, including sub-image level, region level, and pixel level.
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Zhang et al. [19] put out a novel line-level labeling-based finite-sample RSD detection
technique based on line-level labeling, which classifies pixel lines by using defect images
as sequence data. Then, to detect rapid track defects and common heavy track flaws,
respectively, two detection methods, OC-IAN and OC-TD, were developed. Wang et al. [20]
designed a new feature pyramid for multiscale fusion in the mask R-CNN network and
used complete intersection over union (CIOU) to overcome the limitation of intersection
over union (IOU) in some special cases, and the mean average precision (mAP) of rail
surface defect detection reached 98.70%. Hu et al. [21] added the CA attention mechanism
and adaptive spatial feature fusion (ASFF) to the YOLOX-Nano network, and the modified
network mAP was improved by 18.75%. Feng et al. [22] organically combined MobileNet
with the YOLOv3 network and combined it with experiments to demonstrate that the M2-
Y3 network can achieve relatively optimal detection results. Zhang et al. [23] self-captured
rail images and segmented rail surface defects using a multi-contextual information seg-
mentation network (MCnet) with good performance. Jin et al. [24] proposed a DM-RIS
model for segmentation of rail surface defect edges and also trained an improved faster
RCNN to remove non-defects, which showed a high robustness. Li et al. [25] designed a net-
work called WearNet that detects metal surface scratches through image classification. The
network is quite light, and in the experiments, the network classification accuracy reached
94.16%. In addition, some other methods were also proposed in recent years [26–35].

According to the literature, real-time issues must be prioritized in realistic surface
defect detection tasks [36–43]. The YOLO series [44–47] represents the one-stage target
identification technique, which is faster than the two-stage approach but less accurate. The
two-stage target detection algorithm, represented by the faster R-CNN [48] and cascade
R-CNN [49], on the other hand, typically has worse algorithmic accuracy but greater speed.
At the same time, due to the relatively complex environment of rail image acquisition
and poor illumination, the direct implementation of the above detection methods to their
application is not ideal.

This work initially suggests a fusion image enhancement technique to highlight the
details of rail surface defects to address the issues raised above and accomplish effective
rail surface defect identification. Second, based on YOLOX [50,51], BiFPN-Tiny is used
as an enhanced feature extraction network to lower the training cost of the network, add
NAM attention to the three effective feature layers of the backbone network, and further
improve the detection accuracy of rail surface defects [52,53]. In the end, the enhanced
model is evaluated and contrasted with conventional target detection networks, and is
experimentally confirmed to satisfy the real-world requirements of rail surface defects.

2. Materials and Methods
2.1. Data Gathering and Preparation
2.1.1. Dataset Construction

Depending on the classification standard of injury and damage, and the study of
the formation mechanism of rail surface defects, common defects on rails are as follows:
(a) Dent: oval-shaped edge, only locally present; (b) Crush: obvious transverse depression;
(c) Scratch: longitudinal slight long strip damage; (d) Slant: tear in the side of the rail
surface; (e) Damage: parent material from rail surface displacement; (f) Unknown: cannot
clearly determine whether it is damage, needs manual confirmation; (g) Dirt: paint or dirt
covering the rail surface; (h) Gap: weld or obvious break between adjacent rails. The above
eight types of defects are shown in Figure 1 below.

In this study, Dent, Crush, Scratch, Slant, Damage, and Unknown are collectively
referred to as Defect. Based on this, the dataset in this study has three categories of Defect,
Dirt, and Gap. The image data in this study were mainly obtained from self-collected track
images, the RSDDs Dataset, and Dutch heavy rail track images provided by ProRail. After
removing the low-quality images, there are 200 valid Defect images [54–56].



Electronics 2023, 12, 2672 3 of 15Electronics 2023, 12, x FOR PEER REVIEW 3 of 16 
 

 

    
(a) Dent (b) Crush (c) Scratch (d) Slant 

    
(e) Damage (f) Unknown (g) Dirt (h) Gap 

Figure 1. Examples of rail surface defects. 

In this study, Dent, Crush, Scratch, Slant, Damage, and Unknown are collectively 

referred to as Defect. Based on this, the dataset in this study has three categories of Defect, 

Dirt, and Gap. The image data in this study were mainly obtained from self-collected track 

images, the RSDDs Dataset, and Dutch heavy rail track images provided by ProRail. After 

removing the low-quality images, there are 200 valid Defect images [54–56]. 

After completing image annotation, the dataset is relatively small. To make the da-

taset more diverse and avoid overfitting during the training process, this study uses hor-

izontal flip, vertical flip, random brightness, random contrast, etc., to enhance the dataset 

and generate the corresponding label files at the same time. The enhanced sample images 

are shown in Figure 2. The training set, validation set, and test set in this study are divided 

into 1000 images in the augmented dataset in the ratio of 8:1:1. 

     
(a) Original (b) Horizontal Flip (c) Vertical Flip (d) Random Brightness (e) Random Contrast 

Figure 2. Sample dataset enhancement. 
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therefore, enhancing the quality of rail surface images and highlighting defect information 
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Figure 3. 

Figure 1. Examples of rail surface defects.

After completing image annotation, the dataset is relatively small. To make the dataset
more diverse and avoid overfitting during the training process, this study uses horizontal
flip, vertical flip, random brightness, random contrast, etc., to enhance the dataset and
generate the corresponding label files at the same time. The enhanced sample images are
shown in Figure 2. The training set, validation set, and test set in this study are divided
into 1000 images in the augmented dataset in the ratio of 8:1:1.
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2.1.2. Fusion Image Enhancement Algorithm

Self-captured rail surface images are susceptible to light and other environmental
factors, resulting in low image contrast and blurred defect details that are difficult to detect;
therefore, enhancing the quality of rail surface images and highlighting defect information
is the key to rail surface defect detection. The image enhancement algorithm is shown in
Figure 3.

The HSV color space is more in line with how the human eye perceives color than the
RGB color space is. To avoid adjusting the three color channels separately in the RGB color
space, the rail surface image is first converted to the HSV color space, and the S component
and the V component are adjusted while keeping the H component constant. The ensuing
color distortion brings the improved image closer to how the human eye sees things.
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Figure 3. Fusion image enhancement algorithm.

According to Retinex theory, an image can be regarded as consisting of an irradiation
component and a reflection component. The irradiation component describes information
about the light source, the brightness of the shooting environment, etc. The reflection
component reflects the surface information of the object and portrays the essential charac-
teristics of the object. The relationship between the image and the irradiation and reflection
components is shown in Equation (1).

I(x, y) = L(x, y) · R(x, y) (1)

The basic idea of single-scale Retinex (SSR) is to suppress the irradiation component in
the original image and retain the reflective properties that reflect the essential characteristics
of the target. The SSR algorithm is calculated as follows:

r(x, y) = log R(x, y) = log
I(x, y)
L(x, y)

= log I(x, y)− log[G(x, y) ∗ I(x, y)] (2)

where r(x, y) is the output image and ∗ denotes the convolution calculation. A Gaussian
filter is generally used in SSR, which is prone to misjudgment and leads to halo artifacts
in the processed image. In this study, a bilateral filter—which can significantly enhance
the smoothness and continuity of the picture boundary—is utilized to address this issue
rather than a Gaussian filter. The bilateral filter introduces the Gaussian standard deviation
C on the basis of Gaussian filtering and takes into account gray-scale similarity and spatial
distribution, which can achieve edge-preserving denoising. The following is the bilateral
filter expression:

f (x, y) = ∑
(i,j)∈N(x,y)

ω(i, j) · I(i, j)/ ∑
(i,j)∈N(x,y)

ω(i, j) (3)

In Equation (3), f (x, y) is the filtered image; N(x, y) is the neighborhood centered on
pixel I(x, y); and ω is the weighting factor, which is defined as follows:

ω(i, j) = ωs(i, j)×ωr(i, j) (4)

ωs(i, j) = exp(− (x− i)2 + (y− j)2

2σs2 ) (5)

ωr(i, j) = exp(−|I(i, j)− I(x, y)|2

2σr2 ) (6)

In Equations (9) and (10), the weighting coefficients in the spatial and grayscale
domains are represented as ωs and ωr, respectively. The grayscale and spatial domains’
corresponding standard deviations are shown by σs and σr, respectively.
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After SSR processing based on the bilateral filter, the V component image r(x, y) is
subjected to the adaptive gamma transform, as indicated in Formula (7), to enhance the
dark features of the image, correct the exposure of the image, and make the color of the
image more natural.

G(x, y) = [r(x, y)]γ (7)

γ = [2 + l(x, y)][2×l(x,y)−1] (8)

G(x, y) is the processed image. γ controls the degree of scaling of the whole trans-
formation. l(x, y) is positively correlated with γ. By using adaptive gamma correction,
we can effectively avoid the generation of overly bright areas while further enhancing the
brightness of darker areas.

After adaptive Gamma correction, the image is subsequently subjected to contrast-
limited adaptive histogram equalization (CLAHE) for contrast stretching to increase the
image’s contrast, which establishes a threshold value for each region of the histogram and
evenly distributes the pixels above the threshold to other gray levels of the histogram.
This approach limits the amount of variation in the histogram, suppresses the noise intro-
duced during Histogram Equalization, and enhances local contrast without affecting the
overall contrast.

After processing the V-component of the image, the S-component of the image is low,
and the color is not full enough and needs to be stretched appropriately. In this study,
the saturation is adaptively adjusted according to the luminance so that the overall image
color is more realistic. First, the image luminance component enhancement multiplier is
calculated, which is defined as shown below:

β = V
′/
V

(9)

β′ =
β− βmin

βmax − βmin
(10)

S′ = [
1
2
+ β′ × max(R, G, B) + min(R, G, B) + 1

2×mean(R, G, B) + 1
]× S (11)

In the Equations (9)–(11), β denotes the luminance ratio. V and V′ denote the lumi-
nance components before and after enhancement, respectively. β′ denotes the normalized
luminance ratio. S and S′ denote the saturation components before and after adjustment,
respectively. In the original image, max(R, G, B), min(R, G, B), and mean(R, G, B) stand
for the respective RGB channel’s associated pixels’ greatest, lowest, and average values,
respectively.

After processing in HSV color space, the image is returned to the RGB color space for
display. An example of the steel rail surface image processed by the image enhancement
algorithm of this study is shown in Figure 4.
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2.2. Principle of YOLOX Model

The YOLOX algorithm is a high-performance detector proposed by Kuangwei Technol-
ogy Research Institute 2021 that achieves an AP beyond YOLOv3, YOLOv4, and YOLOv5
with competitive inference speed. Figure 5 depicts the entire network layout of YOLOX,
and the significant advancements over the prior YOLO series are briefly discussed.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 16 
 

 

  

  

  

  

  
(a) Original image (b) Image enhancement 

Figure 4. Example of image enhancement effect. 

2.2. Principle of YOLOX Model 

The YOLOX algorithm is a high-performance detector proposed by Kuangwei Tech-

nology Research Institute 2021 that achieves an AP beyond YOLOv3, YOLOv4, and 

YOLOv5 with competitive inference speed. Figure 5 depicts the entire network layout of 

YOLOX, and the significant advancements over the prior YOLO series are briefly dis-

cussed.  

 

Figure 5. YOLOX network structure. 

CSPDarkNet, which employs the focus structure rather than convolution to compress 

the width and height of the input image, is used as the backbone feature extraction net-

work in YOLOX. A cross-stage local network CspLayer, as shown in Figure 6, is intro-

duced in the network instead of the original residual structure. The SPPBottleneck is also 

introduced into the network to increase the perceptual field and feature extraction capa-

bility of the network through the maximum pooling of different pooling kernels for fea-

ture extraction. The problem of over-learning is effectively avoided by using the SiLU ac-

tivation function, which is shown in Equation (12). 

1
SiLU( ) ( )

1 x
x x sigmoid x x

e
   


 (12) 

 

Focus(320,320,12)

Input image(640,640,3)

Conv2D_BN_SiLU(320,320,64)

Conv2D_BN_SiLU(160,160,128)

CspLayer(160,160,128)

CspLayer(80,80,256)

Conv2D_BN_SiLU(80,80,256)

CspLayer(40,40,512)

Conv2D_BN_SiLU(40,40,512)

Conv2D_BN_SiLU(20,20,1024)

SPPBottleneck(20,20,1024)

CspLayer(20,20,1024) Conv2D

UpSampling2D

Concat+CSPLayer

Conv2D

UpSampling2D

Concat+CSPLayer YOLO Head

Downsample

Concat+CSPLayer

Downsample

Concat+CSPLayer

YOLO Head

YOLO Head

Conv2D_BN_SiLU

Maxpool

Kernel [13,13]

Conv2D_BN_SiLU

Conv2D_BN_SiLU

Conv2D_BN_SiLU

Conv2D_BN_SiLU

Cls

Conv2D_BN_SiLU

Conv2D_BN_SiLU

Reg Obj

CSPDarknet

Resblock body

Dark2

Resblock body

Dark3

Resblock body

Dark4

Resblock body

Dark5

PAFPN

YOLOHeadSPPBottleneck

Maxpool

Kernel [5,5]

Maxpool

Kernel [9,9]
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CSPDarkNet, which employs the focus structure rather than convolution to compress
the width and height of the input image, is used as the backbone feature extraction network
in YOLOX. A cross-stage local network CspLayer, as shown in Figure 6, is introduced in
the network instead of the original residual structure. The SPPBottleneck is also introduced
into the network to increase the perceptual field and feature extraction capability of the
network through the maximum pooling of different pooling kernels for feature extraction.
The problem of over-learning is effectively avoided by using the SiLU activation function,
which is shown in Equation (12).

SiLU(x) = x · sigmoid(x) = x · 1
1 + e−x (12)
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A lightweight decoupling header with a separation of the localization and classification
processes is introduced on the prediction side of YOLOX, which is structured as follows.
The branch output of the predicted category is in the form H×W ×C, the branch output of
the predicted location is in the form of H ×W × 4, and the branch output of the predicted
IoU score is in the form of H ×W × 1. The feature map’s dimensions are H and W, and c
stands for the target’s category count. By using a lightweight decoupling head, the network
convergence speed of YOLOX is improved. YOLOX decoupled head is shown in Figure 7.
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Figure 7. YOLOX Decoupled Head.

In addition, YOLOX is an unanchored frame target detection algorithm that does
not require an abundance of preset anchor frames, and the hyperparameter adjustment is
much smaller than other algorithms in the YOLO series. In the practice detection mission,
the positive and negative samples of YOLOX are not evenly distributed, so a preliminary
screening of the prediction frame is performed first, which requires the feature points of the
prediction frame to be within the real frame of the target object and the distance from the
center of the target object to be within a certain range. Simple optimal transport assignment
(SimOTA) is used to automatically select the feature maps to be matched after the initial
screening is finished.

2.3. Improved the YOLOX Model

Figure 8 illustrates two important ways in which the model in this study has improved.
The NAM attention mechanism is introduced to increase the feature expression capability
of the image after the three feature layers of the backbone network have been extracted.
This allows the network to concentrate more on the track surface to be measured and ignore
the extraneous background information.

2.3.1. Principle of Improved Multi-Scale Feature Fusion Network

The neck structure of YOLOX extracts the target features by layered abstraction. The
shallow layer of the network contains clear image location information, while the deep
layer contains more semantic information about the image. YOLOX uses PANet as the
feature fusion structure, which organically fuses the shallow and deep information of the
network. However, the computing method for PANet is made more challenging by the
network’s intricate topology. In this study, we borrow the weighted bidirectional feature
pyramid BiFPN for multi-feature fusion to improve the inference speed of the algorithm.
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Figure 8. Improved YOLOX network structure.

To combine the feature information of various scales in the backbone network, BiFPN
uses the same bi-directional channels of up- and down-sampling as PANet. Figure 9a
depicts the structure of the BiFPN network, where the blue arrows indicate down-sampling
and the red arrows indicate up-sampling. The input feature layer in the first column is half
the length and width of the previous layer from top to bottom. The feature layers in the
second column form the top-down pathway, accepting feature information from this level
and the previous level, splicing and performing convolutional fusion, and then passing
it into the next level and the bottom-up pathway. The feature layer in the third column
constitutes the bottom-up pathway, which transmits the incoming features to the next layer
or for prediction after convolutional fusion.
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Since the fused feature layers have different resolutions and different importance
to the output features, BiFPN adds learnable weights to all the inputs and continuously
adjusts the network. Fast normalized fusion, as shown in the Equation (13), is used in
BiFPN, which is less computationally intensive and has a similar accuracy compared with
the Softmax function-based fusion approach.

OUT = ∑
i

ωi
ε + ∑

i
ωj
·INi (13)

In Equation (13), INi and OUT denote the input and output features, respectively.
The normalization and ReLU functions are used to make the weights ωi ∈ [0, 1]. ε is
minimal and to keep the values stable. The backbone part of the network in this study
extracts three effective feature layers, so the BiFPN is simplified (denoted as BiFPN-Tiny)
to reduce computation while adapting the network. Figure 9b depicts the BiFPN-Tiny
network structure.
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2.3.2. Theorem of Incorporating NAM Attention Mechanism

Relying solely on the spontaneous transmission of feature information from the net-
work, the lack of filtering of key information may lead to the neglect of small targets,
which is difficult to apply in the case of complex backgrounds on the track surface and the
presence of small defects. NAM is a lightweight and efficient attention mechanism that can
effectively avoid the use of fully connected and convolutional layers to improve computa-
tional efficiency while maintaining similar performance to other attention mechanisms. By
revamping the channel attention submodule (CAM) and the spatial attention submodule
(SAM), NAM uses the modular integration strategy of CBAM and can be incorporated at
the end of the residual structure. Figure 10 illustrates its construction.
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Figure 10. CAM and SAM in the NAM module.

By figuring out the factor of scaling in batch normalization, the size of each channel
change is reflected in NAM. The channel change is more dramatic, and the information it
provides is proportionally richer and more significant the bigger the scaling factor. This is
how the scaling factor is determined:

Bout = BN(Bin) = γ
Bin − µB√

σB2 + ε
+ β (14)

where µB and σB are the mean and standard deviation, respectively. In CAM, γ denotes the
scaling factor of each channel. In SAM, λ is the scaling factor and the weights of γ and λ
are shown in the Equation (15).

Wγ = γi

/
∑
j=0

γj
; Wλ = λi

/
∑
j=0

λj
(15)

In Figure 10, Mc and Ms are the output features of CAM and SAM. Their calculations
are as follows:

Mc = sigmoid(Wγ(BN(F1))) (16)

Ms = sigmoid(Wλ(BNs(F2))) (17)

The attention mechanism can be coupled with any feature layer as a plug-and-play
module. The three effective feature layers recovered from the backbone section and the up-
and down-sampling in the multi-scale feature fusion network are employed first, and then
seven NAMs are added in this study.
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2.4. Model Evaluation Methods
2.4.1. Environmental Setup of the Experiment

To verify the effectiveness of the algorithm in this paper, we used the Windows 10
operating system. The deep learning framework was Python3.9 and Pytorch1.10.1, and
the CPU was a dual-way Intel Xeon Silver 4310 @2.10 GHz, and the RAM was 32 G DDR4.
The graphics card was the Nvidia GeForce RTX3080 10 G and we used the CUDA11.3 and
cuDNN8.2.0 accelerated computing architecture.

The size of the input rail surface defect image was set to 640× 640, and the batch
size was set to 16. Mixed precision training was used in this study’s training method to
conserve video memory. Gradient descent was performed using Adam’s algorithm. The
initial learning rate was set to 0.001. By integrating the data volume of this study’s dataset,
the number of iterative rounds of epochs was set to 300.

2.4.2. Model Evaluation Criteria

Recall, precision, and mean average precision (mAP) were utilized as the metrics to
assess the detection effectiveness of the algorithm in this study, helping to further evaluate
the efficacy and viability of the suggested model. Higher values imply greater detection
performance of the model. mAP shows the comprehensive performance of the model in
detecting all categories. Additionally, frames per second (fps) was used as the evaluation
parameter to gauge how quickly the model could recognize objects. The following is the
calculation for the evaluation metrics:

R =
TP

TP + FN
(18)

P =
TP

TP + FP
(19)

AP =
∫ 1

0
P(R)dR (20)

mAP =
1
n

n

∑
i=1

APi (21)

f ps =
n
t

(22)

3. Results
3.1. Contrasting Various Module Combination Patterns

In this study, the PAFPN of the neck structure is swapped out for the BiFPN multiscale
feature fusion network using YOLOX as the baseline model. Additionally, the up-sampling
and down-sampling operations of BiFPN, as well as the three output feature layers of
CSPDarknet, now include the NAM attention mechanism. The model assessment metrics
are compared under the same training settings as stated in Table 1.

Table 1. Comparison of the detection effects of various improvement schemes.

Scheme Average Accuracy (%) Average Recall (%) mAP (%) fps

YOLOX 87.70 85.40 90.78 78.40
YOLOX + Image Enhancement 91.35 89.33 91.95 70.26

YOLOX + Image Enhancement + BiFPN 93.47 90.61 92.87 71.69
YOLOX + Image Enhancement + BiFPN + NAM 94.56 91.71 93.20 71.33

The detection results for YOLOX and the algorithm used in this paper are shown in
Figures 11 and 12, respectively. It is clear from the comparison that there is a significant
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difference between the actual detection effect predicted by the previous model and the
improved model in this work. YOLOX displays a missed detection in the detection results
of Figure 11a,b, and it is challenging to precisely detect the tiny Defects; so, the detection
results are unsatisfactory. YOLOX displays false detection and repeated detection in the
findings provided in Figure 11c,d, which negatively impact the repair method and defect
statistics during field inspection. Due to the darkness of the image itself and the findings
displayed in column (e) of Figure 11, YOLOX was unable to detect the subtle dirt, and the
fine defect was also not quantified. In contrast, the improved model presented in this study
has a strong detection effect, no miss detection, no false detection, and can reliably detect
minor defects, making it appropriate for the task of detecting rail surface defects.
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3.2. Comprehensive Performance Comparison of Different Network Models

Considering the real-time requirements in industrial practice and to more thoroughly
assess the efficacy of the algorithms in this study, six algorithms, faster R-CNN, SSD,
YOLOv4 [57], YOLOv5-s, and YOLOv7-Tiny [45], YOLOX-Nano were selected for com-
parison. Among them, Resnet50 was chosen as the backbone network for faster R-CNN,
and VGG16 was chosen as the backbone network for SSD. We used the same experimental
environment as shown in Section 2.4.1.

The experimental comparison results between the algorithms in this chapter and other
models are shown in Table 2. It is clear from the table that the algorithms in this chapter
produced the best results for detecting all three categories of rail problems. The mAP@0.5
of this paper’s algorithm is substantially higher than the classical faster R-CNN, SSD
algorithm. Moreover, compared with YOLO series YOLOv4, YOLOv5, and YOLOv7-Tiny,
the mAP@0.5 is improved by 5.43%, 3.34%, and 11.19%, respectively, and the accuracy and
recall rate of all three defects are higher than the comparison algorithms. Therefore, the
network model suggested in this paper is more accurate for the identification of rail surface
defects and has good stability, which meets the requirements for the efficient identification
of rail surface defects. In terms of detection speed, the algorithm in this paper substantially
outperforms the two-stage algorithm faster-RCNN, improving 19.83 fps and 6.5 fps over
SSD and YOLOv4, respectively. Even if it is slower than YOLOv5, YOLOv7-Tiny, and
YOLOX, the fps can be kept above 70, which can match the demand for the real-time
detection of rail surface flaws with the use of appropriate hardware. In conclusion, the
upgraded YOLOX performs better all around.

Table 2. Performance evaluation of different models’ detecting abilities.

Model
P (%) R (%) mAP@0.5

(%)
fps

Defect Dirt Gap Defect Dirt Gap

Faster R-CNN 77.80 62.73 72.86 75.59 66.67 75.00 68.39 13.43
SSD 79.47 73.00 82.51 65.00 63.33 72.58 75.13 53.50

YOLOv4 87.70 85.71 82.14 79.95 80.00 75.00 87.77 66.83
YOLOv5 87.72 87.30 85.17 73.53 86.67 82.13 89.86 78.65

YOLOv7-Tiny 82.24 88.38 86.77 87.77 72.26 89.95 82.01 95.32
YOLOX 83.24 83.67 88.65 85.44 86.67 84.11 90.78 80.40

Algorithm of this paper 94.75 95.06 93.86 91.68 90.70 92.75 93.20 73.33

In the algorithm of this paper, the darker rail surface image is enhanced, which can
highlight the details of the rail surface defects and make the edges of the defects clearer.
At the same time, the algorithm uses YOLOX as the baseline model, in which BiFPN
replaces the original PANet, so that the network has efficient cross-scale connections and
feature reuse is more absolute rather than average. The addition of the NAM attention
mechanism can suppress unimportant pixels and make the network more efficient. Com-
bining the above improvement strategies, the algorithm in this paper has achieved better
detection results.

4. Conclusions

This research suggests an image enhancement and enhanced YOLOX-based rail surface
defect detection method to increase the detection efficiency and accuracy of rail surface
defects. To highlight defect information, the fusion image enhancement algorithm in the
HSV color space is used. To improve the algorithm’s inference speed, the PAFPN in the
YOLOX network is replaced with the BiFPN depth feature fusion, and the NAM attention
mechanism is added to improve the ability to characterize images.

The algorithm presented in this paper has superior accuracy, recall, and confidence
in rail surface defect identification when compared to the enhanced YOLOX model and
other comparable models. The enhanced model performs well in terms of localization
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accuracy and detection accuracy, and it can satisfy practical requirements for real-time
defect detection for rail surface defects, providing a trustworthy and precise detection
technique to guarantee the security of rail tracks as well as the safe operation and upkeep
of high-speed railroads.

In the future, we will devote ourselves to collecting more images of rail surface defects,
enriching our dataset, and making the types of defects more detailed. At the same time, it
is also an important research direction to deploy our algorithm in embedded devices and
apply it in industrial practice. In terms of algorithms, we will continue to pay attention
to the latest developments in surface defect detection and strive to improve detection
efficiency. Combining vision transformers with YOLO series is the focus of our next work.
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BiFPN Bidirectional Feature Pyramid Network
NAM Normalization-based Attention Module
SSD Single-Shot Multi-Box Detector
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SAM Spatial Attention Module
P Precision
R Recall
AP average precision
mAP mean average precision
fps frames per second
PAFPN Path Aggregation Feature Pyramid Network
TP number of true predictions
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