
Citation: Wang, R.; Fei, J.; Zhang, R.;

Guo, M.; Qi, Z.; Li, X. DRnet:

Dynamic Retraining for Malicious

Traffic Small-Sample Incremental

Learning. Electronics 2023, 12, 2668.

https://doi.org/10.3390/

electronics12122668

Academic Editors: Alessandra De

Benedictis and Salvatore Barone

Received: 8 May 2023

Revised: 5 June 2023

Accepted: 12 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

DRnet: Dynamic Retraining for Malicious Traffic Small-Sample
Incremental Learning
Ruonan Wang, Jinlong Fei *, Rongkai Zhang, Maohua Guo , Zan Qi and Xue Li

State Key Laboratory of Mathematical Engineering and Advanced Computing, PLA Strategic Support Force
Information Engineering University, Zhengzhou 450001, China
* Correspondence: feijinlong@126.com

Abstract: Deep learning has achieved good classification results in the field of traffic classification in
recent years due to its good feature representation ability. However, the existing traffic classification
technology cannot meet the requirements for the incremental learning of tasks in online scenarios.
In addition, due to the high concealment and fast update speed of malicious traffic, the number
of labeled samples that can be captured is scarce, and small samples cannot drive neural network
training, resulting in poor performance of the classification model. Therefore, this paper proposes
an incremental learning method for small-sample malicious traffic classification. The method uses
the pruning strategy to find the redundant network structure and dynamically allocates redundant
neurons for training based on the proposed measurement method according to the difficulty of the
new class. This enables the network to perform incremental learning without excessively consuming
storage and computing resources, and reasonable allocation improves the classification accuracy
of new classes. At the same time, through the knowledge transfer method, the model can reduce
the catastrophic forgetting of the old class, relieve the pressure of training large parameters with
small-sample data, and improve the model classification performance. Experiments involving
multiple datasets and settings show that our method is superior to the established baseline in terms
of classification accuracy, consuming 50% less memory.

Keywords: malicious traffic classification; small samples; incremental learning; dynamic retraining

1. Introduction

The arrival of the era of big data has been accompanied by an exponential growth
of network traffic, and malicious traffic generated by malicious programs is also endless.
Network traffic classification can associate traffic with its generation program. In the field
of network security, traffic classification is the first step in the task of network malicious
resource detection [1]. Therefore, the accurate classification of network traffic has always
been a hot topic in the field. In recent years, deep learning has achieved great success in the
field of traffic classification [2–4].

However, deep learning relies on the supervised training of large labeled datasets.
Due to the high concealment of malicious traffic and changing attack behavior, the amount
of malicious traffic data that can be captured and accurately marked is small, and it is
difficult to provide the amount of data that can drive deep learning training. In addition,
the current malicious traffic classification model only focuses on the model effect in the
offline case and pays less attention to the model performance on the online device. When
the deep learning model is deployed on the online device, the constantly updated and
changing malicious traffic class requires the classification model to have the ability to add
classification tasks. In the classification model based on deep learning, the classifier is
often supervised by a set of data. If we want to add classification tasks to the classifier, we
must use a large amount of old class data and new class data to jointly retrain the classifier.
If the old class data cannot be re-enabled, using only the new class data will cause the

Electronics 2023, 12, 2668. https://doi.org/10.3390/electronics12122668 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122668
https://doi.org/10.3390/electronics12122668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7990-4165
https://doi.org/10.3390/electronics12122668
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122668?type=check_update&version=1

Electronics 2023, 12, 2668 2 of 21

catastrophic forgetting of the classifier, meaning that the classification performance of the
classifier for the old class is greatly reduced.

When the network completes training and is deployed in a practical application
scenario, it usually cannot carry the training data of the network, which results in the
additional consumption of storage resources and is not conducive to data privacy protection.
Although, in order to facilitate the test, the small number of old class sample categories
used in this paper makes the computing resources occupied by the old class small-sample
data seem small. However, in reality, there are many kinds of Trojan horses. The storage
resources for the old class small samples and the computing resources required for the
retraining of the old class still overwhelm the online equipment. At the same time, malicious
traffic is constantly iteratively changing, which is necessary for the update of the classifier.
Therefore, an incremental learning method is needed to solve the update of the classifier
without combining the old data. In addition, as an important defense line for network
security, malicious traffic classification is often deployed on edge computing devices, such
as robots, smart devices, and other products. These products are not rich in storage and
computing resources due to their light and flexible characteristics. Therefore, the question
of how to solve the scalability problem with respect to a small-sample malicious traffic
classification model in the case of scarce computing resources is worth exploring in the
field of malicious traffic classification.

The ability to allow the model to extend new classification tasks and learn from new
class data without forgetting the old class is referred to as incremental learning ability. In
recent years, researchers have proposed many incremental learning methods. This includes
the method of playback based on old data [5–7], which alleviates the problem of catas-
trophic forgetting by jointly guiding the classifier with old data and new data. However,
this method requires storing old data, and the old data should be representative and equal
to the number of new data as, if not, it will affect the classification performance of the
classifier for the old class. Therefore, the playback method requires more storage resources
and is prone to category imbalance, which makes the classifier overfit the old or new classes
and leads to low overall classification performance. Regularization-based methods [8,9]
use knowledge distillation as a regularization term to constrain the model, penalizing the
model’s forgetting of old classes when fitting new data. This process requires storing the
weight of the old model to obtain the source of knowledge distillation. However, there is
an antagonistic relationship between knowledge distillation and incremental learning. If
the model constraint is too strong, the model will seriously fit the current data, resulting in
poor robustness. If the model constraint is weak, it cannot effectively alleviate the prob-
lem of catastrophic forgetting. Therefore, the current research on regularization methods
should also make efforts to design better distillation methods. The method based on model
expansion [10,11] aims to adapt to new data by adding a new model structure and keeping
the weight of the old model unchanged for the old class so as to avoid forgetting. How-
ever, the increase in model structure will inevitably lead to the aggravation of computing
resources and computational burden. When the number of new tasks increases gradually,
the model will become overwhelmed.

In summary, the incremental learning problem of small-sample malicious traffic classi-
fication currently faces the following three major challenges, and no method in the existing
literature can fully solve these challenges:

Q1: Learning new tasks brings the catastrophic forgetting of old tasks. Due to the
limited computing and storage resources of online devices, when a new task arrives, there
is often a performance tradeoff between the old and new classes. The adaptation of new
tasks will inevitably lead to a decrease in the accuracy of old tasks. Improving the overall
performance of the model is the primary challenge that incremental learning must solve.

Q2: Small-sample data prove difficult in driving neural network training. Due to
the hidden and changeable characteristics of malicious traffic, in the real-world, it is often
faced with the contradiction between the amount of data that can be captured and the

Electronics 2023, 12, 2668 3 of 21

large parameters of neural networks. Therefore, the performance of the small-sample
classification model is the focus of this paper.

Q3: The current incremental learning method has a large demand for comput-
ing resources. Mainstream incremental learning methods—playback-based methods,
regularization-based methods, and model expansion-based methods—all require comput-
ing resources to varying degrees. Therefore, maintaining the performance of the classifier
while minimizing the demand for computing resources is one of the challenges that needs
to be solved.

Compared with neural networks, humans are often able to remember old tasks in the
face of new tasks in the process of learning. Researchers have found [12] that this is because
the adult brain contains a large number of ‘silent synapses,’ and the connections between
these neurons remain inactive before forming new memories; therefore, the old memories
will not be forgotten when forming new memories. Inspired by the ‘silent synapse’ in the
human brain, as shown in Figure 1, in this paper, we propose a dynamic retraining method
(DRnet). The method pruned the trained neural network so that it can form ‘silent neurons’
for new tasks while reducing the redundant structure of the network. When a new task
arrives, we dynamically allocate ‘silent neurons’ according to the similarity between the
old and new tasks, retrain these neurons, and update the classifier so that the network can
adapt to the new task. At the same time, the neural network also has some inactive ‘silent
neurons’ waiting for the next new task. For small-sample incremental tasks, we use the
idea of transfer learning to freeze the number of network layers of common features when
extracting new and old task features, reducing the parameters that the network needs to
adjust to adapt to the small-sample data volume.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 22

faced with the contradiction between the amount of data that can be captured and the
large parameters of neural networks. Therefore, the performance of the small-sample clas-
sification model is the focus of this paper.

Q3: The current incremental learning method has a large demand for computing
resources. Mainstream incremental learning methods—playback-based methods, regu-
larization-based methods, and model expansion-based methods—all require computing
resources to varying degrees. Therefore, maintaining the performance of the classifier
while minimizing the demand for computing resources is one of the challenges that needs
to be solved.

Compared with neural networks, humans are often able to remember old tasks in the
face of new tasks in the process of learning. Researchers have found [12] that this is be-
cause the adult brain contains a large number of ‘silent synapses,’ and the connections
between these neurons remain inactive before forming new memories; therefore, the old
memories will not be forgotten when forming new memories. Inspired by the ‘silent syn-
apse’ in the human brain, as shown in Figure 1, in this paper, we propose a dynamic re-
training method (DRnet). The method pruned the trained neural network so that it can
form ‘silent neurons’ for new tasks while reducing the redundant structure of the net-
work. When a new task arrives, we dynamically allocate ‘silent neurons’ according to the
similarity between the old and new tasks, retrain these neurons, and update the classifier
so that the network can adapt to the new task. At the same time, the neural network also
has some inactive ‘silent neurons’ waiting for the next new task. For small-sample incre-
mental tasks, we use the idea of transfer learning to freeze the number of network layers
of common features when extracting new and old task features, reducing the parameters
that the network needs to adjust to adapt to the small-sample data volume.

Figure 1. Neural network neurons are analogous to silent synapses.

Our contributions can be summarized as follows:
• We design an incremental learning method for malicious traffic small-sample classi-

fication, which alleviates the catastrophic forgetting of old tasks when training new
tasks and improves classification accuracy for small-sample incremental tasks.

• An improved transfer learning method is applied to the process of class increment,
which alleviates the contradiction between the new tasks of small samples and the
large number of parameters to be adjusted in the model.

• The proposed incremental learning method applies a dynamic retraining redundant
neuron strategy, which can effectively use redundant neurons to learn new classes
while making the model structure more lightweight, saving computing resources.
The remainder of this paper is structured as follows: Section 2 reviews related works

in the literature. Section 3 introduces the DRnet method. Section 4 introduces the experi-
mental dataset and data preprocessing method and presents an analysis of the experi-
mental results. Section 5 discusses the effectiveness of the study, its limitations, and future

Figure 1. Neural network neurons are analogous to silent synapses.

Our contributions can be summarized as follows:

• We design an incremental learning method for malicious traffic small-sample classi-
fication, which alleviates the catastrophic forgetting of old tasks when training new
tasks and improves classification accuracy for small-sample incremental tasks.

• An improved transfer learning method is applied to the process of class increment,
which alleviates the contradiction between the new tasks of small samples and the
large number of parameters to be adjusted in the model.

• The proposed incremental learning method applies a dynamic retraining redundant
neuron strategy, which can effectively use redundant neurons to learn new classes
while making the model structure more lightweight, saving computing resources.

The remainder of this paper is structured as follows: Section 2 reviews related works in
the literature. Section 3 introduces the DRnet method. Section 4 introduces the experimental
dataset and data preprocessing method and presents an analysis of the experimental results.
Section 5 discusses the effectiveness of the study, its limitations, and future work to be
addressed regarding the method. Finally, in Section 6, the work of this paper is summarized,
and conclusions are drawn.

Electronics 2023, 12, 2668 4 of 21

2. Related Works

Research on incremental learning in the traffic domain: Prasath et al. [13] extended
the incremental learning method in the image field to general network security and specific
intrusion detection systems for the catastrophic forgetting problem in intrusion detec-
tion. This work compares the performance of various methods in simulating real-world
distributed alternating batch attacks and concludes that the playback-based method is
superior to traditional statistical techniques and the most advanced Boosting model and
DNN model in dealing with catastrophic forgetting. Based on the idea of transfer learning,
Doshi et al. [8] designed a feature extraction module and a decision module to solve the
task of incremental continuous learning. The feature extraction module is used to minimize
the complexity of the training and extract motion, position, and appearance features. The
decision module is a sequential anomaly detector, which quickly updates the learned model
using incremental labels. Through experiments on public datasets, the detector trained
by this method is significantly better than the most advanced algorithms. Amalapuram
et al. [9] evaluated the challenges and practicality of incremental learning in the design
of intrusion detection systems. This work found that class incremental methods have a
greater impact on task order sensitivity. At the same time, by applying the current popular
incremental learning algorithms—Elastic Weight Combination (EWC) [14] and Gradient
Embedding Memory (GEM) [15]—it was found that the performance could be further
improved by combining the memory population technology based on the perception of
empirical forgetting. Pezze et al. [16] proposed an incremental learning method based
on compressed playback. The method uses a super-resolution model to compress and
playback the original image and combines the anomaly detection module to enable the
model to perform anomaly detection tasks in an environment that constantly learns new
tasks. This method represents the first time that the compression module has been applied
to incremental learning tasks. A large number of experiments have proved that the method
can use fewer computing resources to complete incremental tasks.

Research on small-sample incremental learning: At present, there are few studies on
small-sample incremental learning in the field of traffic, so we have some related working
methods proposed in other fields to use them as references. Aiming at the demand for
fine-grained multi-tasks of classifiers in the field of image classification, Mallya et al. [17]
proposed a method that adds multiple tasks to a single deep neural network while avoiding
catastrophic forgetting. This work uses redundancy in large deep networks to release pa-
rameters and is then used to learn new tasks. By performing iterative pruning and network
retraining, this work can sequentially ‘package’ multiple tasks into a single network while
ensuring minimum performance degradation and minimum storage overhead. However,
in the process of pruning and retraining, the complexity of the new task is not considered,
which greatly affects the classification performance of the model by the order of the ar-
rival of the new task, and there is no effective solution to the small-sample problem. The
work of this paper is based on the work of Mallya et al. In the field of object detection,
Kang et al. [18] developed a small-sample object detector. This work uses a meta-feature
learner, a reweighted module in the first-level detection architecture, and a fully labeled
base class and quickly adapts to new classes. Through a large number of experiments,
this work proves that the model’s few-shot object detection task and class increment task
on multiple datasets are much better than the established baseline. Douillard et al. [19]
introduced a new distillation loss that constrains the entire convolutional network using
the idea of knowledge distillation to solve small-sample incremental learning. This loss
balances the forgetting of old classes and the learning of new classes, which is conducive
to long-term incremental learning. At the same time, the method proposes a multi-mode
similar classifier, which makes the model more robust to the inherent distribution displace-
ment of incremental learning. This method has achieved good experimental results on
multiple datasets. Tao et al. [20] used neural gas (NG) networks to represent knowledge
for small-sample incremental learning problems and proposed a neural science-inspired
topology protection framework for effective class incremental learning. At the same time, a

Electronics 2023, 12, 2668 5 of 21

topology preserving loss (TPL) was designed to maintain the topology of the feature space
and reduce forgetting. Through testing on multiple datasets, it was proven that the method
could continuously learn new classes and reduce forgetting.

3. Methods

Problem definition: Incremental learning is divided into multi-task incremental learn-
ing [21,22] and single-task incremental learning [23,24]. The difference between the two
types is that the classifiers assigned to each type of task are different. For multi-task learn-
ing, the same model needs to gradually learn many isolated tasks without forgetting how
to solve the previous tasks. This means that multi-task learning assigns each type of task
to different classifiers. There is no class overlap between different tasks, and the accuracy
of each task is calculated separately. Therefore, multi-task learning is very suitable for
studying the feasibility of training a single model on a series of disjointed tasks without
forgetting how to solve the previous tasks, but it is not suitable for solving class increment
problems. For single-task incremental learning, a unified classifier is used and the entire
incremental learning process is considered as an overall task, i.e., we add new classes in
order, but the classification problem is unique. In the calculation accuracy, we need to
distinguish all the classes encountered so far. This article aims to study the incremental
problem regarding malicious traffic classification tasks under small-sample conditions.
For newly added malicious traffic categories, it is hoped that the classifier can accurately
classify them while not forgetting the old ones. The goal of this study is to help solve the
single-task incremental learning problem, so this article focuses on single-task learning.

We define the small-sample single-task incremental learning problem as follows:
Suppose we have a labeled small-sample target dataset Dj

T , the new small-sample task data
are represented by Dk

E, L is the class set of training set, S is the class set of t test set. ∀j,k,

Lj ∩ Lk = ∅, Sj ∩ Sk = ∅. The model is first trained and tested on Dj
T . After the model

can fit the target classification task, Dk
E arrives as a new task, the test set of the model is

Sj + Sk, and the classifiers need to identify j + k class tasks. At this time, the Dj
T dataset is

not allowed for joint training. The process of single-task small-sample incremental learning
is shown in Figure 2. In the offline training phase, the base class classifier is trained using
the base class data Dj

T . When deployed online, only the new class data Dk
E can be called for

network training. At this time, a certain incremental learning method is used to train the
classifier to identify all categories j + k of the base class and the new class. Complete the
malicious traffic classifier incremental task. The challenges that the task needs to solve are
as follows: avoiding the catastrophic forgetting of old tasks caused by new tasks, solving
the problem of small-sample task classification performance, and reducing the computing
resources required to complete the task.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 22

Figure 2. Small-sample single-task incremental learning flow chart.

In order to solve the above challenges, we propose a small-sample malicious traffic
classification incremental learning method, the process for which is shown in Figure 3. We
designed a fully convolutional network as the source network. In order to maintain the
good feature extraction ability of the source network, we used a large dataset to train it
and transfer the knowledge learned to the target dataset and new tasks through transfer
learning to reduce the number of parameters that needed to be fine-tuned for small-sam-
ple data. At this time, the network has a large number of redundant neurons for small-
sample classification tasks, so we pruned the network and used the pruned neurons as the
reserve network structure of the new task. When performing new tasks, we dynamically
allocated new tasks according to the category similarity between new tasks and old tasks
and used pruned neurons for training new tasks. We introduce the detailed methods of
each stage as follows:

Figure 3. DRnet method basic concept diagram.

Figure 2. Small-sample single-task incremental learning flow chart.

Electronics 2023, 12, 2668 6 of 21

In order to solve the above challenges, we propose a small-sample malicious traffic
classification incremental learning method, the process for which is shown in Figure 3. We
designed a fully convolutional network as the source network. In order to maintain the good
feature extraction ability of the source network, we used a large dataset to train it and transfer
the knowledge learned to the target dataset and new tasks through transfer learning to reduce
the number of parameters that needed to be fine-tuned for small-sample data. At this time,
the network has a large number of redundant neurons for small-sample classification tasks, so
we pruned the network and used the pruned neurons as the reserve network structure of the
new task. When performing new tasks, we dynamically allocated new tasks according to the
category similarity between new tasks and old tasks and used pruned neurons for training
new tasks. We introduce the detailed methods of each stage as follows:

Electronics 2023, 12, x FOR PEER REVIEW 6 of 22

Figure 2. Small-sample single-task incremental learning flow chart.

In order to solve the above challenges, we propose a small-sample malicious traffic
classification incremental learning method, the process for which is shown in Figure 3. We
designed a fully convolutional network as the source network. In order to maintain the
good feature extraction ability of the source network, we used a large dataset to train it
and transfer the knowledge learned to the target dataset and new tasks through transfer
learning to reduce the number of parameters that needed to be fine-tuned for small-sam-
ple data. At this time, the network has a large number of redundant neurons for small-
sample classification tasks, so we pruned the network and used the pruned neurons as the
reserve network structure of the new task. When performing new tasks, we dynamically
allocated new tasks according to the category similarity between new tasks and old tasks
and used pruned neurons for training new tasks. We introduce the detailed methods of
each stage as follows:

Figure 3. DRnet method basic concept diagram. Figure 3. DRnet method basic concept diagram.

The main flow chart of the method is shown in Figure 4. After the original malicious
traffic data packet was preprocessed, the model was trained in the form of data packets,
and the format was batchsize × 1500. In the model training phase, the large dataset trains
the original model, and the training dataset size was m × 1500. Then, the model was
migrated, the parameters of the first four convolutional neural networks of the model
were frozen, and the small-sample dataset of j × 1500 was used for fine-tuning. In the
model pruning stage, the redundant neuron parameters in the model were set to 0. At
this time, the number of convolutional layer neurons is the minimum remaining number x
when the accuracy drop is less than 0.1, and the small-sample dataset is used to fine-tune
the remaining parameters. In the final class increment stage, the similarity between the
incremental data and the base class data was first calculated to determine the number
of neurons y used to train the incremental data. After changing the model structure, the
original model parameters were frozen, and the new dataset with a size of k × 1500 was
used to train the assigned neurons y, achieving the goal of class increment.

Source model training phase: We designed an end-to-end fully convolutional malicious
traffic classification network using a 1D Convolutional Neural Network (1DCNN) as the
initial network. The network consists of ten one-dimensional convolutional layers and
seven maximum pooling layers. The purpose of using the fully convolutional network is
because the fully convolutional network abandons the traditional fully connected layer and

Electronics 2023, 12, 2668 7 of 21

replaces it with a convolutional layer, which saves a lot of network parameters. Secondly,
the fully connected layer structure is difficult to change, and this is not conducive to
our maximum pruning operation later. The weight sharing between the convolutional
layers and the sparse connection provides convenience for subsequent pruning and class
increment. After each convolutional layer, we added a Batch Normalization (BN) layer. In
addition to the traditional prevention of overfitting and acceleration of model convergence,
the BN layer is also used to evaluate the filter contribution of subsequent pruning. We set
the number of neurons in the convolutional layer to 300, added the Rectified Linear Unit
(RELU) function after the BN layer, and took a 0.05 dropout rate after each fully connected
layer to prevent overfitting. The detailed hyperparameters of the network structure settings
are shown in Table 1. We used large datasets to train the initial network to train its good
feature extraction ability (obtaining a good initial parameter set is crucial for subsequent
transfer and pruning of the network). We set 30 epochs for the initial network. The learning
rate was 0.01.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 22

The main flow chart of the method is shown in Figure 4. After the original malicious
traffic data packet was preprocessed, the model was trained in the form of data packets,
and the format was batchsize × 1500. In the model training phase, the large dataset trains
the original model, and the training dataset size was m × 1500. Then, the model was mi-
grated, the parameters of the first four convolutional neural networks of the model were
frozen, and the small-sample dataset of j × 1500 was used for fine-tuning. In the model
pruning stage, the redundant neuron parameters in the model were set to 0. At this time,
the number of convolutional layer neurons is the minimum remaining number x when
the accuracy drop is less than 0.1, and the small-sample dataset is used to fine-tune the
remaining parameters. In the final class increment stage, the similarity between the incre-
mental data and the base class data was first calculated to determine the number of neu-
rons y used to train the incremental data. After changing the model structure, the original
model parameters were frozen, and the new dataset with a size of k × 1500 was used to
train the assigned neurons y, achieving the goal of class increment.

Figure 4. DRnet method detailed flow chart.

Source model training phase: We designed an end-to-end fully convolutional mali-
cious traffic classification network using a 1D Convolutional Neural Network (1DCNN)
as the initial network. The network consists of ten one-dimensional convolutional layers
and seven maximum pooling layers. The purpose of using the fully convolutional network
is because the fully convolutional network abandons the traditional fully connected layer
and replaces it with a convolutional layer, which saves a lot of network parameters. Sec-
ondly, the fully connected layer structure is difficult to change, and this is not conducive
to our maximum pruning operation later. The weight sharing between the convolutional
layers and the sparse connection provides convenience for subsequent pruning and class
increment. After each convolutional layer, we added a Batch Normalization (BN) layer. In
addition to the traditional prevention of overfitting and acceleration of model conver-
gence, the BN layer is also used to evaluate the filter contribution of subsequent pruning.

Figure 4. DRnet method detailed flow chart.

The selection of hyperparameters in network construction and training is based on
the empirical conclusions of researchers and the actual situation of the problems solved in
this paper. Firstly, the network convolution layer was set to 10 layers, and the maximum
pooling layer was set to 7 layers. This is because the small sample size cannot support
neural network training that is too complex. The number of neurons was set to 300, because
the subsequent increment was based on the retraining of redundant neurons in the current
network. Therefore, more neurons were set than the traditional classical traffic classification
network. In addition, we referred to the empirical parameter settings of the current network,
such as the initial learning rate (set to 0.01), the convolution kernel size (set to 6), and the
Dropout rate (0.05).

Electronics 2023, 12, 2668 8 of 21

Table 1. Detailed parameters of source network.

Operation Kernel Size Strides Channels Padding Dropout Nonlinearity

Input packet - - - - - -
Convolution 6 1 300 1 0.05 BN+ReLU
Max pooling 2 2 - 0 0.05 -
Convolution 6 1 300 1 0.05 BN+ReLU
Max pooling 2 2 - 0 0.05 -
Convolution 6 1 300 1 0.05 BN+ReLU
Max pooling 2 2 - 0 0.05 -
Convolution 6 1 300 1 0.05 BN+ReLU
Max pooling 2 2 - 0 0.05 -
Convolution 6 1 300 1 0.05 BN+ReLU
Max pooling 2 2 - 0 0.05 -
Convolution 6 1 300 1 0.05 BN+ReLU
Max pooling 2 2 - 0 0.05 -
Convolution 6 1 300 1 0.05 BN+ReLU
Convolution 6 1 300 1 0.05 BN+ReLU
Max pooling 2 2 - 0 0.05 -
Convolution 6 1 100 1 0.05 BN+ReLU
Convolution 6 1 Class number 1 0.05 BN+ReLU

Transfer phase: In order to solve the small sample problem of malicious traffic, we
used an improved transfer learning method. In this study, two types of small-sample data
were involved: small-sample target dataset and new task small-sample data, so we actually
applied transfer learning in two parts. When training the classification network for the
target dataset, because the small-sample dataset is not enough to train the large neural
network, based on the trained initial network, we froze the first four-layer parameters of
the network and fine-tuned the remaining parameters. Because the shallow network of
the model often extracts low-level features, this operation did not affect the performance
of the fine-tuned classifier. However, this can greatly reduce the number of parameters
that need to be adjusted to improve the performance of the classification network. When
faced with new tasks, we hoped that the model could train new tasks while maintaining
the classification ability of old tasks. Therefore, we maintained the network weights of all
old tasks during training and used its feature extraction ability for old tasks to participate
in retraining with neurons assigned to new tasks. In this process, the old dataset does
not participate in training but transfers its acquired knowledge. At the same time, the
weight of the pruned redundant parameters is not set to 0, but the original parameters are
maintained. This method ensures that the newly added small-sample data requires less
adjustment when training the assigned redundant parameters so that the small-sample
data can better fit the network parameters.

Pruning phase: In this study, the purpose of our pruning was not only to lighten the
network in the traditional sense but also to screen out the redundant network structure that
can be used by new task training. Therefore, we hoped to eliminate as many redundant
neurons as possible without affecting the classification accuracy of the current task. Unlike
Mallya et al. [17], we only performed network pruning once, which greatly saved the
pruning overhead. Our approach used the scaling factor of the BN layer as an indicator to
rank neurons to determine their importance. We reduced the accuracy of the classifier by
less than 1% as a criterion that does not affect the classification performance of the classifier.
We represented this part of the neuron as R. According to experience, more than 80% of the
neurons are identified as redundant neurons. We ranked these neurons according to weight
and size so that they could be assigned to new tasks. At this time, we ensured that the R
neurons did not participate in the back propagation and used a small-sample dataset to
retrain the remaining neurons. This is due to a change in the network structure caused by
the pruning operation, which needs to reestablish the connection between neurons. After

Electronics 2023, 12, 2668 9 of 21

the pruning phase is complete, the network will be deployed on the online network device,
and the old data will not be called again.

Incremental phase: Mallya et al. selected 50% or 75% of the redundant parameters
of the current task as the new task training for the class incremental task. Because the re-
dundant parameters are constantly occupied, the first-arriving parameters can be assigned
to more neurons for training. Therefore, this method is only effective when the difficulty
of the new task is difficult. However, in the real world, the task will not appear in an
orderly manner. We propose to dynamically match the number of parameters required
for the task according to the difficulty of the task. In order to evaluate the difficulty of the
new task, we introduced the Maximum mean discrepancy (MMD) distance [25]. MMD
is a nonparametric measure used to measure the distance between distributions based
on kernel embedding in the reproducing kernel Hilbert space. Suppose ϕ(x) maps each
instance to the kernel k(xi, xj) = ϕ(xi)

T ϕ(xj) related Hilbert space ℘, ns and ne are the
sample size of small-sample datasets and new datasets. Then, the domain samples Xs and
YE of two distributions, whose MMD distance is defined as follows:

MMD(XS, YE) =

∥∥∥∥ 1
ns

ns

∑
i=1

ϕ(xs
i)−

1
nE

nE

∑
i=1

ϕ(yE
i)

∥∥∥∥
℘

(1)

By introducing the MMD distance, we can obtain the position and distance of the
two datasets in the Hilbert space. In our opinion, the closer the distance between the
two domains is, the higher the similarity is. Therefore, we take the distance from the
representative sample to the center position in Xs and the ratio of the distance from the
two datasets as the similarity. In order to alleviate the influence of the deviation sample
on the similarity, we select the median of the nearest and farthest distance from the center
position in Xs as the distance of the representative sample. The similarity measure method
we designed is defined as follows:

W(XS, YE) =
‖Average[(maxϕ(xs

i), minϕ(xs
i)]‖℘

MMD(XS, YE)
(2)

After obtaining the similarity of the network, we assigned the number of neurons
required for the current new task according to the similarity, which is expressed as:

RE = R ∗ [1−W(XS, YE)] (3)

When the network adds new tasks, the neurons in the last convolutional layer will be
re-adjusted to a new number of classifications. At the same time, the new tasks need to
be trained for the assigned parameters. Therefore, we use the new sample data to retrain
the network. For the neurons of the old task, we kept their weights unchanged. At this
time, only a small number of neurons participate in training. We set the epoch to 10 and
the learning rate to 0.01.

Then, whenever the network has new task requirements, the operation of dynamic
allocation and retraining will be re-performed to adapt to the new task. At this point,
the network will be able to dynamically allocate and adjust the network neurons without
affecting the old task to complete the goal of classifying new tasks to adapt to the changing
real world. Because the network does not increase the structure compared with the source
network and the old data does not need to be stored, the consumption of computing
resources is small.

4. Results

In order to evaluate the effectiveness of our method in small-sample incremental tasks,
we simulate the performance of the model facing new tasks after the model is deployed
online, that is, when the old data can no longer be called. We test our method on multiple
datasets and compare it with other class incremental methods in terms of accuracy and

Electronics 2023, 12, 2668 10 of 21

computational resource consumption. At the same time, we also show our method’s
dynamic allocation of neurons in the class incremental process. The results and analysis of
the method are as follows.

4.1. Datasets and Preprocessing
4.1.1. Datasets

In this study, four datasets were used to train and test the model: USTC-TFC, ISCX
VPN-nonVPN, MCFP, and a self-made dataset.

USTC-TFC [26]: This dataset includes pcap packages of malware traffic collected from
real network environments by Colorado Technical University (CTU) researchers from 2011
to 2015. We used it as a source dataset to train the source network to obtain good feature
extraction ability.

ISCX VPN-nonVPN [27]: This dataset is composed of traffic generated by captured
different applications. The captured packets are divided into different pcap files, and
we used some classes of data. Different from the other three datasets, the traffic of the
dataset is ordinary traffic rather than malicious traffic; therefore, the dataset was used
as a small-sample incremental task test method from different domains on inter-domain
small-sample tasks.

MCFP: MCFP is a malicious traffic dataset captured by the Czech University of Tech-
nology that includes network files, logs, DNS requests, etc., in the pcap format. We used
ten types of malicious traffic data as small-sample malicious traffic classification targets
and incremental tasks.

Self-made dataset: In order to restore the performance of the model in the real scene,
we simulated the malicious behavior of 15 different Trojans or malicious programs and used
Wireshark to obtain the traffic data packets in the process and generate pcap packets as a
self-made dataset test model. In order to approach the scale of small-sample datasets under
realistic conditions, the self-made datasets use part of the captured network malicious
traffic data. Table 2 presents the specific information and the number of packets of the
fifteen types of Trojan traffic captured. The data preprocessing process of the self-made
dataset pcap package is described in Section 4.1.2.

Table 2. Details of self-made dataset.

Self-Made Dataset Type Highest Visible Protocol Size (K) Quantity

Finalfantasy Malware SSH 3180 100
Hackratstyle Malware HTTP 955 100

Bagsu Malware HTTP 866 100
Conficker Malware HTTP 1701 100

MSIL Malware HTTP 2118 100
Murlo Malware HTTP 1516 100

Wootbot Malware HTTP 1523 100
Freerat Malware SSH 3114 100

Chongqinghack Malware TCP 1360 100
Irat Malware SSH 2343 100

Poison-ivy Malware SSH 2344 100
Greydove Malware HTTP 2257 100

Shangxing2009 Malware TCP 2344 100
Suncontrol Malware TCP 2125 100

Ximencontrol Malware TCP 2051 100

Mean Malware - 2483 100

In order to approach the size of small-sample datasets under realistic conditions, each
type of data in the three small-sample datasets uses only 100 pcap packages for training
and testing. Table 3 presents the detailed information and scale of the datasets we use.

Electronics 2023, 12, 2668 11 of 21

Table 3. Dataset Details.

Dataset Type Highest Visible Protocol Class

USTC-TFC Malware HTTP&IRC 10
ISCX VPN-nonVPN Normal HTTPS&SSL 10

MCFP Malware HTTP&IRC&SSH 10
Self-made Malware HTTP&SSH&TCP 15

4.1.2. Data Pre-Processing

The preprocessing process realizes the filtering and unified format of network data,
including traffic filtering, traffic cleaning, and data unification. The preprocessing process
is shown in Figure 5. First, perform traffic filtering to delete packets that do not contain
payloads from the captured traffic. In some TCP segments, the SYN, ACK, or FIN flags are
set to 1. These flags represent traffic fragments generated during three handshakes. The
information they contain is not sufficient to distinguish the information about the program
that generated them. These fragments will become invalid samples for the obfuscation
classifier, so they will be discarded. The traffic cleanup operation sorts out the information
in the sample that is not valid for classification (including deleting the Ethernet header of
the physical link information contained in the traffic data) and shields the IP address in a
uniform replacement manner to prevent classifiers from attempting to classify data packets
by using the IP address. This overfitting is not beneficial for training model capabilities.
Since neural networks require the use of fixed size inputs, the preprocessing stage unifies
the size of data packets. The process involves filling in zeros for byte vectors smaller than
1500 by injecting zeros at the end of the UDP segment header and making it equal to the
length of the TCP header. In order to achieve better performance, a normalization operation
is performed to divide all packet bytes by 255, which is the maximum value of a byte.
Therefore, all input values are in the range of 0 to 1 to normalize the byte vector.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 22

Figure 5. Data pre-processing process.

4.2. Method Performance Analysis
4.2.1. DRnet Method Incremental Learning Visualization

In order to intuitively show the improvement of our method on the catastrophic for-
getting of old tasks when fitting new tasks, we introduced the t-SNE method [28] to visu-
alize the distribution of data in the feature space. We used the eight-class data of the self-
made dataset as the base class training model. The distribution of the eight-class data in
the feature space upon completion of training is shown in Figure 6a. The different colors
in Figure 6 represent different types of data in the test set. For cases where the classifica-
tion boundary is more obvious, we used numbers to distinguish between eight types of
data in order to more intuitively display the feature distribution of different types of data.
Then, the class incremental task was performed on the trained model (the red stars in
Figure 6b are class incremental task distribution). We first used the new class samples
directly on the model for training. The distribution of the samples in the feature space
when training 1 epoch and 20 epochs is shown in Figure 6b. The method proposed in this
paper is used to assign neurons to new classes and retrain them. The data distribution
after training 1 epoch and 20 epochs is shown in Figure 6c.

Through Figure 6, we can see that the base class samples can be classified well at first,
and the classification accuracy rate reaches 93.54%. Subsequently, since the old data are
not stored, we directly trained the new class. At this time, the model will fit the new task
data as the target, so the model cannot maintain the feature space topology of the base
class sample. We can see from Figure 6b that, at 1 epoch, the distribution of the base class
sample in the feature space is confused with the new class. However, there are still a small
number of base classes that can maintain their spatial topology, and the accuracy of the
model is reduced to 22.33%. When the model was trained for 20 epochs, the base class was
catastrophically forgotten, and because the new class was small-sample data, the model
could not complete the task of fitting the new class, and the model accuracy was as low as
11.33%. When using the method proposed in this paper to train new class tasks, because
we allocate additional neurons to train new tasks, it will not affect the weight of the trained
base class. Therefore, at 1 epoch, the topology of the base class sample in the feature space
can be maintained, the classification accuracy of the base class barely decreases, and the
overall accuracy of the model is 85.43%. After training 20 epochs, the accuracy of the
model is 91.21%, which completes the task of class increment well. Experiments show that
our method can effectively alleviate the problem of catastrophic forgetting in class incre-
mental tasks.

Answer to Q1: When performing class incremental learning, the DRnet method has
an accuracy of 91.21%, which is only 2.33% lower than the base class accuracy of 93.54%.
The method effectively alleviates the catastrophic forgetting problem.

Figure 5. Data pre-processing process.

4.2. Method Performance Analysis
4.2.1. DRnet Method Incremental Learning Visualization

In order to intuitively show the improvement of our method on the catastrophic
forgetting of old tasks when fitting new tasks, we introduced the t-SNE method [28] to
visualize the distribution of data in the feature space. We used the eight-class data of the
self-made dataset as the base class training model. The distribution of the eight-class data
in the feature space upon completion of training is shown in Figure 6a. The different colors
in Figure 6 represent different types of data in the test set. For cases where the classification
boundary is more obvious, we used numbers to distinguish between eight types of data in
order to more intuitively display the feature distribution of different types of data. Then,
the class incremental task was performed on the trained model (the red stars in Figure 6b
are class incremental task distribution). We first used the new class samples directly on
the model for training. The distribution of the samples in the feature space when training
1 epoch and 20 epochs is shown in Figure 6b. The method proposed in this paper is used to

Electronics 2023, 12, 2668 12 of 21

assign neurons to new classes and retrain them. The data distribution after training 1 epoch
and 20 epochs is shown in Figure 6c.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 22

Figure 6. Class incremental task data visualization.

4.2.2. Small-Sample Class Incremental Task Classification Performance
The work of this paper is based on the PackNet method. Therefore, in this section, we

describe the performance of our proposed method and the PackNet method on different
datasets under the same settings and models. At the same time, in order to show the im-
pact of catastrophic forgetting on classification accuracy, we used new tasks to directly
train the model for comparison. For the three types of settings, we first used the source
dataset to pretrain our proposed model and the model transfer method to fit the target
small-sample dataset. At this time, the target small-sample dataset is the base class data of
different datasets. Subsequently, for the incoming new incremental tasks, we used three
different methods of incremental learning settings for training, using the same training
rounds and learning rates. For the PackNet method, in order to improve its accuracy as
much as possible, we selected a 50% iterative pruning rate based on the original text to
train the new task. After the training, the classification performance of the model for the
base class and the new class is tested.

Incremental Task Classification Performance of Small-Sample Class in the Same Domain
We take incremental tasks and base class tasks belonging to the same dataset as in-

cremental tasks in the same domain. Therefore, we randomly used five class data from
three datasets, namely the preprocessed ISCX VPN non-VPN dataset, the MCFP dataset,
and the self-made dataset, as base class tasks and added incremental tasks to the model

Figure 6. Class incremental task data visualization.

Through Figure 6, we can see that the base class samples can be classified well at
first, and the classification accuracy rate reaches 93.54%. Subsequently, since the old data
are not stored, we directly trained the new class. At this time, the model will fit the new
task data as the target, so the model cannot maintain the feature space topology of the
base class sample. We can see from Figure 6b that, at 1 epoch, the distribution of the base
class sample in the feature space is confused with the new class. However, there are still
a small number of base classes that can maintain their spatial topology, and the accuracy
of the model is reduced to 22.33%. When the model was trained for 20 epochs, the base
class was catastrophically forgotten, and because the new class was small-sample data, the
model could not complete the task of fitting the new class, and the model accuracy was
as low as 11.33%. When using the method proposed in this paper to train new class tasks,
because we allocate additional neurons to train new tasks, it will not affect the weight of the
trained base class. Therefore, at 1 epoch, the topology of the base class sample in the feature
space can be maintained, the classification accuracy of the base class barely decreases, and
the overall accuracy of the model is 85.43%. After training 20 epochs, the accuracy of the
model is 91.21%, which completes the task of class increment well. Experiments show
that our method can effectively alleviate the problem of catastrophic forgetting in class
incremental tasks.

Electronics 2023, 12, 2668 13 of 21

Answer to Q1: When performing class incremental learning, the DRnet method has
an accuracy of 91.21%, which is only 2.33% lower than the base class accuracy of 93.54%.
The method effectively alleviates the catastrophic forgetting problem.

4.2.2. Small-Sample Class Incremental Task Classification Performance

The work of this paper is based on the PackNet method. Therefore, in this section, we
describe the performance of our proposed method and the PackNet method on different
datasets under the same settings and models. At the same time, in order to show the
impact of catastrophic forgetting on classification accuracy, we used new tasks to directly
train the model for comparison. For the three types of settings, we first used the source
dataset to pretrain our proposed model and the model transfer method to fit the target
small-sample dataset. At this time, the target small-sample dataset is the base class data of
different datasets. Subsequently, for the incoming new incremental tasks, we used three
different methods of incremental learning settings for training, using the same training
rounds and learning rates. For the PackNet method, in order to improve its accuracy as
much as possible, we selected a 50% iterative pruning rate based on the original text to
train the new task. After the training, the classification performance of the model for the
base class and the new class is tested.

Incremental Task Classification Performance of Small-Sample Class in the Same Domain

We take incremental tasks and base class tasks belonging to the same dataset as
incremental tasks in the same domain. Therefore, we randomly used five class data from
three datasets, namely the preprocessed ISCX VPN non-VPN dataset, the MCFP dataset,
and the self-made dataset, as base class tasks and added incremental tasks to the model
one by one. Figure 7 shows the performance of our method, the PackNet method, and the
direct training class increment method when the class increment task and the base class
task belong to the same domain.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 22

one by one. Figure 7 shows the performance of our method, the PackNet method, and the
direct training class increment method when the class increment task and the base class
task belong to the same domain.

According to the line graphs of Figure 7, we can see that, with the incremental addi-
tion of new tasks, the direct training method cannot maintain the knowledge of the model
for the old tasks. Therefore, when only one new class is added, serious catastrophic for-
getting occurs, with an accuracy rate of only 11.33%. In the subsequent new tasks, cata-
strophic forgetting is more serious and, as a result, the accuracy rate continues to decline.
The PackNet method allocates redundant parameters by iterative pruning, which makes
the number of parameters that can be allocated continuously decrease. Therefore, after
adding up to nine classes, the accuracy of the model decreases. When our method allocates
neurons, it dynamically allocates neurons by similarity calculation, which is not related to
the order of task arrival, but only related to the difficulty of the task. Therefore, the accu-
racy rate is always above 90%. It is worth noting that, in Figure 7a,c, when the number of
classes is six, the accuracy rate decreases. This is worthy of analysis because the small-
sample data volume cannot drive the currently allocated parameter quantity. Our method
performs two knowledge transfer processes for small-sample incremental tasks, namely,
the transfer of large datasets to target datasets and the knowledge transfer of target da-
tasets to new tasks, which alleviates the pressure of small-sample datasets on fine-tuning
the number of parameters, further proving the rationality of our method.

Figure 7. Comparison of accuracy of incremental task classification with small-sample classes in the
same domain.

Inter-Domain Small-sample Class Incremental Task Classification Performance
In the real world, new tasks and base class tasks do not always come from the same

domain. We used malicious traffic and normal traffic as different domains to test the clas-
sification accuracy of our method and the other two methods when facing incremental
tasks from different domains.

We used the normal traffic ISCX VPN-nonVPN dataset as the base class, and the ma-
licious traffic MCFP dataset and the Self-made dataset were used as incremental tasks,
respectively, to test the classification accuracy of the three methods when five new classes
and ten new classes are added. Figure 8 shows the accuracy of the three methods and the
downward trend line. When the incremental learning method is not used, the accuracy of
the model shows a significant downward trend. After using the incremental method, it
can be seen that the PackNet method has a certain competitiveness when five new classes
are added. When ten classes are added, the accuracy of the PackNet method decreases
significantly, and the accuracy of the incremental task between domains decreases slowly
by using our method. This is because the PackNet method has a fixed number of allocated
neurons. When incremental tasks are difficult and numerous, unreasonable allocation

Figure 7. Comparison of accuracy of incremental task classification with small-sample classes in the
same domain.

According to the line graphs of Figure 7, we can see that, with the incremental addition
of new tasks, the direct training method cannot maintain the knowledge of the model for
the old tasks. Therefore, when only one new class is added, serious catastrophic forgetting
occurs, with an accuracy rate of only 11.33%. In the subsequent new tasks, catastrophic
forgetting is more serious and, as a result, the accuracy rate continues to decline. The
PackNet method allocates redundant parameters by iterative pruning, which makes the
number of parameters that can be allocated continuously decrease. Therefore, after adding
up to nine classes, the accuracy of the model decreases. When our method allocates neurons,
it dynamically allocates neurons by similarity calculation, which is not related to the order
of task arrival, but only related to the difficulty of the task. Therefore, the accuracy rate is
always above 90%. It is worth noting that, in Figure 7a,c, when the number of classes is

Electronics 2023, 12, 2668 14 of 21

six, the accuracy rate decreases. This is worthy of analysis because the small-sample data
volume cannot drive the currently allocated parameter quantity. Our method performs
two knowledge transfer processes for small-sample incremental tasks, namely, the transfer
of large datasets to target datasets and the knowledge transfer of target datasets to new
tasks, which alleviates the pressure of small-sample datasets on fine-tuning the number of
parameters, further proving the rationality of our method.

Inter-Domain Small-Sample Class Incremental Task Classification Performance

In the real world, new tasks and base class tasks do not always come from the same
domain. We used malicious traffic and normal traffic as different domains to test the
classification accuracy of our method and the other two methods when facing incremental
tasks from different domains.

We used the normal traffic ISCX VPN-nonVPN dataset as the base class, and the
malicious traffic MCFP dataset and the Self-made dataset were used as incremental tasks,
respectively, to test the classification accuracy of the three methods when five new classes
and ten new classes are added. Figure 8 shows the accuracy of the three methods and the
downward trend line. When the incremental learning method is not used, the accuracy of
the model shows a significant downward trend. After using the incremental method, it
can be seen that the PackNet method has a certain competitiveness when five new classes
are added. When ten classes are added, the accuracy of the PackNet method decreases
significantly, and the accuracy of the incremental task between domains decreases slowly
by using our method. This is because the PackNet method has a fixed number of allocated
neurons. When incremental tasks are difficult and numerous, unreasonable allocation
methods make it difficult for allocated neurons to train new tasks. Our method can
dynamically allocate more neurons to fit incremental samples for dissimilar tasks and has
more competitive advantages in difficult tasks.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 22

methods make it difficult for allocated neurons to train new tasks. Our method can dy-
namically allocate more neurons to fit incremental samples for dissimilar tasks and has
more competitive advantages in difficult tasks.

Figure 8. Inter-domain small-sample class incremental task performance.

Answer to Q2: The method can achieve more than 93% accuracy on malicious traffic
small-sample classification base class data. In the same domain small-sample incremental
tasks, the average accuracy can reach more than 90% when adding five types of data. For
the inter-domain small-sample incremental task, the average accuracy of the new five cat-
egories can reach more than 80%, and the average accuracy of the new ten categories can
reach more than 70%—better than the established baseline.

4.3. Comparison with Other Class Incremental Methods
We used the self-made small-sample dataset as the base class data and tested the

performance of the classical incremental method Icarl method [29], EWC method [14],
PackNet method, and our proposed method in adding five tasks and ten incremental
tasks. For the new classes, we adopted a sequential incremental approach to observe the
influence of the order of task arrival on the method. The new classes were all small-sample
tasks. For the Icarl method, we replayed the base class data and trained it with the new
class samples. For the EWC method, we followed the regularization term added to the
loss function by the author in the original text and rewrote the loss function for training
new classes. For the PackNet method, in order to add many new tasks as possible, we
chose the 75% pruning rate given by the original author to match the incremental tasks.
Tables 4 and 5 show the performance comparison of our proposed method with other class
incremental methods.

In the field of malicious traffic classification, due to the timeliness and fast attack
speed of some malicious programs, it is also important to evaluate the time complexity of
traffic classification methods. We referred to several public papers in the field of traffic
classification that discuss time complexity [30,31] and used the prediction time of the
model on the test set as an indicator to evaluate the real-time response of the method. The
results are shown in Tables 4 and 5. The results indicate that the method proposed in this
paper yields no significant differences in prediction time compared to other methods. For
the prediction times of 10 and 15 types of data, all four methods are roughly within 1–2 s.

From Table 4, we can see that, when a small number of new tasks arrive, among the
three methods, the proposed method has a reasonable allocation of redundant network
structure, and after the model transfer, the parameter range that the small-sample dataset
needs to adjust becomes smaller, so the accuracy rate reaches a maximum of 91.15%. The

Figure 8. Inter-domain small-sample class incremental task performance.

Answer to Q2: The method can achieve more than 93% accuracy on malicious traffic
small-sample classification base class data. In the same domain small-sample incremental
tasks, the average accuracy can reach more than 90% when adding five types of data. For
the inter-domain small-sample incremental task, the average accuracy of the new five
categories can reach more than 80%, and the average accuracy of the new ten categories
can reach more than 70%—better than the established baseline.

4.3. Comparison with Other Class Incremental Methods

We used the self-made small-sample dataset as the base class data and tested the
performance of the classical incremental method Icarl method [29], EWC method [14],

Electronics 2023, 12, 2668 15 of 21

PackNet method, and our proposed method in adding five tasks and ten incremental tasks.
For the new classes, we adopted a sequential incremental approach to observe the influence
of the order of task arrival on the method. The new classes were all small-sample tasks. For
the Icarl method, we replayed the base class data and trained it with the new class samples.
For the EWC method, we followed the regularization term added to the loss function by
the author in the original text and rewrote the loss function for training new classes. For the
PackNet method, in order to add many new tasks as possible, we chose the 75% pruning
rate given by the original author to match the incremental tasks. Tables 4 and 5 show the
performance comparison of our proposed method with other class incremental methods.

Table 4. Performance of different methods when adding five classes of tasks.

Method Accuracy Memory
Occupancy (K) FLOPS Prediction Time (s)

Icarl 90.43 (±0.52) 52,156 5.52 × 1011 2.34
EWC 80.77 (±1.68) 28,754 2.08 × 1011 1.62

PackNet 85.60 (±0.94) 28,696 4.36 × 1011 2.02
DRnet 91.15 (±0.88) 12,878 3.78 × 1011 1.89

Table 5. Performance of different methods when adding ten classes of tasks.

Method Accuracy Memory
Occupancy (K) FLOPS Prediction Time (s)

Icarl 88.96 (±1.01) 66,001 11.62 × 1011 2.58
EWC 71.28 (±1.72) 30,599 2.38 × 1011 1.99

PackNet 79.94 (±1.28) 30,541 5.22 × 1011 2.47
DRnet 87.79 (±1.15) 17,475 4.96 × 1011 2.46

In the field of malicious traffic classification, due to the timeliness and fast attack
speed of some malicious programs, it is also important to evaluate the time complexity
of traffic classification methods. We referred to several public papers in the field of traffic
classification that discuss time complexity [30,31] and used the prediction time of the model
on the test set as an indicator to evaluate the real-time response of the method. The results
are shown in Tables 4 and 5. The results indicate that the method proposed in this paper
yields no significant differences in prediction time compared to other methods. For the
prediction times of 10 and 15 types of data, all four methods are roughly within 1–2 s.

From Table 4, we can see that, when a small number of new tasks arrive, among the
three methods, the proposed method has a reasonable allocation of redundant network
structure, and after the model transfer, the parameter range that the small-sample dataset
needs to adjust becomes smaller, so the accuracy rate reaches a maximum of 91.15%. The
EWC method only relies on the correction of the parameters to achieve the purpose of not
forgetting the old tasks, and the accuracy is low. However, the EWC method does not need
to store the old data and only needs to train the new tasks once, which has an advantage in
the consumption of computing resources. Although Icarl has shown good classification
accuracy, due to the small number of new task samples, its classification accuracy has not
been optimal. At the same time, due to the need to store old data, it consumes a lot of
computing resources, and its memory consumption is four times that of our proposed
method. PackNet needs to reprune and retrain the parameters every time it adds a new
task, and the computational overhead is large. The proposed method performs sorting and
pruning operations before online deployment. This approach not only saves memory usage
because it does not require multiple parameter sorting but also the number of calculations
is reduced.

Electronics 2023, 12, 2668 16 of 21

Table 5 shows the performance of each method as more class incremental tasks (ten
new types of tasks) arrive as the model remains online. Due to the need to store all the data
required for the current classification task in the Icarl method, both memory requirements
and computing resources have increased dramatically. However, the classification accuracy
of this method is the best of the four methods, reaching 88.96%. This is because, after the
task volume gradually increases, whether it is a regularization method or a model-based
method, the current model weights cannot take into account more classifications. At this
time, the memory-based method occupies a certain advantage. After the class incremental
tasks gradually increased, the EWC method could not correct the model parameters to
meet many new tasks due to the regularization term, and the accuracy rate decreased to
71.28%. In the PackNet method, due to the gradual decrease in task allocation parameters,
the classification accuracy began to decline, and its current accuracy was 79.94%. When
the proposed method adds ten new tasks, the model redundancy parameters are based
on a reasonable allocation strategy, which can maintain an accuracy of 87.79%. However,
as the tasks continue to increase, the model structure becomes huge, and the number of
calculations and memory usage gradually increases.

Answer Q3: When adding five tasks and ten tasks, our method has the lowest memory
requirement while maintaining good accuracy, and the number of calculations also has
certain advantages.

In order to visually show the classification performance of the four methods when
adding five types of tasks, we drew the Receiver Operating Characteristic (ROC) curve
and calculated the Area Under the Curve (AUC) value for the classification performance of
different methods in the base class and the new class task, and also drew the average ROC
curve (black in the graph) to judge the overall classification performance of the method,
as shown in Figure 9. The x-axis of the ROC curve represents the false positive rate (FPR),
and the y-axis represents the true positive rate (TPR). Therefore, the closer the curve is to
the upper left corner, the better the classification performance of the current task classifier.
It can be clearly seen from Figure 9 that the ROC curve of our proposed method is closer
to the upper left corner. At the same time, we tested the effect of task arrival order on the
classification accuracy of the method by adding incremental classes and incremental tasks.
It can be seen that, for the new ninth class, the classification performance of our method is
better than other methods, which is due to our task difficulty measurement strategy. At the
same time, we found that the classification accuracy of the PackNet method was greatly
affected by the task order, and the accuracy of the new task gradually decreased with an
increase in the task arrival time.

In addition, when the positive and negative distribution of the test samples is uneven,
the PR curve can more effectively reflect the quality of the classifier than the ROC curve.
In order to comprehensively evaluate the model, we evaluated the Precision-Recall (PR)
indicators of the four methods for the classification tasks of the new ten classes. In the PR
curve, P represents the precision, and R represents the recall. The PR plot can intuitively
show the recall and precision of the learner in the sample as a whole. When the precision
and recall are high, the model performance is better, so the curve is expected to be close
to the upper right corner. At the same time, if the PR curve of one method is completely
‘wrapped’ by the curve of another method, it can be asserted that the performance of
the latter is better than the former. If the PR curves of the two methods intersect, it is
difficult to generally determine which is better. We drew PR curves for the performance
of the four methods when the model adds ten classes and calculated the mean Average
Precision (mAP), as shown in Figure 10. From Figure 10, we can see that, among the four
methods, the Icarl method performs as well as our proposed method on ten new tasks but
is significantly better than the EWC and PackNet methods.

Electronics 2023, 12, 2668 17 of 21

Electronics 2023, 12, x FOR PEER REVIEW 17 of 22

method, as shown in Figure 9. The x-axis of the ROC curve represents the false positive
rate (FPR), and the y-axis represents the true positive rate (TPR). Therefore, the closer the
curve is to the upper left corner, the better the classification performance of the current
task classifier. It can be clearly seen from Figure 9 that the ROC curve of our proposed
method is closer to the upper left corner. At the same time, we tested the effect of task
arrival order on the classification accuracy of the method by adding incremental classes
and incremental tasks. It can be seen that, for the new ninth class, the classification per-
formance of our method is better than other methods, which is due to our task difficulty
measurement strategy. At the same time, we found that the classification accuracy of the
PackNet method was greatly affected by the task order, and the accuracy of the new task
gradually decreased with an increase in the task arrival time.

Figure 9. Multi-classification ROC curves of different incremental learning methods.

In addition, when the positive and negative distribution of the test samples is uneven,
the PR curve can more effectively reflect the quality of the classifier than the ROC curve.
In order to comprehensively evaluate the model, we evaluated the Precision-Recall (PR)
indicators of the four methods for the classification tasks of the new ten classes. In the PR
curve, P represents the precision, and R represents the recall. The PR plot can intuitively
show the recall and precision of the learner in the sample as a whole. When the precision
and recall are high, the model performance is better, so the curve is expected to be close

Figure 9. Multi-classification ROC curves of different incremental learning methods.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 22

to the upper right corner. At the same time, if the PR curve of one method is completely
‘wrapped’ by the curve of another method, it can be asserted that the performance of the
latter is better than the former. If the PR curves of the two methods intersect, it is difficult
to generally determine which is better. We drew PR curves for the performance of the four
methods when the model adds ten classes and calculated the mean Average Precision
(mAP), as shown in Figure 10. From Figure 10, we can see that, among the four methods,
the Icarl method performs as well as our proposed method on ten new tasks but is signif-
icantly better than the EWC and PackNet methods.

Figure 10. Multi-classification PR curves of different incremental learning methods.

4.4. Analysis of Incremental Task Neuron Allocation Strategy
Figure 11 shows the allocation strategy diagram for tasks with different similarities

when using our method for class increment. The ordinate represents the number of neu-
rons assigned to different tasks by the current layer, and the abscissa represents the dif-
ferent layers of the network.

It can be seen that our proposed method allocates neurons for different similarities
between new classes and base classes. The purple part of the graph is the number of neu-
rons required for the base class task. When a class incremental task comes, we judge the
number of neurons required for the task according to the similarity measurement method
between the class incremental task and the base class task and allocate redundant neurons
while maintaining the number and weight of neurons in the old task. Therefore, in this
process, the number of neurons in each layer of the network is gradually increasing, which
also means that the training of new tasks will not affect the classification accuracy of old
tasks. For example, class incremental task five has a similarity of less than 50% with the
base class. We believe that the features extracted by the current network structure cannot
effectively classify the task. Therefore, on the basis of the features extracted by the current
network, sufficient neurons are assigned to the task for training. The third class incremen-
tal task has a high similarity with the current base class domain, so it is assigned a smaller
number of neurons. Since we use the convolutional layer instead of the fully connected
layer as the classification layer, the tenth layer is the classification layer of the network.
We set the base class task as five classifications. As the task increases, the number of clas-
sification layers increases one by one. The number of neurons in this layer represents the
number of classification tasks in the current network.

Figure 10. Multi-classification PR curves of different incremental learning methods.

Electronics 2023, 12, 2668 18 of 21

4.4. Analysis of Incremental Task Neuron Allocation Strategy

Figure 11 shows the allocation strategy diagram for tasks with different similarities
when using our method for class increment. The ordinate represents the number of neurons
assigned to different tasks by the current layer, and the abscissa represents the different
layers of the network.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 22

Figure 11. Visualization of neuron allocation strategy.

5. Discussion
5.1. Method Effectiveness Analysis

In order to address the need of solving the incremental tasks of small-sample classes
when the model is deployed online, we studied the scalability of the malicious traffic
small-sample classification model. Due to the conservation of computing resources and
the protection of data privacy, we propose a class increment method without storing old
classes. Firstly, based on the model transfer method, the small sample problem regarding
malicious traffic is solved. Secondly, we pruned the redundant neurons of the model for
small-sample tasks and imitated the ‘silent synapse’ structure of the human brain. The
pruned neurons are used as a network structure that can be called at any time for the
training of new categories. When training new classes, the weight of old classes is fixed.
The method alleviates the catastrophic forgetting of old classes, solves the problem of data
privacy, and does not increase computing resources.

In addition, when allocating redundant neurons, we abandoned the proportional al-
location strategy in the traditional method and designed a measurement method to meas-
ure the similarity between classes. The dynamic allocation of redundant neurons accord-
ing to task difficulty not only makes the allocation reasonable but also ensures that the
classification performance of the new task model will not vary greatly with the order of
task arrival or task difficulty.

Experiments show that our method has better classification accuracy than the tradi-
tional class increment method, whether it is the same domain small-sample malicious traf-
fic increment task with high similarity or the difficult inter-domain small-sample mali-
cious traffic increment task. Additionally, our method also has certain advantages that
become clear when comparing memory usage and calculation times.

5.2. Limitations and Future Work
This paper explores the scalability of the malicious traffic classification model. The

proposed dynamic parameter allocation method based on interclass similarity shows
good performance in both intra-domain small-sample class incremental tasks and inter-

Figure 11. Visualization of neuron allocation strategy.

It can be seen that our proposed method allocates neurons for different similarities
between new classes and base classes. The purple part of the graph is the number of
neurons required for the base class task. When a class incremental task comes, we judge the
number of neurons required for the task according to the similarity measurement method
between the class incremental task and the base class task and allocate redundant neurons
while maintaining the number and weight of neurons in the old task. Therefore, in this
process, the number of neurons in each layer of the network is gradually increasing, which
also means that the training of new tasks will not affect the classification accuracy of old
tasks. For example, class incremental task five has a similarity of less than 50% with the
base class. We believe that the features extracted by the current network structure cannot
effectively classify the task. Therefore, on the basis of the features extracted by the current
network, sufficient neurons are assigned to the task for training. The third class incremental
task has a high similarity with the current base class domain, so it is assigned a smaller
number of neurons. Since we use the convolutional layer instead of the fully connected
layer as the classification layer, the tenth layer is the classification layer of the network.
We set the base class task as five classifications. As the task increases, the number of
classification layers increases one by one. The number of neurons in this layer represents
the number of classification tasks in the current network.

5. Discussion
5.1. Method Effectiveness Analysis

In order to address the need of solving the incremental tasks of small-sample classes
when the model is deployed online, we studied the scalability of the malicious traffic
small-sample classification model. Due to the conservation of computing resources and
the protection of data privacy, we propose a class increment method without storing old

Electronics 2023, 12, 2668 19 of 21

classes. Firstly, based on the model transfer method, the small sample problem regarding
malicious traffic is solved. Secondly, we pruned the redundant neurons of the model for
small-sample tasks and imitated the ‘silent synapse’ structure of the human brain. The
pruned neurons are used as a network structure that can be called at any time for the
training of new categories. When training new classes, the weight of old classes is fixed.
The method alleviates the catastrophic forgetting of old classes, solves the problem of data
privacy, and does not increase computing resources.

In addition, when allocating redundant neurons, we abandoned the proportional
allocation strategy in the traditional method and designed a measurement method to
measure the similarity between classes. The dynamic allocation of redundant neurons
according to task difficulty not only makes the allocation reasonable but also ensures that
the classification performance of the new task model will not vary greatly with the order of
task arrival or task difficulty.

Experiments show that our method has better classification accuracy than the tradi-
tional class increment method, whether it is the same domain small-sample malicious traffic
increment task with high similarity or the difficult inter-domain small-sample malicious
traffic increment task. Additionally, our method also has certain advantages that become
clear when comparing memory usage and calculation times.

5.2. Limitations and Future Work

This paper explores the scalability of the malicious traffic classification model. The
proposed dynamic parameter allocation method based on interclass similarity shows good
performance in both intra-domain small-sample class incremental tasks and inter-domain
small-sample classification tasks. However, the method still has some limitations, which
we plan to explore further in future work.

Firstly, the method trains new classes based on neurons with current task redundancy.
The advantage of this method is that it can complete the class incremental task without
affecting the classification performance of the old classes. However, the redundant parame-
ters of the model are limited. The focus of this paper is to ensure the classification accuracy
of new classes. Therefore, the standard for allocating redundant neurons is only the number
of neurons required by the current task compared with the old class task; the limitation
of the number of class increments is not considered. When new tasks continue to arrive,
there arises a situation wherein the model cannot add new tasks due to the exhaustion
of a redundant parameter. At the same time, as the difficulty of new tasks increases, the
redundant parameters will be exhausted earlier. For this problem, future research could
consider model expansion, which could help further meet the needs of class increment
by expanding the model. However, this will inevitably lead to an increase in computing
resources. Balancing the consumption of computing resources and the performance of new
class classification is also worthy of further exploration among researchers.

Secondly, in the real world, many practical applications cannot adapt to experimental
settings with nonoverlapping tasks. Furthermore, due to the continuous updating of malicious
traffic and changes associated with it, the distribution of classes will gradually change, which
is often called concept drift. When deployed online, defining whether the class with concept
drift belongs to the new class has become a topic of increasing concern. The problem of
concept drift in the field of malicious traffic needs to be further defined. At the same time, the
model also needs some robustness to resist the changes in category over time.

6. Conclusions

In this paper, we proposed a small-sample incremental learning method for malicious
traffic. On the fully convolutional network we designed, based on the designed inter-class
similarity measurement method, the redundant neurons of the classification model are
dynamically reused to adapt to incremental tasks. At the same time, we also applied the idea
of transfer learning to transfer the knowledge learned from the large dataset to the target
small sample and small-sample incremental tasks, which improves the mismatch between

Electronics 2023, 12, 2668 20 of 21

the small-sample dataset and the model parameters. Through extensive experiments, we
have demonstrated that our method outperforms other incremental methods in terms
of accuracy and computational resource consumption in the small-sample incremental
problem of malicious traffic. The work of this paper can provide new ideas for the small-
sample incremental learning problem of malicious traffic.

Author Contributions: R.W. was mainly responsible for designing the research, data analysis, and
writing the manuscript for this study. J.F. was mainly responsible for data collection and manuscript
modification. R.Z. was mainly responsible for design the research. M.G. was mainly responsible for
data collection and the production of charts. X.L. and Z.Q. were mainly designing the experiment
and preparation. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Key Research and Development Project of China
(2019QY1302).

Data Availability Statement: This study analyzed three publicly available datasets. These data
can be found at the following websites: https://www.unb.ca/cic/datasets/vpn.html (accessed
5 June 2020), https://github.com/yungshenglu/USTC-TFC2016 (accessed 21 June 2019), https:
//mcfp.fel-k.cvut.cz/publicDatasets/datasets.html (accessed 14 June 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haque, M.; Palit, D. A review on deep neural network for computer network traffic classification. arXiv 2022, arXiv:2205.10830.
2. Hameed, A.; Violos, J.; Leivadeas, A. A deep learning approach for IoT traffic multi-classification in a smart-city scenario. IEEE

Access 2022, 10, 21193–21210. [CrossRef]
3. Wang, H.; Xu, T.; Yang, J.; Wu, L.; Yang, L. Sessionvideo: A Novel Approach for Encrypted Traffic Classification via 3D-CNN

Model. In Proceedings of the 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS), Takamatsu,
Japan, 28–30 September 2022; pp. 1–6.

4. Kim, H.; Kim, M.; Ha, J.; Roh, H. Revisiting TLS-Encrypted Traffic Fingerprinting Methods for Malware Family Classification. In
Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Republic of Korea, 19–21 October 2022; pp. 1273–1278.

5. Doshi, K.; Yilmaz, Y. Rethinking video anomaly detection—A continual learning approach. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 3961–3970.

6. Cao, Y.; Gan, H. CLAD: A Deep Learning Framework for Continually Learning in Anomaly Detection. In Proceedings of the 2022
5th International Conference on Software Engineering and Information Management (ICSIM), Yokohama Japan, 21–23 January
2022; pp. 158–163.

7. García González, G.; Casas, P.; Fernández, A.; Gómez, G. Steps towards continual learning in multivariate time-series anomaly
detection using variational autoencoders. In Proceedings of the IMC 22—22nd ACM Internet Measurement Conference, Nice,
France, 25–27 October 2022; pp. 774–775.

8. Doshi, K.; Yilmaz, Y. Continual learning for anomaly detection in surveillance videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 254–255.

9. Amalapuram, S.K.; Tadwai, A.; Vinta, R.; Channappayya, S.S.; Tamma, B.R. Continual Learning for Anomaly based Network
Intrusion Detection. In Proceedings of the 2022 14th International Conference on COMmunication Systems & NETworks
(COMSNETS), Bangalore, India, 4–8 January 2022; pp. 497–505.

10. Alam, M.S.; Yakopcic, C.; Subramanyam, G.; Taha, T.M. Memristor Based Neuromorphic Network Security System Capable
of Online Incremental Learning and Anomaly Detection. In Proceedings of the 2020 11th International Green and Sustainable
Computing Workshops (IGSC), Pullman, WA, USA, USA, 19–22 October 2020; pp. 1–8.

11. Kwon, B.; Kim, T. Toward an Online Continual Learning Architecture for Intrusion Detection of Video Surveillance. IEEE Access
2022, 10, 89732–89744. [CrossRef]

12. Vardalaki, D.; Chung, K.; Harnett, M.T. Filopodia are a structural substrate for silent synapses in adult neocortex. Nature 2022,
612, 323–327. [CrossRef] [PubMed]

13. Prasath, S.; Sethi, K.; Mohanty, D.; Bera, P.; Samantaray, S.R. Analysis of Continual Learning Models for Intrusion Detection
System. IEEE Access 2022, 10, 121444–121464. [CrossRef]

14. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef] [PubMed]

15. Lopez-Paz, D.; Ranzato, M.A. Gradient episodic memory for continual learning. In Proceedings of the Advances in Neural
Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

https://www.unb.ca/cic/datasets/vpn.html
https://github.com/yungshenglu/USTC-TFC2016
https://mcfp.fel-k.cvut.cz/publicDatasets/datasets.html
https://mcfp.fel-k.cvut.cz/publicDatasets/datasets.html
https://doi.org/10.1109/ACCESS.2022.3153331
https://doi.org/10.1109/ACCESS.2022.3201139
https://doi.org/10.1038/s41586-022-05483-6
https://www.ncbi.nlm.nih.gov/pubmed/36450984
https://doi.org/10.1109/ACCESS.2022.3222715
https://doi.org/10.1073/pnas.1611835114
https://www.ncbi.nlm.nih.gov/pubmed/28292907

Electronics 2023, 12, 2668 21 of 21

16. Pezze, D.D.; Anello, E.; Masiero, C.; Susto, G.A. Continual Learning Approaches for Anomaly Detection. arXiv 2022,
arXiv:2212.11192.

17. Mallya, A.; Lazebnik, S. Packnet: Adding multiple tasks to a single network by iterative pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7765–7773.

18. Kang, B.; Liu, Z.; Wang, X.; Yu, F.; Feng, J.; Darrell, T. Few-shot object detection via feature reweighting. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8420–8429.

19. Douillard, A.; Cord, M.; Ollion, C.; Robert, T.; Valle, E. Podnet: Pooled outputs distillation for small-tasks incremental learning.
In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer
International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 86–102.

20. Tao, X.; Hong, X.; Chang, X.; Dong, S.; Wei, X.; Gong, Y. Few-shot class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 12183–12192.

21. Li, Z.; Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2935–2947. [CrossRef] [PubMed]
22. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural Netw.

2019, 113, 54–71. [CrossRef] [PubMed]
23. Maltoni, D.; Lomonaco, V. Continuous learning in single-incremental-task scenarios. Neural Netw. 2019, 116, 56–73. [CrossRef]

[PubMed]
24. Tao, X.; Hong, X.; Chang, X.; Gong, Y. Bi-objective continual learning: Learning ‘new’while consolidating ‘known’. In Proceedings

of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 5989–5996.
25. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012,

13, 723–773.
26. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representation

learning. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13
January 2017; pp. 712–717.

27. Lotfollahi, M.; Jafari Siavoshani, M.; Shirali Hossein Zade, R.; Saberian, M. Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Comput. 2020, 24, 1999–2012. [CrossRef]

28. Laurens VD, M.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
29. Rebuffi, S.A.; Kolesnikov, A.; Sperl, G.; Lampert, C.H. iCaRL: Incremental classifier and representation learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2001–2010.
30. Di Mauro, M.; Galatro, G.; Liotta, A. Experimental Review of Neural-based approaches for Network Intrusion Management.

IEEE Trans. Netw. Serv. Manag. 2020, 17, 2480–2495. [CrossRef]
31. Dong, S.; Xia, Y.; Peng, T. Network Abnormal Traffic Detection Model Based on Semi-Supervised Deep Reinforcement Learning.

IEEE Trans. Netw. Serv. Manag. 2021, 18, 4197–4212. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2017.2773081
https://www.ncbi.nlm.nih.gov/pubmed/29990101
https://doi.org/10.1016/j.neunet.2019.01.012
https://www.ncbi.nlm.nih.gov/pubmed/30780045
https://doi.org/10.1016/j.neunet.2019.03.010
https://www.ncbi.nlm.nih.gov/pubmed/31005851
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1109/TNSM.2020.3024225
https://doi.org/10.1109/TNSM.2021.3120804

	Introduction
	Related Works
	Methods
	Results
	Datasets and Preprocessing
	Datasets
	Data Pre-Processing

	Method Performance Analysis
	DRnet Method Incremental Learning Visualization
	Small-Sample Class Incremental Task Classification Performance

	Comparison with Other Class Incremental Methods
	Analysis of Incremental Task Neuron Allocation Strategy

	Discussion
	Method Effectiveness Analysis
	Limitations and Future Work

	Conclusions
	References

