
Citation: Bourennane, A.; Tanougast,

C.; Diou, C.; Gorse, J. Accurate

Multi-Channel QCM Sensor

Measurement Enabled by

FPGA-Based Embedded System

Using GPS. Electronics 2023, 12, 2666.

https://doi.org/10.3390/

electronics12122666

Academic Editors: Andres Upegui,

Andrea Guerrieri and Laurent

Gantel

Received: 30 April 2023

Revised: 11 June 2023

Accepted: 12 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Accurate Multi-Channel QCM Sensor Measurement Enabled by
FPGA-Based Embedded System Using GPS
Adrien Bourennane 1,*, Camel Tanougast 1,* , Camille Diou 1 and Jean Gorse 2

1 LCOMS, Université de Lorraine, 57000 Metz, France
2 Pesage Lorrain Continu et Discontinu, 57070 Saint-Julien-Lès-Metz, France
* Correspondence: adrien.bourennane@univ-lorraine.fr (A.B.); camel.tanougast@univ-lorraine.fr (C.T.)

Abstract: This paper presents a design and implementation proposal for a real-time frequency mea-
surement system for high-precision, multi-channel quartz crystal microbalance (QCM) sensors using
a field programmable gate array (FPGA). The key contribution of this work lies in the integration of a
frequency measurement and mass resolution computation based on Global Positioning System (GPS)
signals within a single FPGA chip, utilizing Input/Output Blocks to incorporate logic QCM oscillator
circuits. The FPGA design enables parallel processing, ensuring accurate measurements, faster
calculations, and reduced hardware complexity by minimizing the need for external components.
As a result, a cost-effective and accurate multi-channel sensor system is developed, serving as a
reconfigurable standalone measurement platform with communication capabilities. The system is
implemented and tested using the FPGA Xilinx Virtex-6, along with multiple QCM sensors. The
implementation on a Xilinx XC6VLX240T FPGA achieves a maximum frequency of 324 MHz and
consumes a dynamic power of 120 mW. Notably, the design utilizes a modest number of resources,
requiring only 188 slices, 733 flip-flops, and 13 IOBs to perform a double-channel sensor microbalance.
The proposed system meets the precision measurement requirements for QCM sensor applications,
exhibiting low measurement error when monitoring QCM frequencies ranging from 1 to 50 MHz,
with an accuracy of 0.2 ppm and less than 0.1 Hz.

Keywords: embedded systems; FPGA-based applications; IOB interfaces; quartz crystal microbalance;
frequency measurement; GPS

1. Introduction

Nowadays, many industrial applications that involve the handling or processing
of physical, chemical, or biological substances rely heavily on high-precision measure-
ment instrumentation. One of the most commonly used systems for this purpose is the
QCM (quartz crystal microbalance), which detects the resonance and frequency shifts of
quartz crystal resonator (QCR) sensors. In this context, QCM sensors are widely used in
different application domains. QCM sensors find wide application in various domains
due to their high sensitivity and real-time capability of measuring minute mass changes
(typically in the order of a few ng/cm2) within a broad dynamic range (100 µg/cm2).
This makes them particularly attractive for applications such as bio-sensors, analysis of
biomolecular interactions, and studying cell–substrate interactions [1]. Usually, to perform
high-precision measurements, accurate frequency (/time) measurement techniques are
employed using electronic resonators based on circuits containing capacitors, resistors,
and/or inductors [1]. These circuits generate alternating current by periodically fluctuating
between two voltage levels. Oscillators working with optimal stability rely on vibrating
quartz crystals, which exhibit a stable frequency when a direct current is applied. Similarly,
a piezoelectric oscillator circuit uses a piezoelectric crystal in combination with electronic
passive components to generate a stable frequency depending on crystal properties and
environmental conditions [2]. Factors such as temperature, pressure, acceleration, radiation,
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electric fields, and electromagnetic fields can introduce variations in the nominal generated
frequency oscillation. As a result, sensors based on piezoelectric oscillators offer accurate
measurement of these physical variables [3]. Therefore, piezoelectricity based on the quartz
crystal microbalance is one of the most popular mass sensing techniques in industrial
applications, including gas and liquid sensors [2–4] and electronic tongues [5]. These
applications include molecular recognition [6–8] and food quality control [4,9–11]. QCM is
a low-cost and highly sensitive mass measurement technique that was discovered in 1959
by Sauerbrey [12]. Sauerbrey established a relationship between the mass on the surface of
the crystal and its resonance frequency. More precisely, as depicted in Figure 1, the addition
of mass distributed over the quartz crystal surface alters the nominal oscillation frequency.
This frequency variation can be described by the following Sauerbrey Equation (1):

∆ f =
−2 × f0

2

A ×
√

ρq × µq
× ∆m. (1)
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Figure 1. Basic working principle of quartz crystal microbalance sensor [13].

Here, ∆ f represents the normalized frequency change (Hz) as a function of the mass
change ∆m (gram), f0 is the resonant frequency (Hz), A is the piezoelectrically active crystal
area (area between electrodes, cm2), ρq is the density of quartz (2.648 g/cm3), and µq is the
shear modulus of quartz for AT-cut crystal (2.947 × 1011 g·cm−1·s−2).

Therefore, the resonance and subsequent frequency shift of the quartz crystal resonator
is detected by a QCM measurement system. A QCM crystal consists of a thin quartz crystal
with metallic electrodes of a certain thickness on both sides. This pellet is produced with
different thicknesses, resulting in different frequencies. Gold is often used for the electrodes
due to its resistance to corrosive environments [14]. There are three main electronic tech-
niques used for frequency shift measurements: impedance measurement, quartz crystal
microbalance with dissipation (QCM-D), and oscillator-based measurements [15]. Among
these techniques, impedance measurement provides the most precise results for resonance
frequency analysis [16]. It involves applying a sweeping frequency signal to a quartz
crystal resonator and collecting impedance spectrum (or admittance) data to determine the
resonant frequency and dissipation outputs. QCM-D is a type of quartz crystal microbal-
ance based on the ring-down technique. It is often used to determine film thickness in a
liquid environment, such as the thickness of an adsorbed protein layer. It can be used to
study other properties of the sample, such as its softness. The QCM-D technique allows
measurement of several times per second in a vacuum, gaseous, or liquid environment [17].
Additionally, it is possible to switch between fundamental frequency and overtones [18].
Although QCM-D and impedance measurement systems are efficient and commercially
available, they are often expensive and cumbersome. They are not adequate for on-site
use. The principles of oscillator-based measurement, distinguishing inverting and non-
inverting amplifier oscillators, are illustrated in Figure 2. On the one hand, the inverting
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amplifier, known as a Pierce oscillator (shown in Figure 2a), adds a 180◦ phase shift which
is compensated by the feedback network (based on Ra, C1, C2 passive components and
the quartz crystal) to meet the phase requirement in the Barkhausen criterion. On the
other hand, the non-inverting amplifier (shown in Figure 2b) acts on the sensor as a series
resonator satisfying the phase condition at the series resonance frequency by only using
resistor components (Ra, Rb). Figure 2c illustrates another non-inverting amplifier known
as a Colpitts oscillator, where the sensor functions as a high-quality inductor through its
connection in parallel with R1, C2 passive elements.
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Figure 2. Typical oscillator circuits: (a) with an inverting amplifier (Pierce oscillator); (b) with a
non-inverting amplifier, and (c) with a Colpitts oscillator [16,19].

The QCM is widely used due to its extreme sensitivity to the characteristics of the
materials it comes into contact with, leading to shifts in its resonant frequency. How-
ever, the effectiveness of the QCM is constrained by the noise specifications of the crystal
oscillator and the resolution of the frequency counter employed to measure frequency
variations. Usually, the standard QCM System is a stand-alone instrument with the built-in
quartz crystal oscillator electronics, frequency counter, and CPU/microcontroller ensur-
ing the measurement, the monitoring, and the display (on a front panel) of the shifts in
resonance frequency, which is dependent on the material with which the QCM is in con-
tact. Consequently, an input stimulus induces a frequency shift in the sensor. Therefore,
precise quantification of changes in the input stimulus is achievable, provided an appro-
priate frequency counter/meter is utilized. Unfortunately, it is well known in the field of
time–frequency metrology that attaining higher measurement accuracy necessitates longer
measurement times. To mitigate this, QCM systems incorporate a phase-locked loop (PLL)
electronic circuit, which reduces the measurement time [20]. Nevertheless, such systems
are neither cost-effective nor suitable for developing a multi-channel QCM system. Each
QCM would require a quartz crystal resonator oscillator, a PLL, a low-pass filter, and an
amplifier circuit.

Static random-access-memory-based field programmable gate array (SRAM-Based
FPGA) technology provides a parallel computation capability which offers performance
improvements while ensuring flexibility compared with traditional CPU processing ar-
chitectures. Moreover, FPGAs provide Input/Output Blocks (IOBs) which can be used
to implement additional logic with CLBs to improve design performance by increasing
available logic and routing resources. Previous works show interest in using FPGA for
the integration of a frequency measurement technique providing a trade-off between per-
formance and accurate measurement [21]. Similarly, several works have explored the
utilization of FPGAs in QCM systems for conventional counter-based frequency measure-
ment, with or without compensation circuits [22,23]. For example, a low-cost prototype
of a multi-channel quartz crystal microbalance data acquisition system for QCM sensor
investigation was developed in 2018 [10]. It uses a totally external oscillator to keep the
oscillation down. The 16-bit time counters of the PIC16F allow frequency measurement to
be performed by QCM sensors with a sensitivity of 1 Hz. However, all of these prior works
required additional external chips to realize the QCM oscillators and generate the reference
signal based on a subdivision of a highly accurate local clock oscillator.
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This paper presents a proposal to implement a commonly used Pierce-gate crystal
oscillator based on a quartz crystal using configured Input/Output Blocks (IOBs) within an
FPGA. By incorporating digital inverters and a feedback resistor, the inner digital CMOS
inverter can be linearized, effectively transforming the logic inverter gate into an analog
amplifier. This approach allows for the utilization of low-cost external passive components
(such as C1 and C2 reactance and Rs) that satisfy the Barkhausen criteria.

Input/Output Blocks connect internal FPGA architecture to the external design via
interfacing pins, eliminating the need for external chip oscillators, such as resonators,
PLLs, amplifier circuits, or filters. Moreover, the FPGA’s logic elements, which serve as
the fundamental building blocks, can be programmed to carry out different functions as
required by the design, enabling the implementation of accurate frequency measurement
using the GPS as a reference signal. The main novelty of the proposed FPGA-based system
lies on the use of internal IOBs and its ability to perform a multi-QCM measurement system
composed of several oscillators, each equipped with a QCM. Within this system, Pierce
oscillators utilize on-chip inverting amplifiers within the IOBs of the FPGA, striking a
balance between achieving accurate frequency measurements (which can be enhanced
through fine measurements based on a ring oscillator or time-to-digital approach) while
minimizing the use of logic resources within the FPGA and external components. There-
fore, the frequency measurement is accomplished through the implementation of a 32-bit
reconfigurable reciprocal frequency meter architecture, which relies on the GPS reference
signal and the measurements taken when it is connected to different QCMs.

The remaining sections of the paper are structured as follows. Section 2 outlines
the proposed system, which integrates parallel quartz crystal oscillators using only IOBs
connected to multiple QCMs simultaneously. This section describes the reciprocal counter
implemented in FPGA (with the potential for enhanced accuracy through the implementa-
tion of a time-to-digital converter (TDC) in the FPGA). Section 3 investigates the resonant
conditions for various QCMs, providing details on the experimental setup, measurement
results, and subsequent discussion of the findings. Finally, Section 4 presents the conclusion
of the study along with directions for future work.

2. Frequency Measurement Electronic System

Figure 3 illustrates the overall electronic measurement system of the proposed multi-
channel QCM data acquisition system, which incorporates two QCM resonators. The embed-
ded frequency measurement system comprises both hardware and software components.
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The embedded hardware employed in this study utilizes an accurate FPGA-based fre-
quency measurement system implemented on the Xilinx Virtex 6 FPGA ML605 stand-alone
platform [24]. The software part, executed on a microcontroller, is responsible for collecting
frequency data and transmitting this to a display. This proposed electronic communication
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system incorporates an embedded processor that utilizes Bluetooth communication with
a custom-developed Android application. This application receives and stores data from
the frequency measurement hardware system in the form of a spreadsheet. This electronic
system ensures the transmission of data acquired from the sigma-delta converter through
the utilization of the I2c protocol. More precisely, serial data (SDA) and clock (SCL) signals
are used to perform the I2c protocol ensuring data transmissions. One on-board microcon-
troller on the red PIC32MX470 development board manages the communication with the
FPGA via the I2c protocol. The timer configuration is used to set the measuring rate. The
UART link is used to send the results from the microcontroller to the computer in order to
fill in a spreadsheet. The timer defines the delay between each acquisition request for digital
frequency values. The Android application manages the reception of measured values via
the Bluetooth protocol and displays in one tablet device. In summary, the microcontroller
is responsible for managing frequency measurements, which are conducted by the FPGA
directly connected to multiple QCM measurement channels.

A multi-channel reciprocal counter is implemented within the FPGA Virtex-6, utilizing
a 200 MHz local clock reference signal. The timegate (measurement time) for counting
rising edges of the reference signal is set to one second, corresponding to a 1PPS GPS signal
received with a jitter of approximately 20 ns from the MediaTek GPS Chipset MT3339 of
the Adafruit GPS module [25]. This received GPS reference signal provides an efficient,
stable, and cost-effective solution for generating an accurate timegate reference signal,
enabling high-frequency resolution in frequency measurements. Figure 4 showcases a
photo of the proposed embedded hardware system for QCR oscillator multi-channel
frequency measurements.
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2.1. Frequency Measurement System

Usually, low-cost FPGA-based frequency measurement relies on a frequency counter
that incorporates timers and logical counters. The basic digital measurement of frequency
involves counting the number of rising edges of the input signal during a predetermined
time interval, utilizing a stable clock reference signal. The resonance frequency can then
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be obtained using Equation (2), where f represents the measured resonance frequency, N
denotes the measured number of input pulses, and t indicates the measurement time.

f =
N
t

. (2)

Depending on the frequency of the clock reference signal, the accuracy of the mea-
surement improves as the duration of the measurement time increases. If we use a basic
frequency counter (according to Equation (2)) with a measurement window of one second,
we will reach a maximum accuracy of ±1 Hz. However, for QCM applications that require
higher frequency resolution and/or shorter measurement time, modern frequency counters
employ the reciprocal counting method [26]. Unlike previous approaches that solely rely
on a high-frequency reference signal, the proposed reciprocal counter utilizes two signal
references: a high-frequency clock signal for frequency calculation and the received GPS
signal for period measurement. This approach offers an alternative solution for achieving
more accurate measurements without the need for subdivision of the high clock reference
signal. Figure 5 illustrates the reciprocal counting method using the GPS Signal.
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Figure 5. Reciprocal counter based on an input reference GPS signal.

For a duration of one second, each clock edge of the input signal is counted N times.
Simultaneously, a reference signal is also counted for the exact same duration. This duration,
referred to as τ, represents the time delay between the first rising edge of the input signal
following the rising edge of the one-second period signal, and the first rising edge of
the input signal following the falling edge of the 1 Hz signal. The main advantage of
this method is its resolution, which remains unaffected by the input frequency and can
be enhanced through the utilization of low-cost FPGA-based digital counting techniques
(DCTs) for time stamping the start and stop edges of the input signal. Moreover, the error
remains constant across the entire range of input signal frequencies and can be reduced as
the reference clock frequency increases or as the gate time extends.

Figure 6 illustrates the internal architecture of the FPGA reciprocal counter designed
for measuring the frequency of a single QCR oscillator. This design incorporates three
digital counters, each 32 bits in size, responsible for counting the various edge events of
the input oscillation signal. These counters enable the calculation of the frequency value
or frequency shifts resulting from the input QCM stimulations connected to the FPGA’s
IOBs. The first counter, denoted ValeurFrequenceRef, provides the count result of the high
frequency reference delineated by the input GPS signal. This measurement provides a
real-time accurate measurement of the reference frequency. The second counter, referred
to as C_Freq, counts the number of rising edges of the signal to be measured (the output
oscillation signal for one Pierce QCM oscillator) within the time period τ. Finally, the last
counter performs the task of counting the number of rising edges of the reference signal
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during the designated period τ in order to obtain the frequency measurement of the input
signal by considering Equation (2).
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Figure 6. Architecture of reconfigurable frequency meter.

Behavioral simulations and timing were conducted to evaluate the accuracy of the
proposed test using the Xilinx Virtex-6 ML 605 platform. These simulations demonstrated
the highly accurate frequency measurement of the oscillating QCM signal obtained from
an on-chip FPGA IOB logic inverter. The simulation results of the proposed architecture,
which utilizes the GPS-based reciprocal counting method, are presented in Figure 7. These
results were obtained through the utilization of VHDL description and the Xilinx FPGA
ISE Environment design tool.
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The design of the proposed reconfigurable frequency meter incorporates the GPS and
oscillating QCM signals as inputs (represented by clk_1 hz and freq_in signals in Figure 7).
The behavioral simulation results demonstrate the functionality and the accurate values
obtained by three counters (C_Ref, ValeurFrequenceRef, C_Freq) in accurately measuring
the frequency of the freq_in signal. These measurements take advantage of the precision of
the GPS sensor (clk_1 hz signal) and a local clock frequency of 200 MHz (clk200mhz signal).
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The accurate frequency calculation is performed according to Equation (3), as depicted in
Figure 5.

f =
C_Freq ∗ ValeurFrequenceRef

C_Ref
. (3)

2.2. Oscillator Realization

The resonance time of QCM crystals exhibits a low oscillation amplitude, typically
measured in millivolts. Therefore, sensors are connected directly to the oscillator circuit to
preserve the signal level and shape. However, the crystal signal can suffer from attenuation
and interference as it traverses various contact points such as the crystal holder and connec-
tors before reaching the circuit. To address this issue, great care has been taken in selecting
the connecting components, and proactive measures have been employed to position the
oscillator components away from strong magnetic fields and power connections.

As mentioned, the on-chip IOB inverters of the FPGA are configured as OBUFDS
elements [27] to directly facilitate the implementation of Pierce QCR oscillators. This novel
approach, not previously proposed in the existing literature on multi-channel QCM mea-
surement systems, enables the realization of low-cost QCR oscillators. Figure 8 describes
the proposed IOBs’ configuration and connection to create multi-channel QCR oscillators.
Pierce oscillators are implemented with QCM connected to the FPGA realizing the inverting
gate for the oscillator circuits responsible for generating the frequency oscillation signals
to be measured. For this purpose, some input pins of the FPGA are connected to QCR by
using the connection pins of the FMC XM105 expansion card (see Figure 4). For the input
frequency signal to be measured (i.e., the oscillator output signal), “Clock Capable” pins
ending in “_CC_” are used. For the OB output signal of the OBUFDS component, pins
ending in “_N” must be used, and for the O output signal of the OBUFDS component, pins
ending in “_P” should be used. In order to ensure adjacent output ports, the positive and
negative outputs are positioned on the same IOB side.
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3. Implementation and Experimental Results

The proposed reconfigurable standalone measurement platform with communication
capabilities combines both software resources, which bring the necessary versatility, and
the logic hardware resources in which the accurate frequency measurement unit is imple-
mented. To implement and test with multiple QCM sensors, the proposed design based on
the Xilinx XC-6 ML 605 technology is integrated as a new core with specific components
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as described by the corresponding block diagram shown in Figure 9. The proposed block
design includes the following four main modules:

- The Frequencemetre module, which corresponds to the proposed reciprocal counter
and delivers a 32-bit sequence of three counter values representing the digital fre-
quency measurement, as determined by Equation (3).

- The I2c_Slave_top module, which represents a hierarchical communication using the
I2c protocol that is connected to and exchanges data with the microcontroller for the
purpose of frequency measurement display. This module receives the counter values
from the Frequencemetre module and transmits them via the I2c communication link
to the microcontroller (PIC32MX) for further processing and display of the correspond-
ing normalized frequency change (in Hz) based on the QCM microbalance oscillation.

- The OBUFDS block, which is the inner logic oscillator circuit that provides the oscillat-
ing QCM signal while reducing the need for extra external logic circuits to function as
an inverting amplifier oscillator.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

- The I2c_Slave_top module, which represents a hierarchical communication using the 
I2c protocol that is connected to and exchanges data with the microcontroller for the 
purpose of frequency measurement display. This module receives the counter values 
from the Frequencemetre module and transmits them via the I2c communication link 
to the microcontroller (PIC32MX) for further processing and display of the corre-
sponding normalized frequency change (in Hz) based on the QCM microbalance os-
cillation. 

- The OBUFDS block, which is the inner logic oscillator circuit that provides the oscil-
lating QCM signal while reducing the need for extra external logic circuits to function 
as an inverting amplifier oscillator. 
As shown in Figure 9, the configured IOBs function as external oscillators ensuring 

multi-channel measurement as illustrated in Figure 8. For this purpose, two IOBs are nec-
essary to achieve a single-channel QCM oscillator. More precisely, one IOB (OBUFDS 
block) is configured as one logic inverter, which is combined with the external passive 
elements (C1 and R1 as described in Figure 2) to create an on-chip piezoelectric QCM 
oscillator within the FPGA. The second IOB is configured as a single-input buffer 
(IBUFDS-configured IOB), serving as an intermediary element that ensures the signal 
source remains unaffected by the load attributes while delivering a voltage and current 
similar to what it receives at its input. 

 
Figure 9. Design block diagram of GPS-based frequency measurement by QCM sensors. 

The proposed accurate multi-channel frequency measurement is described by using 
hardware description language (VHDL), and the final binary configuration file is imple-
mented on Xilinx Virtex 6 XC6VLX240T-1FFG1156 FPGA. Table 1 provides a breakdown 
of the required logic synthesis resources for the system, which include two QCR oscilla-
tors connected to the FPGA. The resource utilization is as follows: 733 Slice registers, no 
DSP multipliers, and no block RAM. This results in a low-cost logic consumption, with 
188 slices, 733 flip-flops, and 13 IOBs, all operating at a maximum frequency of 324 MHz. 
The architecture exhibits a dynamic power of 0.120 W, with a total supply power of ap-
proximately 3.618 W. Compared with a similar previous work [28], the proposed system 
for multi-channel measurement eliminates the need for Block RAM or specific digital 
clock managers (DCMs) associated with multiple GCLKs used as delay-locked loop (DLL) 
for accurate measurement [28]. Moreover, due to the Xilinx FPGA technology, the pro-
posed system consumes over five times less dynamic power than other DCM- or DLL-
based systems which require a minimal dynamic power of 727 mW and 662 mW, respec-
tively, with a 100 MHz clocking frequency [29]. 

Figure 9. Design block diagram of GPS-based frequency measurement by QCM sensors.

As shown in Figure 9, the configured IOBs function as external oscillators ensuring
multi-channel measurement as illustrated in Figure 8. For this purpose, two IOBs are
necessary to achieve a single-channel QCM oscillator. More precisely, one IOB (OBUFDS
block) is configured as one logic inverter, which is combined with the external passive
elements (C1 and R1 as described in Figure 2) to create an on-chip piezoelectric QCM
oscillator within the FPGA. The second IOB is configured as a single-input buffer (IBUFDS-
configured IOB), serving as an intermediary element that ensures the signal source remains
unaffected by the load attributes while delivering a voltage and current similar to what it
receives at its input.

The proposed accurate multi-channel frequency measurement is described by using
hardware description language (VHDL), and the final binary configuration file is imple-
mented on Xilinx Virtex 6 XC6VLX240T-1FFG1156 FPGA. Table 1 provides a breakdown of
the required logic synthesis resources for the system, which include two QCR oscillators
connected to the FPGA. The resource utilization is as follows: 733 Slice registers, no DSP
multipliers, and no block RAM. This results in a low-cost logic consumption, with 188
slices, 733 flip-flops, and 13 IOBs, all operating at a maximum frequency of 324 MHz. The
architecture exhibits a dynamic power of 0.120 W, with a total supply power of approx-
imately 3.618 W. Compared with a similar previous work [28], the proposed system for
multi-channel measurement eliminates the need for Block RAM or specific digital clock
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managers (DCMs) associated with multiple GCLKs used as delay-locked loop (DLL) for
accurate measurement [28]. Moreover, due to the Xilinx FPGA technology, the proposed
system consumes over five times less dynamic power than other DCM- or DLL-based
systems which require a minimal dynamic power of 727 mW and 662 mW, respectively,
with a 100 MHz clocking frequency [29].

Table 1. Comparison of FPGA Resource Utilization for Two Parallel QCMs.

FPGA
Technology GCLK DCMs BRAMs LUTs Slices IOBs FFs Dynamic

PWR (mW)
Fmax

(MHz)

Proposed
Work

Virtex-6
XC6VLX240T

1
(12.5%)

0
(0%)

0
(0%)

527
(1%)

188
(1%)

13
(2%)

733
(1%) 120 324.4

Ref. [22] Virtex-4
4vlx25fft668-10

2
(6%)

1
(12%) X 1625

(7.5%)
922

(8.5%)
8

(1.5%)
774

(3.5%) NC 102.963

Ref. [28] Spartan-3
XC3S200 NC 1

(25%)
1

(9%)
460

(12%)
230

(12%)
5

(3%)
460

(12%) NC 200

To validate the system’s performance, a test platform consisting of multiple QCM
sensors in a homogeneous liquid (distilled water) was utilized. Figure 10 displays the
measurement obtained by the proposed multi-channel QCM from output signals of 4 MHz
and 10 MHz QCR oscillators. These signals were obtained using OBUFDS differential
inverters to perform 4 MHz and 10 MHz on-chip FPGA Pierce oscillator using only external
passive components (see Figure 4). We observed that the IOBs of the FPGA ensure the
oscillation of several quartz crystals without the need for additional external logic circuits,
as commonly utilized in previous QCM measurement systems. Therefore, the proposed
integrated QCRs maintain the oscillation of the signals; these are directly measurable by
the Frequencemetre module within the FPGA. These tests validate the functionality of the
FPGA-based multi-channel QCM measurement system, which operates effectively without
external QCRs and provides accurate real-time frequency measurements.
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In order to assess the accuracy of the proposed FPGA-based frequency meter design,
we conducted a series of comparative measurements. We used an input signal from a
10 MHz MicroCrystal OCXO oscillator, reference “OCXOV-AV5-10.000”, which provided
a frequency stability of ±0.2 ppm. This reference signal is measured both by a frequency
meter (Rohde and Schwarz Hameg HM8123 (OCXO Version)) and the proposed FPGA
Virtex-6 frequency measurement system. The HM 8123 counter frequency measurement
error is 1.25× 10−8. It represents the frequency instability of the counter, in the temperature
range of 0–50 ◦C. A 120-second series of measurements can be seen in Figure 11. On all
the measurements taken, it can be seen that the difference (∆f) between the mean value of
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measured frequencies by the HM8123 m and the mean values measured by the frequency
meter implemented in the FPGA is less than 0.1 Hz. In Figure 11, ∆f is approximately
0.09 Hz. We can therefore consider that under normal operating conditions, the accuracy of
our system is better than 0.1 Hz.
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4. Comparison with Similar Works

Several recent systems have been proposed to measure frequency shifts in QCM sys-
tems based on QCR [22,23,28,30–34]. Table 2 provides a comparison between the proposed
accurate multi-channel QCM system and state-of-the-art works in terms of additional hard-
ware resources, number of channels, number of external logic oscillator circuits (QCRs),
reference time base source, accuracy, and required FPGA logic resources. Based on Table 2,
it is evident that the proposed system achieves one of the highest accuracies. This is primar-
ily attributed to the utilization of a GPS signal and the incorporation of QCRs specifically
designed within the FPGA. These features enable the system to conduct multi-channel
frequency measurements using just a single FPGA. In fact, compared with previous works,
the achieved accuracy is better than 0.1 Hz, which is accomplished with only a reciprocal
counter. Furthermore, compared with similar works, the proposed FPGA design utilizes
79% fewer slices, 5% fewer flip-flops, and 67% fewer LUTs compared with the architecture
presented in [22]. Similarly, the proposed FPGA architecture design necessitates 45% fewer
slices compared with the system suggested in [28]. Therefore, compared with previous
systems, the proposed multi-channel QCM measurement system offers low-cost, highly
accurate frequency measurement for multiple interconnected sensing QCM crystals in
parallel for sensor investigations. Consequently, the proposed system provides a better
trade-off in terms of performance and required logic resources while offering a cost-effective
solution as it only requires external passive components to achieve multiple inverting QCM
oscillators, allowing multi-channel QCM measurement using a single FPGA device. More-
over, the main advantage of the proposed system is that it enables multi-channel frequency
measurement without the need for specific embedded blocks such as DSP, BRAM, DLL, or
additional external logic circuits such as oscillators, PLLs, microcontrollers, etc. However,
a limitation of the proposed system is its performance when ensuring simultaneous mea-
surement of a large number of QCR frequencies in the FPGA, which requires high parallel
computation and a large number of IOB (Input/Output Buffer) clocks.
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Table 2. Comparison of QCR-based QCM measurement systems.

References Hardware
Reference
Time Base

Source

Active
QCR Techniques Precision

Achieved

Resources for
Frequency

Measurement

Reconfigurability
with

Multi-Channel
System

[28] Xilinx Spartan 3 External 50
MHz oscillator External

Conventional
frequency
counter,

differential
delay lines

(DLL)

0.05 Hz
230 slices, 1

DCM, 9 IOBs,
17,280 BRAMs

Yes

[20]

Low-pass filter,
amplifier, PLL with

VCO,
microcontroller,

temperature sensor

NC External
Phase-locked
loop circuit

(PLL)
0022 Hz NC Yes

[22]
Virtex 4, 32-bit

MicroBlaze
microprocessor

NC External
Conventional

frequency
counter

<1 Hz

922 slices, 774
flip-flops, 1625
LUTs, 8 IOBs,
21 FIFO16, 1

GCLKS and 3
DSP48s

Yes

[30] DE-2 board PLL 200 MHz
signal External

Reciprocal
counter,

time-to-digital
converters

(TDCs)

0.25 Hz with
reciprocal
counter

NC Yes

[31]

Arduino Atmega
2560

microcontroller,
PIC16F628A per

channel

Arduino 1 Hz
signal External

Conventional
frequency
counter

1 Hz
One microcon-

troller per
channel

No

[32] Spartan 3 External 50
MHz oscillator External

Conventional
frequency
counter

1 Hz NC Yes

[33] CPLD XC2C256
16.9344 MHz

external TCXO
oscillator

External
Conventional

frequency
counter

0.5 Hz

228 macrocells,
19 function

blocks and 72%
of registers

Yes

[34] Spartan-3E
(XC3S250E)

100 MHz
TCXO

oscillator
External Reciprocal

counter 0.1 Hz NC Yes

Our QCR
with

reciprocal
counter

Virtex-6 ML605

GPS 1PPS
signal from

MediaTek GPS
chipset
MT3339

Internal Reciprocal
counter <0.1 Hz

188 slices, 733
flip-flops, 527
LUTs, 13 IOBs

Yes

5. Conclusions and Future work

This paper presents a GPS-based accurate multi-channel QCM sensor measurement
application using an FPGA directly interfaced with quartz crystal oscillators. Our system
ensures multi-sensor measurement while integrating the reciprocal frequency measurement
part within the FPGA. The reconfigurable embedded system performs the frequency
measurement for high-accuracy QCM applications which has been implemented and
behavior-tested using the FPGA Virtex-6 XC6VLX240T. The proposed system requires low
FPGA logic resources while taking advantage of the computation concurrency. Furthermore,
the suggested system eliminates the need for external oscillators or chips for conditioning
or data processing. It enables the measurement and monitoring of QCM frequencies within
the 1–50 MHz range with an accuracy of 2 ppm and a precision of under 0.1 Hz. Frequency
values from multiple QCM sensors can be measured and recorded periodically, every
second, using this system.
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As part of our future work, we also plan to integrate compensation conditions (or cali-
bration sensors) based on Allan deviation computation within the FPGA. This integration
will accurately determine the influence of measurement conditions on oscillator behavior,
frequency stability, and sensor mass resolution, thereby improving accuracy and processing
time [33]. Additionally, we will measure temperatures and ambient humidity in sensor
environments simultaneously to enhance high-temperature compensation and improve
quartz crystal characteristics. To achieve higher accuracy in frequency measurement, we
will consider incorporating a time-to-digital converter IP core for FPGA, enabling precise
measurements [34]. Moreover, as sensors with high sensitivity require more time for accu-
rate frequency shift measurements, we will explore the principle of rational approximations
for measurement [35].
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