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Abstract: Building cloud-native applications based on public “Function as a Service” (FaaS) platforms
has become an attractive way to improve business roll-out speed and elasticity, as well as reduce
cloud usage costs. Applications based on FaaS are usually designed with multiple different cloud
functions based on their functionality, and there will be call relationships between cloud functions. At
the same time, each cloud function may depend on other services provided by cloud providers, such
as object storage services, database services, and file storage services. When there is a call relationship
between cloud functions, or between cloud functions and other services, a certain delay will occur,
and the delay will increase with the length of the call chain, thereby affecting the quality of application
services and user experience. Therefore, we introduce µFuncCache, a user-side lightweight caching
mechanism to speed up data access for public FaaS services, fully utilizing the container delay
destruction mechanism and over-booked memory commonly found in public FaaS platforms, to
reduce function call latency without the need to perceive and modify the internal architecture of
public clouds. Experiments in different application scenarios have shown that µFuncCache can
effectively improve the performance of FaaS applications by consuming only a small amount of
additional resources, while achieving a maximum reduction of 97% in latency.

Keywords: function as a service (FaaS); public cloud function; user-side; lightweight cache

1. Introduction

Cloud computing aggregates hardware and software in a datacenter into a large pool
and offers users on-demand IT resources with pay-as-you-go pricing [1]. However, the early
cloud computing phase, based on virtual machine (VM) provision (known as Infrastructure
as a Service, IaaS), only migrates workloads to the cloud, and users are still responsible for
the management, configuration, and scaling of VMs. At the same time, in order to deal with
sudden surges, users often prefer to rent more resources than usual, resulting in significant
resource and budget waste [2].

Function as a Service (FaaS) is a new paradigm of cloud computing that has emerged
in recent years, currently as an embodiment of serverless computing [3–6]. Compared
with traditional cloud computing, users on FaaS platforms no longer need to care about
the maintenance and management of VMs, especially the complex, time-consuming, and
error-prone configurations involved in distributed applications. They only need to upload
the code through the interfaces provided by the FaaS platform, and set parameters, such as
expected usage resources and runtime, to run it as a completely distributed and scalable
application. At the same time, users no longer need to purchase redundant resources
to cope with rare high concurrency scenarios, and they are only charged based on the
duration of a single task execution and the usage of resources. Since the release of the
Lambda [7] cloud function platform by Amazon Web Services (AWS) in 2014, many public
cloud providers, such as Azure, Google Cloud, and Alibaba Cloud have provided similar
services [8–10], and several open-source platforms (e.g., OpenWhisk [11], OpenFaaS [12],
and Knative [13]) were presented. Each cloud function on FaaS platforms is a short-lived
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(e.g., the maximum run time of functions in AWS Lambda is 15 min [3]), stateless task unit
encapsulated in a container or other kinds of sandbox, including the code package to be
run, a series of parameter settings, and related configuration files. Every cloud function
can independently execute its own business logic and interact with other cloud functions
through function calls. Usually, a function instance will execute only when invoked by
different event triggers (e.g., HTTP request, timer) and sleep immediately after handing
the event [3].

In recent years, a wide range of applications have been adapted to FaaS architecture,
including machine learning [14,15], big data analytics [16,17], Internet of Things [18,19],
scientific computing [20,21], etc. In order to achieve high elasticity, applications developed
and deployed on FaaS platforms usually consist of multiple different cloud functions, thus
communications in the form of function call are required. Meanwhile, because of the “data-
shipping” architecture [22] incurred by the stateless nature and inability of the addressable
network, in order to share state information or ensure data persistence, FaaS applications
will also need to access other services in the cloud ecosystem (known as Backend as a
Service, BaaS [3,5]), such as database services for important user data and object storage
services for large files. Therefore, there are two types of call relationships: calls between
cloud functions, and calls between cloud functions and other cloud services. Regardless
of the type of call relationships, there will be a certain amount of latency. Although the
latency of a single call between cloud functions is very low, once multiple calls are made
on a single request to form a long call chain, the latency will accumulate to a large value. In
addition, if the size of the data transmitted is too large, latency would also significantly
increase. As shown in Figure 1, when a user request reaches Function 1, if the call chain
between Function 1 and Function n is too long, the response delay may not only be affected
by the network transmission time, but also by the processing time of cloud functions with
a heavy workload. In addition, when cloud functions request other cloud services, such as
database services or object storage services, the response time will also depend on the size
of the data.

Figure 1. Function call chain in FaaS applications.

To validate the above inference, we conducted a test on the Alibaba Cloud function
computing platform Function Compute (FC) [10]. The test includes calls between cloud
functions and calls from cloud functions to other cloud services. We created a cloud
function to perform a read and write operation on Alibaba Cloud Object Storage Service
(OSS) [23], and then continuously added new functions to form a chain. All cloud functions
in the chain do not execute any complex task, and only send requests to the next one or
OSS in the end. The response time of the request is recorded every time. The maximum
memory allowed for a single function is set to 512 MB, and the maximum running time
allowed is set to 10 s. The programming language is Java with JDK 1.10.

Before each test, we called the function chain several times to ensure that all cloud
functions have live instances, in order to avoid the impact of a cold start (i.e., set-up time
required that is invoked when downloading the code, starting the instance, and initializing
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the runtime, and so on, for the first time) [3,6], which has been studied extensively with
some work also focusing on the optimization for the chain structure [24,25]. The call chain
length was set from 1 to 4 and, for each run, we conducted 20 tests and calculated the
average time. The results are shown in Figure 2. As can be seen, as the length of the call
chain increased, the response time continuously increased, and both the read and write
curves showed positive linear relationships. Meanwhile, it can be found that the delay of a
single call was actually low. However, as the length increased, when the call chain length
reached three, the latency was even around 180 ms. On the other hand, since all cloud
functions do not require long local processing time, it can be concluded that the network
latency between functions in Alibaba Cloud FC remained almost stable during the tests.

Figure 2. Response time of function chains with different lengths in Alibaba Cloud FC.

However, since one of the main design goals of the public FaaS service is to abstract
and hide as many resource management details as possible, users are generally unable
to perceive and modify the internal architecture of FaaS platforms to reduce the afore-
mentioned latency. Further limited by this reason, existing research work on this issue
has to validate the proposed optimization method on open-source FaaS platforms such as
OpenWhisk [26] or additional public cloud resources need to be resorted to build separate
storage or caching systems [27,28].

Therefore, this paper proposes, for the first time, the optimization of the delay of cloud
functions from the user side, based on two typical features of public FaaS platforms. On the
one hand, public FaaS platforms usually adopt reuse mechanisms to reduce the number of
cold starts. Under the strategy of container reuse, when a cloud function instance handles
a request, it will not be immediately destroyed, but will continue to survive for a certain
period of time. For example, function instances will survive for 5 min and 20 min in AWS
and Azure, respectively [29,30]. When a function instance is within its lifetime and receives
new requests, it will be reused to eliminate cold start delays. The remaining survival time of
the container instance will be refreshed with the arrival of new requests. On the other hand,
function instances in public cloud functions generally have redundant memory. Based
on the analysis of current public FaaS platforms, it is found that users usually request
excessive memory for function instances. For example, the average memory usage of
function instances in AWS Lambda is 27% [31], and 90% of applications in Azure Functions
use no more than 400 MB of memory while 50% of applications use no more than 170 MB
of memory [32].

Motivated by the above two characteristics of public FaaS services, we introduce a
user-side lightweight cache system, named µFuncCache, to optimize the call latency in
FaaS applications. By introducing a local cache on the first cloud function at which requests
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arrive, overall processing time, after the head node on the entire function chain, can be
reduced when the cache is hit, achieving a reduction in function call latency without the
need to perceive and modify the internal architecture of public FaaS platforms. Analysis and
experiments in different application scenarios have shown that µFuncCache can effectively
improve the performance of FaaS applications by consuming only a small amount of
additional resources, thereby reducing the response time of the service.

To summarize, this paper makes the following contributions:

1. We propose an architecture design of a user-side lightweight cache system for public
FaaS services, which leverages the container delay destruction mechanism and over-
booked memory.

2. We present an efficient implementation of the cache system, which only consumes a
small amount of additional memory with very small changes to the user’s code.

3. We make a comprehensive evaluation of the proposed method in three typical scenar-
ios, and show that a maximum reduction of 97% in latency can be achieved.

This paper is organized as follows. In Section 2, we give an overview of the related
research work. Section 3 presents the architecture design and implementation details of the
proposed cache system. We describe the evaluation in Section 4. Then, Section 5 discusses
the advantage and pitfalls of our method. Finally, in Section 6, we summarize our findings
and conclude the paper.

2. Related Work

We focus our discussion of related work on reducing data access latency in FaaS
applications, and organize them into two categories: storage for FaaS and cache for FaaS.
We also discuss the related orthogonal work, which can improve the overall performance
of FaaS applications together.

Storage for FaaS mainly implements cloud storage that can match FaaS in terms of
data consistency, scalability, and efficiency. Since function instances are stateless, FaaS
applications have to access remote cloud storage when data or state is required, thus
significant overhead occurs. To address the data transfer issues, Shredder [33] implemented
a low-latency multi-tenant cloud storage that allows small compute units to execute directly
in the storage node. Storage tenants provide Shredder with JavaScript functions that can
interact directly with data without having to move it over the network. Further towards
this goal, LambdaObjects [34] proposes a new serverless computing abstraction model,
which stores data and computation together. This model enables the direct execution of
functions on nodes where the data is stored by encapsulating the data as objects, and
computation corresponds to the methods of accessing and modifying the data in the
object. Pocket [27] implements an elastic distributed store that automatically scales and
delivers the performance required by applications at a lower cost. Pocket dynamically sizes
resources across multiple dimensions (CPU cores, network bandwidth, storage capacity)
and leverages multiple storage technologies to minimize costs and ensure that applications
will not experience I/O bottlenecks. Locus [35] combines cheap and low storage with
expensive and fast storage to implement a FaaS-based data analysis system, achieving
high performance while improving cost performance. At the same time, Locus provides a
performance model to guide users in choosing the appropriate storage type and quantity.
To minimize inter-host communication due to the state externalization of stateless cloud-
native applications, ref. [36] designed a state layer architecture suitable for any kind of
key-value store, which consists of a data placement algorithm that places states across the
hosts of a data center, and a state access pattern-based replication scheme that decides the
proper number of copies for each state, to ensure a ‘sweet spot’ in short state access time
and low network traffic. Based on this work, ref. [37] proposed an edge computing platform
for latency-critical FaaS applications, which decrease end-to-end latency for mobile end
devices via orchestrating functions and in sync data.

Cache for FaaS is designed to improve the data access performance of FaaS in-
stances and implement a distributed cache that meets latency and scalability requirements.
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OFC [26] implements a transparent, vertically and horizontally elastic extended memory
cache system, which uses machine learning models to estimate the actual memory resources
required for each function call, and also organizes the redundant memory into a cache
layer. InfiniCache [28] implements an in-memory object-caching system built entirely on
FaaS instances for more general application scenarios. It combines erasure codes, intelli-
gent billed control, and effective data backup mechanisms to maximize data availability
and cost-effectiveness, while reducing the data loss and performance risks caused by the
short-lived function instance. From the perspective of improving the function comput-
ing architecture, Lambdata [38] uses existing cloud object storage (such as AWS S3) to
store data, but adds a caching layer where each node has its own object cache. When
scheduling function instances, Lambdata prioritizes scheduling functions that handle the
same data to the same node. Cloudburst [39] supports stateful function computation, and
implements data storage based on the automatically scalable key-value storage system,
Anna. It also introduces local caching to optimize access to multiple function instances.
HydroCache [40] also builds a distributed cache based on Anna, and introduces a multisite
transactional causal consistency (MTCC) protocol to improve the application performance
while ensuring transactional consistency for the causal consistency problem, which would
occur when multiple function instances of the same application execute across different
nodes. Faa$T [41] has designed and implemented a transparent and automatically scalable
distributed cache to compensate for the lack of data-access-oriented design in existing
caching mechanisms. Each application has its own cache and automatically unloads it
when the function instance stops executing. At the same time, it would be warmed up
before the next run, which can improve application performance while reducing costs.

Table 1 summarizes the differences between µFuncCache and the above work men-
tioned. As can be seen, we compared the related work with µFuncCache from four dimen-
sions, including whether additional storage space is needed (which will lead to additional
budget expenditure), whether distributed management is required (which will lead to
the need to deal with issues such as data consistency, reliability, and so on), whether the
FaaS platform needs to be modified (which will affect the applicability of the work, and
the public FaaS platforms cannot be modified by ordinary users), and whether the user
code needs to be modified (which will increase development costs and bring potential
compatibility issues).

Table 1. Summary of related work review.

Work Additional
Storage Space

Distributed
Management

Platform
Modification

Application
Modification

OFC [26] Y Y Y
Pocket [27] Y Y Y

InfiniCache [28] Y Y Y
Shredder [33] Y Y Y Y

LambdaObjects [34] Y Y Y Y
Locus [35] Y Y

[36] Y Y Y Y
[37] Y Y Y Y

Lambdata [38] Y Y Y Y
Cloudburst [39] Y Y Y Y

HydroCache [40] Y Y Y Y
Faa$T [41] Y Y
µFuncCache Y

Y represents that the work has the corresponding characteristic.

As the primary design goal of µFuncCache is a user-side lightweight cache layer, it
does not rely on other cloud services such as object storage, as well as on the need to
modify the internal architecture of public FaaS platforms. By making use of local redundant
memory to build a local cache, it reduces the management complexity and overhead caused
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by the distributed cache management. Thus, µFuncCache can achieve independence of
extra storage services and platforms, as well as maintain simplicity.

In addition, cache-based methods are currently widely used to reduce the startup
delay of functions. Unlike the work in this article, these tasks involve caching the data
required for the function instance itself to run, such as the runtime environment, in order to
reduce cold start overhead. SOCK [42] caches interpreters and commonly used library files
and provides a lightweight isolation mechanism. Nuka [43] designed a local packet caching
mechanism to import the required software packages. SAND [44] and Photos [45] adopt the
method of sharing runtime in function instances, while refs. [46–48], respectively, reduce
loading and running costs by sharing network resources, image data, and the container
itself. FaaSCache [49] considers keeping function instances running as a caching problem
and reduces the number of new functions created by optimizing instance survival strategies.
Recent work, including refs. [50,51], designed for serverless computing platforms in edge
scenarios, also uses cache mechanisms to quickly create function instances.

Another type of research that is orthogonal to our work aims at memory sharing
between function instances located on the same physical server, thereby reducing data
movement overhead. FAASM [52] implements a new function runtime based on We-
bAssembly and allows for the memory sharing of functions within the same address space.
Nightcore [53] implements efficient inter-function communication through shared mem-
ory by scheduling multiple requests for a function to the same container. Fastlane [54]
achieves data sharing by introducing simple load/store instructions, treating functions
within the same workflow as threads within a shared virtual address space. Ref. [55]
designs a message-oriented middleware to achieve memory sharing for function instances
located on the same physical server. Our method is not limited to the premise that function
instances are located on the same physical server, and can improve the overall performance
of FaaS applications together with these works.

3. Design and Implementation

For applications built on FaaS, if a cache can be introduced and hit on the first cloud
function that the request reaches, the data access time after the head node on the entire
call chain can be reduced significantly. However, unlike traditional cloud computing appli-
cations, cloud function instances do not survive for long periods of time, and individual
instances have smaller resources. Therefore, it is necessary to redesign a lightweight cache
that can adapt to the characteristics of cloud function instances. We first analyzed the prin-
ciples that need to be considered when designing the target cache, and then designed and
implemented the lightweight cache mechanism µFuncCache based on the basic working
principle of the cache.

3.1. Design Principles

Distributed caching often provides reliable caching services in the form of clusters,
encapsulating complex topology structures and exposing an accessible interface to provide
easy-to-operate services for applications, while adopting redundancy mechanisms to ensure
high availability and scalability. The characteristics of cloud function instances determine
that distributed caching mechanisms cannot be directly applied to FaaS platforms, but
the aforementioned ease of use, reliability, and other features are still factors that need
to be considered when designing a lightweight cache for cloud function instances. In
addition, it is also necessary to consider that the maximum allowable memory allocated to
cloud function instances is not as large as virtual machines, and they cannot run for a long
time like traditional cloud computing nodes. In this work, µFuncCache is proposed and
designed, considering the following aspects in order to design such a cloud function cache.

Usability. For cloud functions that use cache, it is necessary to define standardized
usage interfaces. The interface needs to have a certain degree of stability, that is, regardless
of how the logic inside the cache changes, the interface still needs to be guaranteed to
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remain unchanged. This ensures that the parts of the business code that use cache do not
need to be modified every time the cache structure changes.

Scalability. This feature does not need to be manually added or deleted on the function
computing platform, like a distributed cache, but can be automatically implemented using
the dynamic scaling characteristics of cloud functions. If a single machine cache code is
added to a cloud function, the number of caches increases with the number of instances,
and the number of instances is determined by the request. The more requests arrive, the
more likely it is that duplicate items appear, and the cache hit rate increases accordingly.

Availability. The essence of availability is, in fact, to avoid a single point of failure
in the entire cache cluster. For public FaaS platforms, we adopt a local cache to avoid
this issue. Each function instance has its own lightweight cache, and the reliability of the
instance is guaranteed by the platform.

Memory Cost. The memory allocated by a single function instance itself is not par-
ticularly large (usually between 128 MB and 3000 MB). If a stand-alone cache must be
introduced in the business code, then little memory should be provided, not only to the
task to be executed but also to the cache item to be stored. If the cache itself is too complex,
it is likely to be worse than not caching at all. Therefore, the memory occupied by the
stand-alone cache itself must not be too significant.

Access Cost. The cache was introduced to address the high response time caused by
long call chains, but if accessing the cache itself takes too much time, then introducing
caching will only have the opposite effect. Therefore, when designing a cache, it is necessary
to consider the access time of the cache itself and analyze whether its costs and benefits are
reasonable to some extent.

Data Freshness. The cache entries are actually obtained from remote storage (which
may be the result of other cloud functions stored in object storage or databases). Once
the remote data changes, it is necessary to update the corresponding cache entries in the
shortest possible time. For this purpose, a timestamp is introduced into each cache entry
and corresponding thresholds are set according to different scenarios. During each access, if
a cache entry is hit, the cache can automatically detect whether the cache entry has expired.
Once it has expired, new data will be obtained from remote storage to update it.

Cache Hit Ratio. Cache hit ratio refers to the percentage of requests that have received
data from the cache as a percentage of the total number of requests, and is determined
by the order of requests as well as the content of the requests. For this reason, when
designing a cache, we need to consider the sequence of cloud function requests and
choose an appropriate cache-replacement strategy based on the characteristics of different
request sequences.

3.2. Architecture Design

The architecture design of µFuncCache is shown in Figure 3. Every instance of
cloud functions with cache code carries an independent standalone cache, and the caches
of the instances do not need to communicate with each other. At any time, all cache
contents are also independent of each other, which depends on the requests processed by
the corresponding instance of the cache. In Figure 3, there are three function instances,
corresponding to the three states when the request arrives. When a request arrives, if the
cache on the instance can hit, the hit item will be directly returned; otherwise, the request
needs to be handed over to the next cloud function or other cloud service for processing. In
this design mode, the high availability and scalability issues of the cache are solved with
the dynamic scaling characteristics of the function instance. In addition, the single-node
cache, as it does not require communication, will only retain two operations: fetch and save.
Therefore, its structure will be very simple, thus greatly saving the memory consumption
of the cache itself.
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Figure 3. Architecture of µFuncCache.

Regardless of the type of cache, hit ratio has always been the core issue. It is obviously
not feasible to increase the number of cached items on cloud function instances where
memory allocation is already limited. Meanwhile, the request characteristics of FaaS
applications, and appropriate cache replacement algorithms, should be considered to
improve cache hit ratio. Common cache replacement strategies include First-In-First-Out
(FIFO), Least-Frequently-Used (LFU), Least-Recently-Used(LRU), and Size. FIFO and LFU
are generally suitable for sequential access mode. The former is the simplest first-in-first-out
logic, while the latter determines the replacement weight based on the frequency of data
item access over a long period of time. The replacement strategy of LRU only considers the
time when access arrives, that is, the replaced data items are always the ones that have not
been accessed for the longest time. Size, on the other hand, is different from other methods.
The replacement strategy in Size is determined by the size of the cached data, swapping
out the largest data item to accommodate more small data.

In high concurrency scenarios, where container reuse often occurs, requests often ex-
hibit temporal locality, meaning that some previously referenced objects may be frequently
referenced later. For example, in the takeaway delivery service, if a customer in a specific
location sends a delivery request at a certain time, there is a high probability that multiple
order requests will occur at that location during that period (e.g., during lunch time in an
office building). For the same delivery service point around that location, there is a high
possibility of duplicate planning tasks to obtain its shortest paths to customers the results
of which can be reused to reduce cost. This temporal locality is precisely suitable for LRU
replacement strategy, not for the FIFO and the LFU that only consider the access order.

The LRU algorithm execution process is briefly described below. The total number of
cache items that can be stored in the cache is N. When the data is obtained according to
the keyword, the corresponding cache item is searched throughout the cache. If found, the
data in the corresponding cache items is returned. Otherwise, the data is fetched from the
remote storage and added to the cache. If the number of cache items reaches N, the data
obtained remotely replaces the data of the least recently accessed one. In addition, when
considering data freshness, after cache hits, it is also necessary to determine whether the
data in the corresponding cache item has expired. Cache entries are usually designed as a
chain structure as they are accessed at different times. In order to facilitate the operation of
individual nodes, we used a double-linked list to store cache items. Although the single
move of a node is relatively simple, the time complexity still reaches O(n). Table 2 shows the
pseudocode symbol definitions for µFuncCache when performing data access operations.
When the cache space is full, the new data items replace the data items that are the least
recently accessed. The basic data structure of µFuncCache consists of a double-linked list
and a hash table (defined as list and map in Table 2, respectively). A node corresponds to a
cache entry, containing a keyword key and a value data, which is a copy of the data fetched.
A node will be saved in list and map simultaneously.
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Table 2. Symbol definition in the µFuncCache pseudocode.

Symbol Definition

list double-linked list of nodes
map hash table of nodes
size current number of cache items

capacity maximum number of cache items
timestamp time stamp of a node
threshold threshold of data freshness

head head pointer in the list
tail tail pointer in the list

Algorithm 1 shows the pseudocode of the PUT operation in µFuncCache, which de-
scribes how to reduce the complexity of a store operation to O(1) through a hash table,
based on the LRU replacement strategy. All cache items are stored in list as node, and then
every node in list is also stored in the hash table map (where the keywords accessed by the
hash table are the keywords held by the node). Since the access complexity of the hash
table is O(1), it is possible to quickly determine whether there is a node with corresponding
keyword in list during each operation. If an existing node holds a keyword queried, the
old data is directly overwritten with new data, otherwise a new node is created to store the
key and the data to be saved. If the total number of nodes exceeds the maximum number
of allowed nodes after creating a new node, the next node pointed to by head is removed.
Then, by moving the node to the previous position of tail, this indicates that the node is the
node that µFuncCache has recently used. Finally, the timestamp in the node is updated,
indicating the “production time” of the data.

Algorithm 1 The pseudocode of PUT operation

Input: key k and data d
Output: node temp
1: if map contains k then
2: get node n from map with key k
3: replace the original data in n with d
4: temp← n
5: else
6: if capacity == size then
7: delete the next node pointed by head in list
8: size← size − 1
9: end if
10: create a new node n′ with <k, d>
11: size← size + 1
12: put <k, n’> into map
13: temp← n′

14: end if
15: move temp to the previous node of tail in list
16: update the timestamp of temp to system current time

Algorithm 2 shows the pseudocode of the GET operation in µFuncCache, during
which the data freshness needs to be evaluated. If the difference between current system
time and the timestamp in the node are larger than threshold, the data has expired and
the latest data needs to be retrieved. After the data is fetched, it is cached by calling the
PUT operation.
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Algorithm 2 The pseudocode of GET operation

Input: key k
Output: data d
1: if map contains k then
2: temp← get node from map with key k
3: if system current time − timestamp of temp ≤threshold then
4: d← get the data from temp
5: move temp to the previous node of tail in list
6: return d
7: end if
8: end if
9: d← request for data from data source with the parameter of k
10: if d is not null then
11: PUT(k, d)
12: end if
13: return d

It can be seen that, whether for a PUT operation or a GET operation, there is no
traversal process for list or map. The time complexity of accessing map, all operations on
node pointers, and freshness determination of data are all O(1), so the time complexity of
both operations in µFuncCache is O(1).

3.3. Implementation

We first define a double-linked list as the basic data structure of the LRU algorithm.
The double-linked list will contain two special pointers, head and tail, the middle part of
which is used to store cache entries. Each node in the linked list contains data items and
pointers to the two nodes connected before and after the current node. In addition, the
node also includes a timestamp variable related to data freshness, as well as the keyword
key required to obtain the data. The nodes in the linked list are arranged in order based on
the most recent time accessed. When the cache space is full, the node pointed at the tail
will be the last to be eliminated, while the head node will be the first to be eliminated.

Both PUT and GET operations require O(n) complexity, because the structure of the
linked list determines that it can only be traversed from beginning to end when performing
lookups. To this end, we use hash lookup to optimize, saving each node in the double-
linked list in the HashMap in the Java Util package. The overall data structure of the entire
cache is shown in Figure 4. The storage items in HashMap are in the form of key-value pairs,
where the key is the one saved in the linked list, and the value is the corresponding linked
list node. In addition, HashMap uses the zipper method to solve hash collisions, and, when
the length of the conflicting linked list reaches a certain threshold (the default value is 8),
it will be converted into the form of a red-black tree, so that the double-linked list can be
accessed efficiently at a time complexity of approximately O(1). When the PUT or GET
operation needs to change the position of a linked list node, the node can be retrieved with
O(1) complexity from the hash table, and then placed at the tail again.

The latest cached data is automatically detected after the timestamp is set. Initially,
the cache is specified with a size (the maximum allowed number of cache items to be
stored) and a data expiration threshold. When data is accessed, µFuncCache will search
the corresponding node from the HashMap according to the key. If the node exists, the
difference between the current time and timestamp is compared with the threshold to
determine whether the data has expired. If it has not expired, the current data is directly
returned and the update method is called to update the timestamp. Otherwise, it is obtained
from the remote storage and stored in the node. If the node does not exist, µFuncCache
will obtain the corresponding data from the remote storage, store the key and the data in
the newly generated node, and store the key and the node in HashMap. The node that has
been accessed each time needs to be placed at the tail of the linked list, indicating that the
data was the most recently accessed among all data (corresponding to the data at the head
of the linked list, indicating that the data was the earliest accessed among all data). When
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adding new nodes to the cache, it is also necessary to determine whether the cache exceeds
the specified size. If it does, the head node is deleted.

Figure 4. The data structure of µFuncCache.

When a FaaS application is deployed, the cached code is placed at the head of the call
chain of cloud functions (similar to a gateway), and developers can set the size of the cache
according to specific scenarios to store as much data as possible within limited memory
resources. In addition, developers also need to set the corresponding data expiration thresh-
old based on the freshness requirements of the data. If the data freshness requirements
are high (such as real-time news, current hot images), it can be set to a smaller value. On
the contrary, if the requirement for data freshness is not particularly high (such as user
information, product information), it can be set to a larger value.

4. Evaluation

In this section, we will verify the effectiveness of µFuncCache through different
experimental scenarios. The experimental cloud environment includes Alibaba Cloud
FC, Alibaba Cloud Database Service MySQL, and Alibaba Cloud OSS. The programming
language is Java with JDK 1.10, and APIs of Alibaba Cloud Database Service MySQL as well
as Alibaba Cloud OSS are used in the tests. The local development and test environment is
a personal computer (PC) with i7-8550U CPU, 8 GB memory, 512 GB SSD, Windows 10,
JDK1.10, and Maven 3.6.1. The maximum allowed memory size for cloud functions is
set to 512 MB, the maximum allowed running time is set to 60 s, and the trigger type is
HTTP request.

It should be noted that, since µFuncCache is a user side caching mechanism and does
not adopt a distributed architecture, we evaluate its performance improvement for FaaS
applications through typical application scenarios. We did not compare it with the related
work because they all adopt distributed architectures, which themselves have a certain
complexity and time cost. We believe that an objective comparison cannot be made since
µFuncCache can be seen as a local solution, and different applications would use different
languages and implementations.

4.1. Test of Cloud Service Latency

In order to further test the performance of cloud function instances, we tested the
speed of local read and write, the remote access to databases, and the execution speed
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of small computing tasks. The test results are shown in Table 3. It can be seen that,
when reading and writing locally on cloud function instances or executing tasks with
low computational complexity (simulating actual task load), its performance is basically
consistent with that on the PC side. Once remote service access is involved, the access
speed on the cloud function instance is much faster than PC, indicating that Alibaba Cloud
has very fast internal network access speed. In addition, to ensure that the same cloud
function instance is used for testing, a series of requests are sent on the PC side in the
single-threaded synchronous request mode (the next request will be sent only after the
result of the previous request response is obtained).

Table 3. The overhead of performing different tasks on local PC and cloud functions (ms).

Local R/W Access Local
Database

Access Cloud
Database Access OSS Compute

Fibonacci(30)

PC 9/15 340 728 157 12
Cloud Function 8/13 - 63 62 11

In actual scenarios, applications based on FaaS are usually designed into multiple
cloud functions based on different tasks, accompanied by one or even multiple function
call chains. The form of call chain may be between cloud functions, such as when an
application’s functionality is split into multiple cloud functions, but only one gateway
is exposed to the visitor. In this case, the corresponding request needs to be forwarded
through the gateway cloud function. The form of concurrent call chains may also be
between cloud functions and other services, such as the object storage services or database
services mentioned earlier. The following sections will validate the benefits of adding
cache through three experiments. It has been experimentally proven that the network delay
on the call chain increases linearly with the length of the call chain, as described in the
Section 1. If the cache is placed in the cloud function at the head of the call chain, once
hit, no matter how long the subsequent call chain is, there is no need to make additional
requests to obtain data. Therefore, to simplify the experimental process, we set the call
chain length to 1.

4.2. Database Access

Database access is a common scenario in cloud applications. After receiving the
request, the cloud function queries the remote database and returns the results. The user
requests the gateway through HTTP, and the gateway passes the parameters to the backend,
then reads the data from the database and returns it. In this experiment, multiple rounds
of testing were conducted to further observe the relationship between cache hit ratio and
overall latency reduction. The content in the database table has only one user ID and one
user name, and the size of the data is 676 (randomly generated). Each round of testing is
randomly accessed 1500 times.

Figure 5 shows the relationship between the cache size and the average access time
of 1500 accesses. We can see that, as the cache size continues to increase, the average
processing time for a single time will significantly decrease, from 63 ms to 42 ms. However,
clearly, we cannot set the cache size to a particularly large value, because the cache itself
also requires additional memory, and the specific setting depends on the memory setting of
the cloud function itself and the total data volume. Figure 6 shows the relationship between
the cache size and hit rate per round (1500 accesses), and it can be observed that the hit
ratio also increases linearly as expected, which is consistent with the general cache utility.
We have summarized the correlation between the total time saved on cloud functions and
the cache hit ratio, as shown in Formula (1).

TotalSavedTime = (AllLinksTime − CacheTime) × RequestTimes × HitRatio (1)

When only a single cache is considered (the cache exists in the cloud function instance
at the head of the call chain), the total time saved (TotalSavedTime) will be determined by
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the network delay (AllLinksTime) (that is, the accumulation of each call time on the call
chain in a single request), the delay (CacheTime) of a single access to the cache, the total
number of requests (RequestTimes), and the cache hit ratio (HitRatio). The cache hit ratio is
positively correlated with the cache set size. We can see that the cache will affect the overall
time savings through the single access time and total hit ratio, which indicates that we need
to minimize the additional time spent accessing the cache itself as much as possible. At the
same time, setting the cache size to an appropriate value based on the memory situation of
the cloud function instance can maximize the reduction in total latency.

Figure 5. Performance of cloud functions with database access under different cache sizes.

Figure 6. Hit ratio under different Cache sizes.

4.3. Path Planning

Path planning is a typical compute-intensive processing task. When there are a large
number of duplicate computing tasks or intermediate states, using cache for temporary
storage can save a lot of computing resources and time. In the takeaway delivery appli-
cation, there are always order requests from the same location during the peak ordering
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period, such as schools, companies and other places where people gather. In this scenario,
order requests also exhibit strong temporal locality, meaning that merchants with good
reputation and close proximity are likely to receive a large number of orders from the same
location during peak dining period. Therefore, there may be a large number of duplicate
planning situations in the corresponding path planning for delivery. In order to reduce the
repeated computation problem during path planning, we selected a small-scale map for
simulation, which has 64 intersections and nearly 105 roads. We tested the request time
with and without cache, respectively.

As shown in Figure 7, the request includes two parameters: starting point a and
destination b. When the request is received by the cloud function instance, the program
determines whether the local container already contains the map data required for path
planning. If the map data does not exist, it needs to be downloaded from OSS. After the
map file is downloaded locally, the program loads it into memory and saves the map in the
form of an adjacency matrix. Otherwise, if the map already exists locally, the cache will
be used to determine whether the paths from a to b have been calculated and exist in the
cache. If they exist, the results will be directly returned after obtaining them (if freshness
detection is required, the obtained paths need to be automatically determined whether they
have expired through the threshold and timestamp parameters). Otherwise, the shortest
path between a and b is calculated using the Dijkstra algorithm, and the calculation result is
saved to the cache (a cache entry in the cache stores the shortest path from a certain starting
point to all other nodes, which is the result obtained by executing any Dijkstra algorithm).
The size of the cache is set by the user when the code is uploaded, and its elimination
mechanism is triggered by the cache’s automatic detection (storing new data will replace
the oldest data that has not been accessed).

For the case where the cache was not added, we conducted 100 random requests for
testing. The test results are shown in Table 4. When the cache is not added, the average
response time for a single response reaches 102 ms. This is not only because the calculation
task of path planning needs to be carried out every time, but also because of the network
delay caused by the need to access OSS every time the map file is re-downloaded.

Table 4. Request response time in path planning (ms).

Without Cache With Cache

Average response time for a single request 102 3

Next, we conducted 300 tests with cache. Due to the fact that the Dijkstra algorithm
can calculate all the shortest paths from a certain starting point to the remaining nodes each
time it is executed, we cached all the shortest paths from a certain starting point as an item.
In the cache, a certain starting point is used as a keyword, and its path to the remaining
other nodes is saved as the cache value. The cache size was set to 6, which means it could
store all the shortest paths contained in 6 starting points, approximately 10% of the total
data volume (6/64).

From Table 4, it can be seen that, in compute-intensive tasks, cache can greatly reduce
the execution time of the original cloud function, with an average processing time of only
3 ms per transaction, and nearly 97% time is saved. The main reason for the significant
decrease in execution time is that cache avoids two main time-consuming steps on this task.
It is necessary to download maps from OSS to the local container every time without cache,
which is the bottleneck of this task due to network latency. The download time for each
map is approximately 95 ms. At the same time, the path needs to be recalculated every time
without cache, which also incurs additional time. On the other hand, after adding the cache,
when the cache of the map file is not expired, 300 visits only require downloading the map
once and, once hit, this can save time in calculating the path. Moreover, the time required
for a single request to cache is even less than 1 ms, indicating that the additional cost
brought by cache is very low and, even if there is a miss, it will not generate high latency.



Electronics 2023, 12, 2649 15 of 20

Figure 7. Flowchart of path planning.

4.4. Hotspot Images

The most significant difference between the hotspot image and the previous two
experimental scenarios is that the cache items have priority characteristics, simulating
scenarios similar to hotspot images accessed in online social networks. The data to be
cached also becomes larger images rather than simple string forms. In this scenario, certain
images are set as hotspot images in the search bar due to high user traffic. During a
certain period of time, the number of visits to hot images will also exhibit temporal locality,
meaning that, after a user completes their visit, it will trigger other users to access the
image in the near future. Unlike the previous two experiments, we used two caches to
solve this problem, one for storing hotspot images and the other specifically for regular
images. We have 200 different images stored on OSS, each with a size of 4 MB, including
10 hotspot images. The keyword key in the cache is the image name, and the value is the
absolute path of the image on the container.

Figure 8 shows the flowchart of image requests. Due to the optimization effect brought
by cache, we did not simulate the process of generating follow-up queries for hotspot
images. Instead, we specified some images in advance as the hotspot images in the
experiment. The clients use the image name as the request parameter and, when the request
reaches the cloud function, the program will determine whether the image is a hotspot
image. Once the cache is hit, whether it is a hotspot image cache or a regular image cache,
automatic timeout detection is required for the timestamp in the cache entry. If it is still
within the threshold range, the cached images of the container instance will be directly
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returned to the client. If there is a miss in the cache, the program will issue a request to the
OSS to download the required image from the OSS to the local container, store its absolute
address in the cache, and then return the image to the client.

Figure 8. Flowchart of requests in hotspot images.

Since hotspot images are relatively fewer in comparison with regular images, but they
more likely to be accessed, we controlled the probability of single request access to hotspot
images by randomly generating numbers during the access process. The test is divided
into two rounds, with each round requesting 400 requests from the cloud function, and the
size of both caches is set to 10. In the first round, we set the probability of a single visit to a
hotspot image to 1/2 and, in the second round, we set it to 1/3.

The results are shown in Table 5. We can see that the processing time after adding
cache was significantly reduced, and the reduction effect was more significant when the
number of hotspot image requests was higher. In addition, we also separately tested the
additional overhead caused by the cache itself. After a single hit, the average processing
time was 27 ms, which was used to read the local image file in the function instance into
the response stream. The average processing time for a single miss was 641 ms, which was
20 ms longer than that without cache. This is because, if there is no caching, the request
stream obtained by OSS can be directly read into the response stream returned to the user
without the need to write to the local cache. The additional overhead of around 20 ms is
very low compared to the original processing time of 600 ms, and hotspot images often
have a high cache hit rate (the access ratio of hotspot images is relatively high). Therefore,
it is obvious that cache can effectively reduce the original latency.
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Table 5. Request response time in hotspot image (ms).

Without Cache 1st Round 2nd Round

Average response time
for a single request 621 381 417

5. Discussion

Serverless computing significantly reduces the cost for users, however, sharing or
exchanging intermediate data between functions is challengeable. Existing public FaaS
platforms usually isolate functions in short-lived, stateless containers, thus data should be
duplicated or serialized repeatedly, incurring unnecessary performance and resource costs,
especially in applications with one or more function chains.

At present, almost all the work related to reducing the data access latency of FaaS
applications adopts distributed architectures, whether storage-based (such as [27,33–37])
or cache-based (such as [26,28,38–41]), which bring high elasticity but also introduce
challenges such as managing data consistency or reliability. Most of the works require
additional storage space, even some distributed cache systems, such as OFC [26], which
also use over-booked memory and require additional object storage space for data backup.
In terms of platform independence, some work, such as ref. [27], can only be implemented
on open-source platforms, or only be conducted by researchers with privileges to directly
develop on their own public FaaS platforms [41], which greatly limits the applicability of the
proposed methodology. Finally, due to additional storage layers (e.g., [35]), caching layers
(e.g., [28]), or even due to the introduction of new function execution models (e.g., [34]),
the user’s application code needs to be modified to achieve a performance improvement.
Although this also limits the applicability of the proposed method, the method with little
impact on user code can also achieve a higher performance cost ratio.

As can be seen from Section 4, µFuncCache adds local, lightweight cache in the first
cloud function that the request reaches, thus the data access overhead in the applications
can be reduced significantly. Furthermore, when the results can be reused in compute-
intensive tasks, e.g., the Path Planning scenario, cache can also greatly reduce the execution
time of the following cloud functions. On the one hand, µFuncCache makes use of the over-
reserved memory commonly found in public FaaS services, so it does not need to occupy
additional cloud storage space and depend on extra storage services. By adding local cache
to function instance, and passing data access requests between functions or storage services
using a unified API, this simple and lightweight design greatly avoids the implementation
complexity brought about by distributed caching architecture. Meanwhile, as a caching
solution on the user side, µFuncCache only requires a few changes to applications, and is
therefore independent of the public FaaS platforms, making it easier to choose different
platforms according to user budget.

On the other hand, as a lightweight caching system on the user side, although relatively
easy to implement, µFuncCache requires modification to the user’s code, which will
increase development costs and bring potential compatibility issues. At the same time, it is
necessary to occupy some of the memory originally planned for used by workload, which
may have a certain adverse impact on the performance of applications. However, with
the performance improvement and reduced complexity that accompanies it, we argue that
these costs are acceptable.

6. Conclusions

The stateless nature of FaaS services not only brings significant delay, but also limits
the potential application areas of this new paradigm. In order to eliminate the impact of
this bottleneck as much as possible while keeping good elasticity, the existing research
mainly revolves around building storage for serverless computing and distributed cache
for FaaS platforms to reduce the data access latency. Although some progress has been
made, improvements are still needed in terms of the occupation of additional storage space,
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complexity, and platform dependence. This work proposes µFuncCache for addressing
the problem of data access delay in function chains for applications built on public FaaS
platforms. The architecture design, as well as implementation details, of the proposed cache
system are presented. As a user-side lightweight cache mechanism, µFuncCache makes
full use of the container-deferred destruction mechanism and over-booked memory, which
are both common in public clouds, to reduce function latency with no need to perceive and
modify the internal architecture of public FaaS platforms. The effectiveness of µFuncCache
has been verified in three common applications, and the advantages and shortcomings of it
were discussed.

As part of the future work, we will continue to evaluate µFuncCache on other public
FaaS platforms, especially focusing on its impact on processes of FaaS-based application
development, since users should implement the cache layer in their code. One possible
solution to mitigate the impact of this problem is to design a common reference imple-
mentation template for different public FaaS platforms and languages, so that users can
quickly develop and integrate them into their codes. Meanwhile, we will explore machine
learning methods to predict the actual memory usage of each function instance, in order to
more accurately determine the memory allocated to the cache and minimize the impact on
the applications.
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