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Abstract: The use of convolutional neural networks (CNN) for crowd counting has made significant
progress in recent years; however, effectively addressing the scale variation and complex backgrounds
remain challenging tasks. To address these challenges, we propose a novel Multi-Scale Guided Self-
Attention (MSGSA) network that utilizes self-attention mechanisms to capture multi-scale contextual
information for crowd counting. The MSGSA network consists of three key modules: a Feature
Pyramid Module (FPM), a Scale Self-Attention Module (SSAM), and a Scale-aware Feature Fusion
(SFA). By integrating self-attention mechanisms at multiple scales, our proposed method captures
both global and local contextual information, leading to an improvement in the accuracy of crowd
counting. We conducted extensive experiments on multiple benchmark datasets, and the results
demonstrate that our method outperforms most existing methods in terms of counting accuracy and
the quality of the generated density map. Our proposed MSGSA network provides a promising
direction for efficient and accurate crowd counting in complex backgrounds.

Keywords: crowd counting; self-attention; convolutional neural networks; multi-scale feature

1. Introduction

Crowd counting is a critical task in computer vision that involves estimating the num-
ber, density, or distribution of individuals in crowded scenes from images or videos [1–3].
As a subcategory of object counting, it has received growing attention due to its potential
applications in various critical areas, including public safety management [4,5], traffic
monitoring [6], and emergency management [7]; however, precisely estimating the number
of people in crowds is a challenging task, primarily due to the existence of scale variation,
and complex backgrounds [8,9]. To address these challenges, a variety of computer vision
techniques are employed, including traditional methods [10–12] and deep learning-based
approaches, such as CNN [13–21]. It is necessary to develop more robust and efficient
models for crowd counting in real-world scenarios.

CNN is a commonly used deep architecture in crowd counting tasks, which involves
generating density maps from crowd images and subsequently estimating the total num-
ber of individuals in the image [3]. Song et al. [22] proposed P2PNet, a pixel-based
framework that employs normalized density average precision instead of mean absolute
error. Cheng et al. [23] developed D2CNet, a two-stage decoupled framework that includes
probability map regression and count map regression. Liu et al. [24] employed encoding–
decoding structures and region attention modules to adjust head size in different positions;
however, CNN-based methods generate density maps that solely reflect local relationships
between short-distance pixels, neglecting global information between long-distance pixels,
which could compromise counting accuracy in complex crowd counting scenarios.

Recent studies have explored the utilization of the Transformer model in crowd
counting [25–28]. The Transformer is a deep learning model commonly used for sequence
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modeling, which leverages the self-attention mechanism to capture long-range dependen-
cies within the sequence. These studies have shown that the Transformer can effectively
capture global information between distant pixels in complementing the local feature ex-
traction performed by CNN [29–32]; however, a significant limitation of the Transformer
model is its fixed scale of the token sequence, which restricts the self-attention mechanism
to only consider interdependencies among tokens at the same scale [33–35]. This constraint
limits the construction of a multi-scale feature architecture that is essential for improving
the accuracy of crowd counting [36–38]. Compared to single-scale features, multi-scale
feature fusion offers several advantages in crowd counting. Multi-scale features can better
handle complex and cluttered backgrounds in crowd images by combining information
from different scales. Figure 1 illustrates two intuitively plausible solutions for addressing
the fixed-scale limitation of the Transformer, involving direct modification of the token
sequence length or indirect construction of a multi-scale token sequence through image
scaling. Liu et al. [39] proposed a down-sampling operation suitable for transformers,
similar to the first solution; however, the second solution is more convenient to implement,
as it only involves scaling the original image to construct a multi-scale token sequence.
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Figure 1. A comparison of two methods for reducing token sequence length. We employ a sliding
window of size 4 × 4 and stride 4 to partition an image of size H × W. In (a), the crowd image is
directly partitioned into token sequences and down-sampled to obtain token sequences of different
scales. In (b), the token sequence length is indirectly modified by resizing the crowd images to
various scales.

To the best of our knowledge, no crowd counting method currently employs this ap-
proach; therefore, we introduce a novel network named Multi-Scale Guided Self-Attention
(MSGSA), which integrates multi-scale feature representation and self-attention mechanism
to enhance the accuracy and robustness of crowd counting. The MSGSA network consists
of three key modules: a Feature Pyramid Module (FPM), a Scale Self-Attention Module
(SSAM), and a Scale-aware Feature Aggregation (SFA). The FPM is utilized to extract
multi-scale features from crowd images in order to achieve a multi-scale structure in the
Transformer. The SSAM utilizes the Transformer to capture global contextual information
of the multi-scale feature, facilitating the interaction between global information and local
features. The SFA further aggregates the global and local information of multi-scale fea-
tures, and generates accurate density maps that reflect the spatial distribution of crowds.
The main contributions of this study are summarized as follows.
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(1) We design the FPM and the SSAM, which facilitate the interaction between local fea-
tures and global semantic information. As a result, our approach effectively mitigates
the impact of scale variations and complex backgrounds in crowd images.

(2) We introduce the SFA that combines features from different scales to create a scale-
aware feature representation. By integrating the global and local information of
multi-scale features, the SFA generates accurate density maps that reflect the spatial
distribution of crowds.

(3) The proposed method achieved remarkable performance on various benchmark
datasets, surpassing most existing methods in terms of accuracy and quality of gener-
ated density maps. This state-of-the-art performance demonstrates the effectiveness
and potential of our approach in crowd counting.

The structure of this paper is as follows. In Section 2, we provide a comprehensive
review of the related literature. In Section 3, we describe the motivation and basic intuition
behind our approach, and present the details of our methodology. In Section 4, we present
the results of several comparison experiments and ablation studies. Finally, in Section 5,
we summarize our findings and suggest directions for future research.

2. Related Work
2.1. Traditional Crowd Counting

Two main categories of traditional crowd counting methods can be identified: detection-
based methods and regression-based methods. Detection-based methods aim to identify
every pedestrian within the scene; however, traditional detection-based methods have limi-
tations, as they struggle to accurately identify individuals in highly congested and occluded
environments. Sliding window approaches, such as that proposed by Dolla et al. [10], can
work well for sparse crowds, but they suffer from significant drawbacks in practical scenar-
ios. Felzenszealb et al. [11] proposed a classifier that identifies pedestrians using partial
body features, but this approach still exhibits significant errors in highly crowded scenes.
To overcome these limitations, Chen et al. [12] introduced an adaptive regression model that
trains a mapping between the image features and the count of individuals; however, the
above methods rely on manually extracted features to identify pedestrians, making them
susceptible to scale changes and background occlusion, which reduces their prediction
accuracy in practical applications.

2.2. Crowd Counting Based on CNN

CNN-based methods have emerged as a powerful alternative to traditional approaches,
offering improved performance and greater flexibility. To tackle issues such as scale vari-
ation and complex background, researchers have explored two key avenues, namely
multi-scale structures [13–15] and attention mechanisms [16–18]. One prominent example
is the multi-column convolutional neural network (MCNN) proposed by Zhang et al. [19],
which utilizes multiple convolutional kernels of varying sizes to extract features with
different receptive fields. Similarly, Sam et al. [20] proposed a density classification net-
work (switch-CNN) that adaptively outputs density levels through a density classifier.
Yang et al. [21] proposed a perspective-inverted network that tackles the issue of scale
variation by estimating the perspective coefficient and distorting the image.

In the task of crowd counting, attention mechanisms have been extensively utilized
to tackle occlusion challenges and enhance counting accuracy. One common approach is
to incorporate attention mechanisms in the feature extraction process. Li et al. [40] used
cross-modal recurrent attention fusion to combine RGB and depth features to model the
crowd distribution. Shi et al. [13] introduced a multi-scale spatial attention perception
network, which utilizes dilated convolution to extract multi-scale feature maps and then
applies spatial attention to these maps to address the issue of scale variation. Gu et al. [41]
designed a context-aware pyramid feature extraction module that uses multi-level con-
textual information to improve the counting performance. These CNN-based methods
have demonstrated promising results, achieving high accuracy in crowd counting tasks;
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however, due to the limited receptive field of CNN convolutional kernels, CNNs do not
fully integrate the global information of crowd images. Recent studies have explored crowd
counting methods based on Transformers to effectively combine the global information of
crowd images [25–28].

2.3. Crowd Counting Based on Transformer

The Transformer’s self-attention mechanism has shown promise as an alternative
to traditional CNN-based methods for computer vision tasks, including crowd counting.
Unlike CNNs that depend on manually designed convolutional kernel sizes, the Trans-
former’s self-attention mechanism enables the model to dynamically concentrate on the
most relevant parts of the input data from a global perspective, leading to effective feature
representation and learning. Liang et al. [25] used weak supervision to train TransCrowd,
which utilizes the self-attention mechanism of Transformer and shows promise for crowd
counting. CrowdFormer, proposed by Yang et al. [26], implements a multi-scale structure of
Transformer using overlapping convolutions. Deng et al. [27] proposed a semi-supervised
model that combines Transformer and CNN, including multi-level convolutional Trans-
formers and adaptive scaling modules. Lin et al. [28] proposed a multi-modal attention
network that uses local attention mechanism to dynamically allocate attention to each
feature position. Compared to CNN-based methods, Transformer-based models exhibit sig-
nificant advantages in handling complex backgrounds and dense crowd datasets, reflecting
the rapid development and promising future of Transformer-based architectures.

3. Methodology

In this section, we present a comprehensive overview of our method. It comprises three
modules: the Feature Pyramid Module (FPM), the Scale Self-Attention Module (SSAM),
and the Scale-aware Feature Aggregation (SFA).

3.1. Network Architecture

The task of crowd counting is confronted with significant challenges arising from scale
variation and complex backgrounds in crowd images. Existing methods, employing CNN
to address this issue, often focus solely on the local features of crowd images, overlooking
the importance of global information. Transformer applies self-attention mechanism to
capture global information between long-distance pixels, but it still has the issue of fixed
scale; therefore, aiming to balance the importance of local features and global information
in identifying scale variation and complex background, we propose MSGSA. The proposed
network architecture comprises three stages, illustrated in Figure 2. Firstly, CNN is em-
ployed as the backbone of the FPM to extract multi-scale features from the input crowd
images. Secondly, the SSAM module utilizes self-attention to enhance the model’s represen-
tation capability by capturing relevant information from multi-scale features extracted by
the FPM and achieve information interaction between global and local features. Finally, the
SFA module combines the multi-scale features to obtain scale-aware features and generates
high-quality crowd density maps using multiple convolutional layers, resulting in a robust
and efficient crowd density estimation framework.

3.2. Feature Pyramid Module

In our framework, the FPM is designed to generate multi-scale features by scaling the
original image and extracting local features and semantic information through convolu-
tional neural networks. The proposed approach allows for the capturing of information at
multiple levels of detail. Different CNN architectures can be used as the FPM in MSGSA to
extract multi-scale local features. As shown in Figure 2, to present the structure of MSGSA
more intuitively, we depict the MSGSA network architecture using VGG16 as the FPM
module. We utilize VGG16 with 5 convolutional blocks and corresponding pooling layers
that progressively decrease the resolution of the crowd image to 1/2, 1/4, 1/8, 1/16, and
1/32. The deep convolutional features contain rich semantic information, while the shallow
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features focus more on detail features such as edges, textures, and contours. By retaining
the feature outputs from all five convolutional blocks, we obtain multi-scale features that
serve as the input for the Transformer. This approach assists in resolving the challenges
of fixed scale and inadequate local feature representation in Transformer. Specifically, we
remove the pooling layer in the final convolutional block to ensure that the feature maps
retain sufficient spatial information at larger scales.
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As the depth of the network increases, the feature map resolution decreases pro-
gressively, and the number of channels increases significantly. To avoid computational
and memory overhead for the Transformer’s self-attention mechanism, we add a 1 × 1
convolution to each convolutional block to adjust the channel of each feature map, while
maintaining a consistent total number of pixels in each feature map. It is important to note
that when the patching size of the Transformer is fixed, using multi-scale features as input
indirectly alters the length of the token sequence. This allows each token to capture more
spatial local information, enhancing the inductive bias of the Transformer. It can be defined
as follows:

xi = C(x0) (1)

where x0 ∈ RH×W×3 is the given crowd image, and xi ∈ R
H
2i ×

W
2i ×Ci denotes the multi-scale

features extracted by the CNN.

3.3. Scale Self-Attention Module

When observing crowd images, humans can easily identify the scale variation and
complex background in a crowd image through global and local contrasts; however, the
multi-scale features extracted by FPM lack interaction with global crowd information,
although rich in spatial local information and semantic information. We adopt a vision
transformer (VIT) block to model human visual mechanisms and implement the multi-scale
structure of the Transformer. By feeding the multi-scale features extracted by FPM, we
utilize the multi-head self-attention mechanism to capture global contextual information
and promote interaction between global and local features. VIT divides the original image
into patches of size 16 × 16, which can only obtain self-attention at a coarse granularity. In
contrast, we divide the multi-scale feature map into patches of size 4 × 4, thus obtaining
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self-attention at a fine granularity. We also employ a Transformer block with a depth
of 2 to extract self-attention across features at various scales, effectively controlling the
model’s complexity.

In Figure 3, the Transformer Block converts the multi-scale feature map xi into a 2D
token sequence xi

′ ∈ RNi×Di by applying K× K sliding window with stride K. Then, we
use the multi-head attention mechanism to map xi

′ to a multi-dimensional feature subspace,
which captures the global contextual information and facilitates the interaction between
local features and global information. It can be defined as follows:

fi = MSA(xi
′) + xi

′ (2)

Fi = project( fi, wi) (3)

where MSA stands for multi-head self-attention, project(∗) maps the patch sequence to

a standard image form Fi ∈ R
H
2i ×

W
2i ×Ci , and wi is a learnable position parameter, which

ensures that the relative position of each patch in the image remains unchanged.
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3.4. Scale-Aware Feature Aggregation Module

We have designed the SFA module to enable information exchange between multiple
scales and generate crowd density maps, as shown in Figure 4. The module first adjusts the
channel number of the multi-scale features through 1 × 1 convolution, reducing computa-
tional cost. Then, global average pooling compresses the spatial information of each chan-
nel, while the sigmoid function activates each channel to obtain its weight vector. Finally,
the multi-scale features are up-sampled to a specified resolution Hm ×Wm and concate-
nated along the channel dimension to generate scale-aware features y′0 ∈ RHm×Wm×(i+1)Cm .
These features are further aggregated using two 3 × 3 convolutional layers, and the crowd
density map is generated using a final convolutional layer. The definition of this part is
as follows:

y′0 = cat(SE(F0), · · · , SE(Fp) · · · , SE(Fi)) (4)

y0 = C′(y′0) (5)

where y0 ∈ RHm×Wm×1 represents the density map of the crowd image x0.

3.5. Loss Functions

The loss function employed by our method utilizes the Euclidean distance during
training to supervise the error between the predicted and real density maps. Specifically, it
is defined as follows:

L2(θ) =
1
N

N

∑
i=1

∥∥∥ypred
i (xi, θ)− ytruth

i

∥∥∥2
(6)
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where N is the number of training samples, ypred
i (xi, θ) represents the predicted density

map of input image xi, and ytruth
i represents the real density map.
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4. Experiments and Discussion

We extensively evaluate our proposed method on three datasets using four 3090TI
GPUs implemented in Pytorch. We use the Adam optimizer with a batch size of four,
learning rate of 1 × 10−5, and weight decay of 1 × 10−4. Furthermore, we conduct
thorough ablation experiments to validate the effectiveness of each component of our
proposed network.

4.1. Datasets

We evaluate the performance of our proposed method using three benchmark datasets,
as summarized in Table 1. The NWPU-Crowd dataset has the largest number of annotations
and covers a wide range of crowd sizes, while the UCF-QNRF dataset has the highest
average number of people per image.

Table 1. Comparison with different datasets.

Dataset Scale Number Annotation Max Mean Min

ShanghaiTech Part_A unfixed 482 241,677 3139 501 33
ShanghaiTech Part_B 1024 × 768 716 88,488 578 124 9

UCF-QNRF unfixed 1535 1,251,642 12,865 815 49
NWPU-Crowd unfixed 5109 2,133,375 20,033 418 0

The ShanghaiTech dataset contains 1198 crowd images with a total of 330,165 annotated
heads, divided into two parts: Part_A and Part_B. Part_A includes 482 internet-collected
crowd images, with 300 designated for training and 182 for testing, while Part_B consists of
716 surveillance-captured crowd images, with 400 for training and 316 for testing. Part_A
has a higher crowd density compared to Part_B, which features a sparse crowd distribution.

The UCF-QNRF dataset comprises 1535 high-resolution internet-sourced images
with 1,251,642 annotated heads, divided into 1201 training and 334 test images. This
dataset presents a significant challenge due to its dense crowd distribution and substantial
scale variations.

NWPU-Crowd is the most extensive dataset with 5109 crowd images and 2,133,375 an-
notated heads, including 3109 training images, 1500 test images, and 500 validation images.
Among them, 3109 images constitute the training set, 500 form the validation set, and
1500 form the test set. It offers several advantages, including large data volume, higher
resolution, and significant variation.

4.2. Performance Metrics

To evaluate the counting accuracy and robustness of our proposed method, we adopt
two widely used evaluation metrics: mean absolute error (MAE) and mean squared error
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(MSE). MAE represents the average absolute difference between the predicted and ground-
truth crowd counts, while MSE indicates the average squared difference between them.
The definitions of these metrics are as follows:

MAE =
1
N

N

∑
i=1

∣∣∣ygt
i − ypred

i

∣∣∣ (7)

MSE =

√√√√ 1
N

N

∑
i=1

(
ygt

i − ypred
i

)2
(8)

where N denotes the total number of test images, and ypred
i and ygt

i represent the predicted
result and signifies the ground truth of the i-th image, respectively.

4.3. Comparison with Different Backbones

We conducted evaluations of our model using various CNNs as FPM, and the corre-
sponding results are summarized in Table 2. ResNet-101 achieved the best performance
across all datasets, improving MAE and MSE by 1.5 and 3.5 on Part_A, 0.6 and 0.8 on
Part_B, 1.9 and 11.1 on NWPU-Crowd, 0.9 and 3.5 on UCF-QNRF compared to VGG16.
Its advantage lies in the incorporation of the residual structure in ResNet-101, which opti-
mizes the model’s feature extraction capability, enhances the spatial local information of
multi-scale feature maps, and facilitates better global and local interaction, providing an
advantage in crowd datasets with complex backgrounds and drastic scale changes.

Table 2. Comparison with different backbones.

Backbone
Part_A Part_B NWPU-Crowd UCF-QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

VGG16 59.3 94.8 7.5 11.9 75.8 334.6 81.7 141.0
Resnet-50 58.6 92.9 7.2 11.4 74.4 327.3 80.9 139.8

Resnet-101 57.8 91.3 6.9 10.8 73.9 323.5 80.8 137.5

Compared to ResNet-50, ResNet-101 improved MAE and MSE by 0.8 and 1.6 on
Part_A, 0.3 and 0.6 on Part_B, 0.5 and 3.8 on NWPU-CROWD, 0.1 and 2.3 on UCF-QNRF,
owing to its deeper residual structure that can extract more local features and higher-level
semantic information.

4.4. Comparison with the State-of-the-Art

In this section, we conducted extensive experiments on ShanghaiTech, NWPU-Crowd,
and UCF-QNRF, to evaluate the proposed model’s performance. The results presented in
Table 3 indicate that our method outperforms most existing methods in terms of counting
accuracy and density map quality, achieving state-of-the-art performance.

MSGSA demonstrated notable enhancements on the NWPU-Crowd and UCF-QNRF
datasets, indicating its robust performance in challenging and complex crowd scenes.
Specifically, the model showed improvements of 0.6 and 3.9 in MAE and MSE, respectively,
on NWPU-Crowd. Similarly, it achieved improvements of 0.4 and 1.1 on UCF-QNRF.
These results demonstrate the model’s robustness and practicality in crowd counting tasks.
The proposed method’s superior performance is due to multi-scale feature extraction,
self-attention aggregation, and effective interaction between local and global information,
improving counting accuracy and robustness in ultradense crowd scenes. Our proposed
method makes a substantial contribution to crowd counting by integrating feature represen-
tation and self-attention mechanism to enhance accuracy and robustness. By incorporating
Transformers to capture global information, our approach effectively integrates global and
local information from multiple scales to generate highly accurate density maps that depict
the spatial distribution of crowds. The aggregation of features from various scales leads to



Electronics 2023, 12, 2631 9 of 14

improved feature representation and adaptation to different crowd scenes, enhancing the
overall robustness and generalization ability of the model.

Table 3. Comparison with state-of-the-art methods.

Method Year
Part_A Part_B NWPU-Crowd UCF-QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

TransCrowd [25] 2022 66.1 105.1 9.3 16.1 117.7 451.0 97.2 168.5
NoiseCC [42] 2020 61.9 99.6 7.4 11.3 96.9 534.2 85.8 150.6

Gloss [43] 2021 61.3 95.4 7.3 11.4 79.3 346.1 84.3 147.5
KDMG [44] 2020 63.8 99.2 7.8 12.7 100.5 415.5 99.5 173.0

DM-count [45] 2020 59.7 95.7 7.4 11.3 88.4 357.6 85.6 148.3
BM-count [46] 2021 57.3 90.7 7.4 11.8 83.4 358.4 81.2 138.6

UOT [47] 2021 58.1 95.9 6.5 10.2 87.8 387.5 83.3 142.3
CA-Net [48] 2019 62.3 100.0 7.8 12.2 -- -- 107.0 183.0
DKPNet [18] 2021 55.6 91.0 6.6 10.9 74.5 327.4 81.4 147.2
P2PNet [22] 2021 52.7 85.1 6.2 9.9 77.4 362.0 85.3 154.5
SASNet [49] 2021 53.6 88.4 6.4 9.9 -- -- 85.2 147.3

Ours -- 57.8 91.3 6.9 10.8 73.9 323.5 80.8 137.5

The performance of MSGSA on the ShanghaiTech is not satisfactory. On one hand,
this could be due to the fact that ShanghaiTech contains fewer and lower-resolution crowd
images compared to NWPU-Crowd and UCF-QNRF. This results in a smaller amount of
training data for the Transformer model, limiting its ability to fully capture crowd features.
On the other hand, it could be attributed to the differences in data distribution between the
training and testing sets.

We further provide insight into the exceptional performance of our approach by vi-
sualizing some density maps. As demonstrated by the red markers in Figure 5, MSGSA
effectively addresses crowd scenes characterized by significant scale variation, demonstrat-
ing outstanding proficiency in extracting comprehensive global contextual information
across multiple scales. Additionally, our proposed method exhibits strong performance in
generating accurate density maps for dense crowd scenes, effectively addressing the chal-
lenges presented by complex backgrounds and scale variations through the integration of
the FPM, SSAM, and SFA modules. This is demonstrated by the high consistency between
our generated density maps and ground-truth annotations, indicating the efficacy of our
approach in achieving precise crowd density estimations.

Electronics 2023, 12, 2631 10 of 15 
 

 

high consistency between our generated density maps and ground-truth annotations, 
indicating the efficacy of our approach in achieving precise crowd density estimations. 

 
Figure 5. Crowd scenes with continuous scale variation. 

Furthermore, our approach demonstrates a remarkable ability to remove the 
interference of intricate backgrounds (such as banners, flags, etc.) in crowded scenes, as 
highlighted by the red markers in Figure 6. This is attributed to the effective functioning 
of SSAM and SFA, which facilitate the model’s ability to capture interdependencies 
between different scales of input features, leading to precise crowd region segmentation 
from complex scenes. 

 
Figure 6. Crowd scenes with complex background. 

4.5. Ablation Studies 
We perform a series of ablation experiments on ShanghaiTech Part A to assess the 

contribution of each module in our proposed method. Specifically, we employ VGG16 as 
the FPM in our implementation, and incrementally incorporate the corresponding 
modules to validate their efficacy. 

Effect of SSAM. As illustrated in Table 4, when comparing the FPM with FPM + 
SSAM, the latter demonstrates superior performance, improving MAE by 7.6 and MSE by 
15.9. We conducted a visualization of the density maps generated by FPM and FPM + 
SSAM to validate the effectiveness of SSAM. The results, as shown by the red markers in 
Figure 7, demonstrate that incorporating SSAM enhances the model’s sensitivity to high-
density crowds, resulting in the generation of more accurate density maps that precisely 
reflect the spatial distribution of people compared to using FPM alone. 
  

Figure 5. Crowd scenes with continuous scale variation.



Electronics 2023, 12, 2631 10 of 14

Furthermore, our approach demonstrates a remarkable ability to remove the interfer-
ence of intricate backgrounds (such as banners, flags, etc.) in crowded scenes, as highlighted
by the red markers in Figure 6. This is attributed to the effective functioning of SSAM and
SFA, which facilitate the model’s ability to capture interdependencies between different
scales of input features, leading to precise crowd region segmentation from complex scenes.
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4.5. Ablation Studies

We perform a series of ablation experiments on ShanghaiTech Part A to assess the
contribution of each module in our proposed method. Specifically, we employ VGG16 as
the FPM in our implementation, and incrementally incorporate the corresponding modules
to validate their efficacy.

Effect of SSAM. As illustrated in Table 4, when comparing the FPM with FPM + SSAM,
the latter demonstrates superior performance, improving MAE by 7.6 and MSE by 15.9.
We conducted a visualization of the density maps generated by FPM and FPM + SSAM to
validate the effectiveness of SSAM. The results, as shown by the red markers in Figure 7,
demonstrate that incorporating SSAM enhances the model’s sensitivity to high-density
crowds, resulting in the generation of more accurate density maps that precisely reflect the
spatial distribution of people compared to using FPM alone.

Table 4. Performance of different modules in MSGSA.

Module
ShanghaiTech Part_A

MAE MSE

FPM 69.1 114.3
FPM + SSAM 61.5 98.4
FPM + SSAM 59.3 94.8
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This improvement can be attributed to the organic fusion of FPM and SSAM. On the
one hand, the FPM module enables the model to capture information at different levels of
detail, which is particularly useful for crowd counting where individuals can vary in size
and density. By extracting features at multiple scales, the FPM can better handle variations
in object size and position, as well as the complex and cluttered backgrounds often present
in crowd images. The resulting multi-scale features are then fed into subsequent modules
for further processing and refinement.

The SSAM module, on the other hand, employs the self-attention mechanism to cap-
ture global semantic information across various scales. By considering the relationships
between all pixels in the image, SSAM effectively capture the underlying spatial structure
and patterns in the crowd image, leading to improved feature representation and overall
model performance. Furthermore, SSAM uses the Transformer’s self-attention mecha-
nism to facilitate interaction between local and global features, enhancing the model’s
adaptability to complex scenes and improving its accuracy and robustness.

Effect of SFA. Table 4 illustrates that the performance is significantly improved
by incorporating SSAM and SFA into the FPM. Specifically, compared to the FPM, the
FPM + MSSA + MSFF enhances the MAE by 2.2 and the MSE by 3.6. To further verify
the effectiveness of SFA, we conducted a visualization of the density maps generated by
FPM + SSAM and FPM + SSAM + SFA.

The red markers in Figure 8 show that the addition of SFA to FPM + SSAM effectively
removes redundant information and improves the model’s ability to predict high-density
crowd areas, resulting in more accurate crowd density maps.
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The success of MSFF can be attributed to its capability to aggregate features from
multiple scales and assign varying attention weights to different channels, which helps the
network to better focus on crowd regions and enhance the overall performance.

5. Conclusions

In this paper, we introduce a novel approach called Multi-Scale Guided Self-Attention
(MSGSA) network for accurate and efficient crowd counting in complex backgrounds with
scale variation. By utilizing self-attention mechanisms at different scales, our MSGSA
network captures multi-scale contextual information, thereby enhancing the accuracy of
crowd counting. The combination of Transformer and CNN allows the MSGSA network to
achieve precise crowd density estimations. The study includes a comprehensive ablation
study and visualization of density maps to analyze the contributions of each module of
the MSGSA network. The results demonstrate the effectiveness of the MSGSA network in
dealing with dense crowd scenes with complex backgrounds.

Although the proposed method has shown promising results for efficient and accurate
crowd counting in complex backgrounds, there is still potential for future research and
improvements. Future work will focus on investigating the MSGSA network’s robustness in
real-world scenarios by testing it on more diverse datasets with varying lighting conditions
and weather patterns. Additionally, we plan to incorporate domain adaptation techniques
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to improve the network’s generalization to novel and unobserved situations, addressing
the issue of domain shift between training and testing datasets.
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