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Abstract: With the large-scale deployment of sensors, both the smart grid and the power communica-
tion network should jointly deal with different kinds of big data. The fusion of both networks should
bring unpredictable accidents, even leading a catastrophic destruction in our lives. However, data
fusion (DF) and coordination treatment for two networks will greatly improve system performance,
reduce system complexity, and improve the precision and control ability of both networks. Situation
awareness (SA) is the key function for DF and accident avoidance for both networks with different
network structures, data types, system mechanisms, and so on. This paper use tensor computing to
provide a general data model for heterogeneous and multidimensional big data generated from smart
grid and power communication network. A novel data fusion scheme is designed with multidimen-
sional tensors. Deep reinforcement learning (DRL) algorithms are utilized to construct an optimal SA
strategy based on tensor big data. A multi-agent actor-critic (MAAC) algorithm is used to achieve
an optimal SA policy and improve system performance. The proposed DF and SA schemes based
on tensor computing and DRL provide useful guidance for smart grid and power communication
networks from theory and practice.

Keywords: smart grid; power communication network; situation awareness; data fusion; tensor
computing

1. Introduction
1.1. Smart Grid Based on 5G Networks

The smart grid is a novel power grid, which combines advanced sensing and measure-
ment technologies, information and communication technologies, analysis and decision
technologies, automatic control and intelligent power technologies, and is highly integrated
with power grid infrastructures [1–3]. The 5G networks, with their characteristics of large
bandwidth, wide connection, low delay, and high reliability, combined with innovative
technologies, such as network slicing and edge computing, can well meet the communica-
tion requirements of a smart grid. 5G applications based on existing power grid services,
such as distribution network differential protection, millisecond precision load control,
low delay, large bandwidth, and security protection, are in urgent need of communication
reliability. 5G technologies provide a foundation for the promotion and application of these
services [4,5]. On the basis of the traditional power grid, the smart grid integrates advanced
technologies, such as communication and sensing measurement, to form a new type of
power grid, which represents the developing trends of future power grids. In a smart grid,
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the information and communication technology (ICT) infrastructure makes physical infras-
tructure more efficient, ensures secure integration of more renewable energy, and smart
devices guarantee self-healing capabilities and efficient power supply and allow customers
more control over their electricity consumption. As an important support for the power
system’s safe, stable, and efficient operation, the communication information system runs
through every application link. Under the current trend of smart grid development, the
completion and improvement of communication information systems will realize the com-
prehensive collection and efficient processing of various production, operation, and service
information and realize the optimal allocation and efficient utilization of grid resources.

1.2. Power Communication Network

The power communication network is a special communication network formed
with the power system. It is an important infrastructure to provide data transmission
for electric power dispatching and production. The power communication network is
developed to ensure the safe and stable operation of the power system; it is the basis of the
automation of power grid dispatching, network operation marketization, and management
modernization [6,7]. With the increasing scale and complexity of the power communication
network, the operation and monitoring task is becoming more and more difficult, which
poses new challenges for the data management innovation of power-related business. At the
same time, the dependence and coupling between the power communication network and
the smart grid are gradually deepened, which greatly improves the flexibility, observability,
and controllability of the power system. This connection brings positive significance for
maintaining the safe and stable operation of the power network under abnormal conditions.

Power communication networks can analyze the health of transmission lines by
collecting data from multiple sensors. In real applications, data loss and anomalies often
occur in terminal sensors due to bad weather, natural disasters, and sensor interference.
Therefore, a new data fusion (DF) model can be developed to compensate for missing
data and outliers, eliminate potential risks to the network, and improve the reliability
of communication [8,9]. The power communication network can not only provide a
communication guarantee with information resources but also lead to a greater threat of
power system instability. In view of these problems, it is urgent to study and analyze the
vulnerability of the power grid caused by the interdependent coupling between the smart
grid and the power communication network.

1.3. Data Fusion and Situation Awareness Based on Tensor Computing and Deep
Reinforcement Learning

Situation awareness (SA) is used to sense current situations of the smart grid and
power communication network from DF. When the current situations of both networks are
sensed, the potential operating risks can be estimated or predicted [10–12].

DF has the characteristics of big data generated from both the smart grid and the
power communication network with heterogeneous and multidimensional data [13,14].
Tensor computing provides an efficient way to deal with big data, which are compacted in
a single data tensor [15]. The tensor completion scheme can be used to complete imperfect
tensor big data. The tensor decomposition scheme can be used to decompose tensor big
data from different dimensions, such as time, frequency, energy, and so on. The tensor
decomposition scheme provides an important way to analyze tensor big data from specific
dimensions. Moreover, the tensor eigenvalue also provides a possible way to estimate some
key performances of tensor big data [16–19]. With the big data generated from the smart
grid and power communication network, the whole system should achieve an optimal SA
scheme to perceive the complicated situations from both systems. DRL is a sharp tool to
achieve an optimal SA policy [20]. DRL combines deep learning and reinforcement learning
and has the advantages of both sides, with the ability to provide strong perceptions and
decision-making.
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Here, DRL trains and achieves an optimal awareness scheme offline based on tensor
big data and DF. The main contributions of the paper can be summarized as follows:

1. A novel DF scheme based on tensor theory is designed for both smart grids and power
communication networks. The heterogeneous and multidimensional big data of both
networks can be compacted in a tensor, leading to an efficient big data processing
scheme. For the proposed DF scheme, the tensor completion and tensor decomposition
algorithms are used to deal with sparse big data.

2. The deep reinforcement learning scheme is used to fulfill the SA scheme, in which
a new multi-agent actor-critic (MAAC) algorithm is proposed to learn and train the
optimal SA scheme.

3. We combine a new DF scheme and SA scheme for both networks, leading to a novel
and efficient information processing scheme for future smart grid and intelligent
power communication networks.

The remainder of the paper is provided as follows. Section 2 introduces the system
model and provides the problem of DF and SA. Section 3 introduces the key concept
of tensor computing and provides an efficient DF scheme based on tensor computing.
Section 4 provides the SA scheme based on deep reinforcement learning. The MAAC
algorithm is proposed to design an optimal SA policy. Section 5 provides simulation results
with theoretical analysis. In Section 6, the paper is concluded.

2. System Model and Problem Formulation

In this section, we first describe the system model based on the smart grid and power
communication network. In the target system, two networks are analyzed. Then the
SA problem is considered, where the smart grid and the power communication network
are integrated, and big data are generated from both networks. The heterogeneous and
multidimensional big data is processed by the DF scheme.

2.1. System Model

The system model based on 5G systems is shown in Figure 1, where the smart grid
and the power communication network work together. The smart grid provides the power
supply, and the corresponding power communication network provides information trans-
mission. The smart grid has a flexible infrastructure, where energy sources for power
generation are various. In addition to traditional thermal power generation, there is wind
power, hydropower, solar power, etc. Unlike the one-way flow of the conventional power
grid, the smart grid generation can also happen on the client side, such as photovoltaic
power generation, as shown in Figure 1. The power goes through power transmission,
power transformation, power distribution, and ultimately to the customers. At the same
time, the power communication systems integrated with the smart grid provide commu-
nication service to the power supply side and customer side. As shown in Figure 1, the
power lines (red lines) and the communication links (black lines) can form one integrated
network, where two different kinds of data should be processed efficiently, and the oper-
ation situation should be sensed. Different kinds of sensors from the smart grid and the
power communication network generate varying kinds of data, leading to an integrated
heterogeneous network structure. Therefore, an efficient DF scheme should be developed
to deal with different kinds of big data.
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Figure 1. Smart grid with power communication network based on 5G systems.

2.2. Data Fusion and Situation Awareness

Different kinds of sensors of two networks can generate different kinds of big data.
The whole system based on the smart grid and the power communication network shown
in Figure 1 should process those big data. A DF center should be constructed, and an
efficient DF scheme should be designed. The DF scheme can be simply formulated as

D = F(S , C) (1)

where the fused data, the smart grid data, and the communication data are denoted by
three big data tensors D, S , and C, respectively. The fused data D ∈ RI1×I2×···×IN denote
an N-dimension tensor with N dimensions I1 × I2 × · · · × IN . The fused data D can be
considered as a multidimensional data container with a given format. The big data of the
smart grid is denoted by an M-dimension tensor S ∈ RI1×I2×···×IM , which can compact
the big data from the smart grid. Following the same way, the big data of the power
communication network is denoted by a K-dimension tensor C ∈ RI1×I2×···×IK . The fusion
function is denoted by F(:, :), which is used to combine and unify two kinds of big data.
SA, also named situation (state) sensing, is the key function to managing, monitoring, and
predicting system situations of the smart grid and the power communication network. A
large amount of data captured from both networks can support SA in terms of system
performance, such as quality of service (QoS), system parameters, stable voltage, energy
efficiency, and so on. Note that SA here mainly indicates the operation state of both net-
works. Traditional SA scheme is outdated and inefficient due to lots of artificial operations
and suboptimal algorithms. Therefore, based on the fused big data, we should develop an
optimal and efficient SA scheme. Deep reinforcement learning provides a potential way to
develop and train a novel SA scheme to identify and estimate demand response, power
patterns, and potential risks in both networks.

3. Data Fusion Based on Tensor Computing

Tensor computing provides an efficient way of data fusion, which is based on the
data structure of tensor as shown in (1). The big data from the smart grid and the power
communication network are both dealt with in the format of tensors. Due to practical
reasons, the tensor big data is sometimes sparse or incomplete. The tensor completion
scheme is used to complete sparse tensor big data. In order to generate the fused data
D, the tensor decomposition scheme is used to analyze the target tensor big data from a
specific dimension.
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3.1. Preliminary of Tensor Computing

Here the tensor is defined as a multidimensional array. More precisely, an Nth-order
or N-way tensor is an element of N vector spaces defined by the tensor product, each of
which has its own coordinate system. This notion of a tensor is not equal to tensors in
physics and chemistry, such as stress, and is always termed as a tensor field in mathematics.
The concept of tensors is a generalization of vectors or matrices. A first-order tensor is
a vector, a second-order tensor is a matrix, and tensors of order three or more are called
higher-order tensors. An N-way tensor X ∈ RI1×I2×···×IN is rank-one if and only if it can
be written as the outer product of N vectors, i.e., X = a(1) ◦ a(2) ◦ · · · ◦ a(N), where a(i)

denotes a i-length vector. Tensor matricization, expressed as unfolding, is the process of
reordering the elements of a tensor into a matrix. The mode-n matricization of a tensor
X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode-n vectors to be the columns
of the unfolding matrix. Tensors can be multiplied, and it is obvious that the product of
tensors is much more complex than matrices. Here we just consider the tensor n-mode
product rather than a full treatment of tensor multiplication. The n-mode (matrix) product
of a tensor X ∈ RI1×I2×···×IN with a matrix A ∈ RJ×In is denoted by X ×n A and is of size
I1 × · · · × In−1 × J × In+1 × · · · × IN . Elementswise, we have

(X × nA)i1···in−1 jin+1···iN
=

In

∑
in=1

xi1i2···iN ajin (2)

where xi1i2···iN is the element of X and ajin denotes the (j, in)-the element of A.

3.2. Tensor Decomposition

Tensor decomposition can be achieved by matrix singular value decomposition (SVD)
and be utilized in the field of principal component analysis (PCA); that is, it can be consid-
ered as a higher-order generalization of matrix decomposition. Tensor decomposition can
solve the dimensional disaster problem so as to fulfill dimensionality reduction processing,
missing data filling, and implicit relationship mining. However, this method will make the
structural information of the data lost, and the use of tensors to store the data can retain the
structural information of the data. Two common decompositions in tensor decomposition
are the Canonical Polyadic Decomposition (CPD) and the Tucker decomposition.

3.2.1. Cp Decomposition

The CPD is a form of decomposing arbitrary higher-order tensors into sums of multiple
rank-one tensors. Take the third-order tensor X ∈ RI1×I2×I3 as an example; the CPD of the
tensor can be written as

X =
R

∑
r=1

ar ◦ br ◦ cr (3)

where R is the size of tensor rank, ar ∈ RI1 , br ∈ RI2 , cr ∈ RI3 , the operation “◦” denotes
the vector outer product. The decomposition expression is concise, but the solution for rank
is an NP-hard problem. The matrix composed of vectors that make up rank-one tenors is
called the factor matrix under CPD, such as A = [a1, a2, a3 . . . aR], the factor matrix B and C
are defined the same. The CPD in matrix form can be written as

X(1) ≈ A(C� B)T (4)

X(2) ≈ B(C�A)T (5)

X(3) ≈ C(B�A)T . (6)

The CPD can usually be more simply written as follows

X ≈ [[A, B, C]] ≡
R

∑
r=1

ar ◦ br ◦ cr. (7)
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Taking the third-order tensor X ∈ RI×J×K as an example, the goal of the algorithm is
to calculate a CPD containing R rank-one tensors, so that it is as close as possible to the
actual tensor, i.e.,

min
X̂
‖X − X̂ ‖ with X̂ =

R

∑
r=1

λrar ◦ br ◦ cr = [[λ; A, B, C]]. (8)

3.2.2. Tucker Decomposition

Tucker decomposition was first proposed as a generalization of PCA in high dimen-
sions. The model for the Tucker decomposition of the third-order tensor is

X ≈ G ×1 A×2 B×3 C =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqpap ◦ bq ◦ cr = [[G; A, B, C]] (9)

where G denotes the core tensor and A, B, and C are three matrices from three dimensions.
The scalar form is expressed as

Xijk ≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqraipbjqckr, i = 1 . . . I; j = 1 . . . J; k = 1 . . . K (10)

where A ∈ RI×P, B ∈ RJ×Q, C ∈ RK×R. When P = Q = R and the kernel tensor is a
supersymmetric tensor, the Tucker decomposition degenerates into the CPD. One of Tucker
decomposition algorithms is indicated in Algorithm 1:

Algorithm 1 Tucker decomposition algorithm

1: for n = 1, . . . , N do

2: A(n) = left singular vectors of X(n)

3: G = X × 1A(1)> × 2A(2)> · · · ×N A(N)>

4: return G, A(1), A(2), . . . , A(N)

5: end for

3.3. Tensor Completion

In reality, due to the limitation of data collection faults and other abnormal conditions,
there are parts of missing data in the big data, which are called missing values. The repair
of these missing values is called completion, and the estimation of missing values in the
tensor domain is tensor completion. The core problem of missing data estimation is how to
construct the relationship between missing values and observed values. Tensor completion
is based on the impact of existing data on missing values and the low-rank assumption,
which is mainly divided into two types of methods: one is based on the given rank and
update factor in tensor completion; the other is to directly minimize the tensor rank and
update the low-rank tensors. In the following, we take a third-order tensor completion
problem as an example to introduce a special tensor completion algorithm named HaLRTC
(high accuracy low rank tensor completion). Similar to matrix completion, given a sparse
tensor X of size n1 × n2 × n3, the index set corresponding to the observed elements is
denoted as (i, j, k) ∈ Ω. Let the tensor S of the same size be a binary tensor composed
of elements 0 and 1, and satisfy sijk = 1, (i, j, k) ∈ Ω, otherwise sijk = 0, (i, j, k) /∈ Ω. The
objective function of the tensor completion problem can be written in the following format

min
X̂ ,A1,A2,A3

α1

∥∥∥A1(1)

∥∥∥
∗
+ α2

∥∥∥A2(2)

∥∥∥
∗
+ α3

∥∥∥A3(3)

∥∥∥
∗

(11)

where X̂ represents the estimation of the original tensor X , the magnitude of tensors A1,
A2, A3 are n1 × n2 × n3, the matrix A1(1) with the magnitude of n1 × (n2n3) represents the
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mode-1 unfolding of tensor A1 under mode-1 unfolding and the matrix A2(2) represents
the mode-2 unfolding of A2, and the matrix A3(3) represents the mode-3 unfolding of A3.
In the objective function, the symbol ‖·‖∗ represents the trace norm. The parameters α1, α2,
α3 need to satisfy α1 + α2 + α3 = 1. There are two constraints of the optimization model.
The first is to ensure that the elements of the estimated tensor X̂ and the original tensor
X on the set Ω are equal. The second is to set the intermediate variables A1, A2, and A3
equal to the estimated tensors. The constraints are given as follows{

S ∗ X̂ = S ∗ X
X̂ = Bq, q = 1, 2, 3

. (12)

The HaLRTC algorithm is indicated in Algorithm 2:

Algorithm 2 HaLRTC algorithm

1: Input~α = (α1, α2, α3), adaptively changing ρ and maximum number of iterations K.

2: Initialize estimated tensor X̂ that x̂ijk =

{
xijk, (i, j, k) ∈ Ω

0, (i, j, k) /∈ Ω
, and attached zero tensor

Y1,Y2,Y3 ∈ Rn1×n2×n3 .

3: Let k = 1.

4: Update Bq: Bq = foldq

{
D αq

ρ

(
X̂(q) + 1

ρYq(q)

)}
, q = 1, 2, 3, next; (D αq

ρ
(X) = UΣ αq

ρ
VT).

5: Update X̂ : X̂ = (1− S) ∗
{

1
3 ∑3

q=1

(
Bq − 1

ρYq

)}
+ S ∗ X .

6: Update Yq: Yq = Yq − ρ
(
Bq − X̂

)
, q = 1, 2, 3.

7: If k < K, k = k + 1, return to step 4, else return estimated tensor X̂ .

8: End.

3.4. Tensor Based Data Fusion

The big data from both the smart grid and the power communication network
should be heterogeneous and multidimensional due to the different kinds of sensors.
The big data should also be sparse, and some key elements are missing due to unideal
operation scenarios.

The DF scheme is shown in Figure 2, where the big data generated from both networks
are completed and decomposed with tensor completion and tensor decomposition.

Smart grid 

big data

Power 

communications  

big data

Tensor 

completion

Tensor 

completion

Tensor 

decomposition

Tensor 

decomposition

Data 

fusion

Fused 

data 

Figure 2. Data fusion flow diagram.

The big data is first transformed into the tensor format, meaning that the sparse and
heterogeneous data are compacted into a given tensor format, such as S and C. The tensor
completion is used to complete the missing elements of S and C. The tensor decomposition
is used to analyze the tensor big data from a specific dimension, such as time, frequency, or
value. The tensor big data from both networks S and C are provided to the fusion function
F(S , C) as indicated in (1) and the fused tensor data D is generated with the given format.

The data fusion scheme is shown in Figure 3, where both the tensor data S of the
smart grid and the tensor data C of the power communication network are assumed to be
the third-order tensors, i.e., S ∈ RI1×I2×I3 and C ∈ RI1×I2×I3 . Three dimensions I1, I2, and
I3 can present different dimensions, such as the time T, the frequency F, and the value V.
The heterogeneous and multidimensional big data from both networks can be compacted
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and denoted by sparse tensors. With this expression method, the big data can be processed
in an efficient and low-complexity way. The key function of DF is F(S , C), which generates
a new tensor data D with the same tensor format D ∈ RI1×I2×I3 . The fused tensor data D
is used to indicate the total states of two networks, and two networks can also be analyzed
based on D. Based on the fused tensor data D, the situation of both networks can be sensed
and evaluated.

Figure 3. Tensor based data fusion sketch.

4. Situation Awareness Based on Deep Reinforcement Learning

DF scheme provides an efficient way to process and express the big data from both
networks based on tensor computing. Tensor completion and decomposition schemes also
provide solutions to deal with sparse tensor big data and analyze them from a specific
dimension. The fused tensor big data can be used in SA. Some key information can be
analyzed and generated from the fused tensor data D.

4.1. Situation State and Observation State

The situation state can be modeled and compacted in tensor data D, in which multi-
dimensional elements are used to indicate the situations of two networks. For example,
the key information of the smart grid can be presented with tensor data S . The operation
information, such as current, total consumption, and so on, can be compacted into the
tensor data. Moreover, the key information of the power communication network, such as
bandwidth, outage probability, data rate, spectrum efficiency, and so on, can be compacted
into tensor data C.

The situation state can be sensed by N agents from K channels, so the state infor-
mation in the time slot t by the nth agent can be expressed as a K-length state vector
st

n =
{

st
n1, . . . , st

nk, . . . , st
nK
}

, where st
nk ∈ {0, 1} denotes two working states: correct (1) or

wrong (0). The state values 1 and 0 are used to indicate whether the situation state is correct,
meaning that the current state is working well. With N agents, for a given time slot t, a
N × K situation state matrix St can be generated. For a period time T, a N × K× T state
tensor S ∈ RN×K×T can be formulated. Note that the state matrix St can be calculated by
the state tensor S from a specific dimension. Therefore, based on tensor big data S and C,
the situation states of both networks can be formulated in the format of tensors. Following
the same way, the observation state of the nth agent in the time slot t can be expressed
as a K-length observation vector ot

n =
{

ot
n,1, . . . , ot

n,k, . . . , ot
n,K

}
, where ot

nk ∈ {0, 1}. The

N × K× T observation tensor O ∈ RN×K×T can be generated.

4.1.1. Agent Action

Total N agents are used to sense the situation states with K channels in total T time
slots. The action of the agent is used to sense the current state and return sense results.
The action of N agents can be defined as At =

{
at

1, . . . , at
n, . . . , at

N
}

, where at
n denotes a

K-length action vector and the element at
n,k ∈ {0, 1}means the n-th agent takes the action
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at the k-th channel at the t-th time slot. The action of 1 indicates that the result of action
(sensing) is correct with the current real situation.

4.1.2. System Reward

When the n-th agent senses the current situation state successfully, the system can
receive reward feedback denoted by a given number. Define the N-length agent reward
vector as rt =

{
rt

1, . . . , rt
n, . . . , rt

N
}

and let rt
n denote the reward for the n-th agent at the

t-th time slot. When the agent can sense the situation state correctly, a positive reward r̄ is
returned to the system; otherwise, a negative reward p as a penalty will be returned. The
reward rt

n of the n-th agent at the t-th time slot can be given as

rt
n =


r̄n, Correct results
r̄n + pn, Without results
pn, Wrong results

(13)

where r̄n and pn are used to denote the positive and negative rewards, respectively.
For the proposed SA scheme, the final goal is to achieve an optimal sensing strategy

ß to train the whole system to obtain the maximum reward, in other words, all N agents
should work together to obtain situation states correctly. So we define a long-term accumu-
lated reward Jπ , which is based on the given policy π. The accumulated reward Jπ based
on the reward function can be expressed as

Jπ = E
(

T

∑
t=0

γtrt
n

)
(14)

where E(·) is the expectation function, γ ∈ [0, 1] is denotes a loss factor and t ∈ [1, T] is the
time cumulative series.

4.2. Deep Reinforcement Learning Scheme

In order to achieve an optimal SA scheme, the DQN algorithm and the MAAC algo-
rithm are discussed.

4.2.1. Deep Q-Network Algorithm

The DQN algorithm is currently one of the most popular reinforcement learning
algorithms. It can be used in dynamic situation environment, and huge state spaces. Each
agent has an independent DQN network, where the input is the observation state and the
output is the corresponding Q value. Then the network is updated and iterated with the
following formulation

Q(st
n, at

n)← Q(st
n, at

n) + β[rt
n + γ max

at+1
n

Q̂(st+1
n , at+1

n )−Q(st
n, at

n)] (15)

where Q̂
(
st+1

n , st+1
n
)

is the output Q value of the target network, β ∈ [0, 1] is the learning
rate. The action selection policy in DQN adopts the ε-greedy policy to find the optimal
policy π∗n, which can be expressed as

π∗n = arg max
at

n

Q(st
n, at

n) (16)

where π∗n denotes the optimal policy of the n-th agent.
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4.2.2. MAAC Algorithm

Each agent can perform a dynamic SA scheme based on the MAAC algorithm [21].
There are total N agents, which can simultaneously sense the situation and perform the
corresponding actions to obtain system rewards. The system is distributed, and each agent
should select actions independently using training networks. Additionally, each agent has
an actor network to take action and a critic network to evaluate its actions. Using N agents,
the system can sense the situation and take the corresponding actions. In order to achieve
the optimal policy for the system, all agents should learn the way to sense the situation,
take action and obtain rewards. All agents receive their rewards and evaluate their actions
by those rewards.

The parameters of the actor network and the critic network are φ and θ, respectively.
In the actor network, the observed state st

n of the agents is the input, and the action at
n

is the output. The action selection function selects the action at
n based on the policy π

φ
n

and the process can be described as π
φ
n (st

n). In the critic network, the current action at
n

obtained from the actor network and the current observation state st
n are input, the Q-

value Qθ(st
n, at

n) is output, which is used to evaluate the actions. For each agent, the actor
network is used to sense the situation and take the corresponding actions, and the critic
network is used to evaluate its action based on the given policy.

The n-th agent senses the situation, obtains the rewards, and calculates the Q-value
Qθ(st

n, at
n) with the critic and the target critic networks. In this case, the loss function can

be defined to update the critic network. The loss function Ln(θ) of the n-th agent for the
parameter θ can be formulated as

Ln(θ) = E(st
n ,at

n ,rt
n ,st+1

n )∼D

[(
Qθ(st

n, at
n)− Zt+1

n )2
]
, (17)

where D is the replay buffer and the function Zn can be defined as

Zt+1
n = rt

n+γE
at+1

n ∼π
φ̂
n (st+1

n )

[
Qθ̂(st+1

n , at+1
n ) + e(st+1

n , at+1
n )

]
. (18)

For the actor network and the critic network, the parameters are φ̂ and θ̂, respectively.
Two parameters of the target networks can be updated by

φ̂← τφ + (1− τ)φ̂,
θ̂ ← τθ + (1− τ)θ̂

(19)

where the parameter τ ∈ [0, 1] is a soft update factor. The proposed MAAC algorithm for
SA is summarized in Algorithm 3.
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Algorithm 3 The MAAC Algorithm for SA

Initialization:

Randomly initialize network parameters φ, φ̂, θ, and θ̂.

Initialize buffer O.

Simultaneously obtain initial observation states S0 for all agents with sensing accu-

racy µ.

1: for t = 0, 1, 2, . . . do

2: for n = 1, . . . , N do

3: Each agent sequentially and independently selects the action At
n based on the

policy π
φ
n
(
St

n
)
.

4: end for

5: Simultaneously execute actions At for all agents to obtain rewards Rt.

6: Update environment to obtain new observation states St+1.

7: Store replay units (St, At, Rt, St+1) of all agents in O.

8: for n = 1, . . . , N do

9: Randomly sample a mini-batch of replay units (St
n, At

n, Rt
n, St+1

n ) from O.

10: Calculate Q-value Qθ(St
n, At

n) by the critic network.

11: Calculate At+1
n ∼ π

φ̂
n (St+1

n ) and Qθ̂(St+1
n , At+1

n ) by target actor network and target

critic network, respectively.

12: Calculate regression loss function Ln(θ) to update the critic network.

13: Calculate At
n ∼ π

φ
n (St

n) via the actor network and Qθ(St
n, At

n) via the critic network.

14: Update the action network by computing the policy gradient ∇φ J(πn).

15: Soft update parameters of target networks by (19).

16: end for

17: end for

5. Simulation Results

In this section, the proposed DF and SA are evaluated and analyzed by simulations.
Two kinds of simulations are provided to evaluate the proposed tensor-based DF scheme
and DRL-based SA scheme.

In Figure 4, a third-order tensor X ∈ RN×K×T , (N = K = T = 3) is used to illustrate
the process of tensor decomposition. The tensor X is decomposed into one core tensor
G ∈ RI1×I3×I3 and three matrices A ∈ RN×I1 , B ∈ RK×I2 , and C ∈ RT×I3 .

Therefore, the tensor decomposition scheme provides a way to analyze the tensor big
data of smart grid and power communication networks, such as S and C. The core tensor G
can be used to keep the core information with the reduced dimensions I1 × I3 × I3 and the
three matrices A, B, and C can be used to denote the information for the given dimension.

The fused tensor D ∈ RN×K×T , (N = K = T = 5) is shown in Figure 5, where
there are total 125 elements Dn,k,t, n ∈ [1, 5], k ∈ [1, 5], t ∈ [1, 5] in the tensor big data. As
indicated by the color bar, the value of the element is normalized by one unit. Different
colors are used to indicate different element values. As indicated in this figure, the fused
tensor D is generated from the tensor big data S and C as shown in Figure 3. The fused
tensor D can also be analyzed from three dimensions: five agents N = 5, five channels
K = 5, and five time slots T = 5. For a specific location, say D1,1,1, the fused data can be
evaluated by the value |D1,1,1|.
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Figure 4. Tensor decomposition for situation tensor X .

By comparing the simulation results of the MAAC algorithm and the DQN algorithm,
we evaluate the performance of the MAAC algorithm. In our simulations, for both al-
gorithms, we set the episodes as 120,000, the reward of successful allocation r as 10, the
reward of no allocation negative f as −5, and the batch size as 128, which is the number of
parameters transmitted to the program for training at a time. The discount factor γ of the
MAAC algorithm is set as 0.9, the exploration rate ε of the DQN algorithm decreases from
0.9 to 0.

Figure 5. Fused tensor D.

We compare the performances of the DQN algorithm and the MAAC algorithm when
the number of channels is different; N = 4, and the sensing probability p = 0.9, the accumu-
lated reward of the system is the average reward of all agents during previous episodes.

It can be seen in Figure 6a, when K = 24, K = 32, and K = 48, the accumulated
reward of the DQN algorithm increases when the training episodes = 120,000, while the
accumulated reward of the MAAC algorithm is significantly higher than the reward of the
DQN algorithm, the accumulated reward of the MAAC algorithm is higher than that of the
DQN algorithm, and the training process of the MAAC algorithm is more stable than that
of the DQN algorithm.

Then we compare the performance of the DQN algorithm and the MAAC algorithm
with the different number of agents when the sensing probability p = 0.8 and the number of
channels K = 32.

As shown in Figure 6b, the MAAC algorithm not only accumulated a higher reward
than the DQN algorithm but also the convergence speed is faster than the DQN algorithm;
when N = 2, N = 4, and N = 6, the convergence of the MAAC algorithm is earlier than that
of the DQN algorithm.
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Figure 6. Accumulated reward of two algorithms with different parameters.

In Figure 7, we compare the performances of the DQN algorithm and MAAC algo-
rithm under different sensing probabilities. With the same parameters, the accumulated
reward of the MAAC algorithm is always higher than the DQN algorithm. For the two
algorithms, the higher the sensing probability, the higher the accumulated reward; when
the sensing probability is very high such as p = 0.8, the rewards of the two algorithms tend
to be approximate.
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Figure 7. Accumulated reward of two algorithms with different sensing probabilities.

6. Conclusions

In this paper, the data fusion and situation awareness problems for the smart grid
and the power communication network have been studied using tensor computing and
deep reinforcement learning. For heterogeneous and multidimensional big data from two
networks, we involved tensor computing in modeling those big data and used tensor
completion/decomposition schemes to analyze tensor format big data. For the tensor big
data, we used deep reinforcement learning to train multiple-agent networks to learn the
optimal situation sensing scheme to sense the situation state. A novel MAAC algorithm
has been proposed to achieve the optimal sensing scheme, in which the actor network
and the critic network have been used by each agent to independently train and learn the
optimal sensing policy. Simulation results have demonstrated that the tensor-based data
presentation scheme provides an efficient way to present the big data from two networks.
Moreover, the proposed MAAC algorithm can achieve better performance compared with
the conventional DQN scheme. This paper has provided practical guidance to deal with
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big data from data fusion and situational awareness for the smart grid and the power
communication network.
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