
Citation: Avan, A.; Azim, A.;

Mahmoud, Q.H. A State-of-the-Art

Review of Task Scheduling for Edge

Computing: A Delay-Sensitive

Application Perspective. Electronics

2023, 12, 2599. https://doi.org/

10.3390/electronics12122599

Academic Editors: Charalabos Skianis,

Philippe Krief, Enric Pages Montanera

and John Soldatos

Received: 10 May 2023

Revised: 31 May 2023

Accepted: 6 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

A State-of-the-Art Review of Task Scheduling for Edge
Computing: A Delay-Sensitive Application Perspective
Amin Avan * , Akramul Azim and Qusay H. Mahmoud

Department of Electrical, Computer and Software Engineering, Ontario Tech University,
Oshawa, ON L1G 0C5, Canada; akramul.azim@ontariotechu.ca (A.A.);
qusay.mahmoud@ontariotechu.ca (Q.H.M.)
* Correspondence: amin.avan@ontariotechu.net

Abstract: The edge computing paradigm enables mobile devices with limited memory and process-
ing power to execute delay-sensitive, compute-intensive, and bandwidth-intensive applications on
the network by bringing the computational power and storage capacity closer to end users. Edge
computing comprises heterogeneous computing platforms with resource constraints that are geo-
graphically distributed all over the network. As users are mobile and applications change over time,
identifying an optimal task scheduling method is a complex multi-objective optimization problem
that is NP-hard, meaning the exhaustive search with a time complexity that grows exponentially
can solve the problem. Therefore, various approaches are utilized to discover a good solution for
scheduling the tasks within a reasonable time complexity, while achieving the most optimal solution
takes exponential time. This study reviews task scheduling algorithms based on centralized and
distributed methods in a three-layer computing architecture to identify their strengths and limitations
in scheduling tasks to edge service nodes.

Keywords: edge computing; internet of things; task scheduling

1. Introduction

Offloading compute- and memory-intensive tasks to a remote server decreases power
consumption and increases the battery lifetime of end-user devices; thus, cloud comput-
ing was provided via the mobile operator and the Internet to support users’ needs for
computation power and data. Cloud computing was a reasonable solution to the demand
for computations and data rates in the cloud era when mobile users and IoT devices only
consumed data, such as watching videos on mobile phones while sending data such as
sending an email. However, cloud computing faces significant challenges in meeting the
needs of specific IoT applications. For example, applications that require real-time data
processing, such as autonomous vehicles, can experience latency when processing data
in the cloud. In addition, applications with bandwidth-intensive requirements, such as
surveillance cameras, cannot accurately transfer data to the cloud for processing. Moreover,
applications that deal with sensitive data, such as healthcare and financial systems, require
high levels of security and privacy, which can be compromised when data are transferred
to the cloud. Finally, some applications need cost-efficient computation and storage, which
may not be achievable with cloud computing. In addition, delays and jitters provided by
long wide area networks (WANs) are considerable obstacles in cloud computing for data
transmission in the user-application interaction, while delay controlling in the WAN scale
is problematic [1]. Furthermore, current mobile users and IoT devices applications and ser-
vices are highly demanding in data, computation, and quality of services (QoS); the current
mobile users and IoT devices create data as much as or even more than the amount of data
they consume with the real-time response need [2]. For instance, many mobile users and
IoT devices need a lot of bandwidth for uploading and sharing high-quality videos on social

Electronics 2023, 12, 2599. https://doi.org/10.3390/electronics12122599 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122599
https://doi.org/10.3390/electronics12122599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9161-6588
https://orcid.org/0000-0003-0472-5757
https://doi.org/10.3390/electronics12122599
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122599?type=check_update&version=2

Electronics 2023, 12, 2599 2 of 27

network platforms. Additionally, recent cameras are artificial-intelligence-powered cam-
eras with real-time object detection, face recognition, and semantic segmentation abilities
that need intensive computation and low latency [3]. However, the QoS of the mentioned
application exponentially decreased as much as the latency increased [3]. According to
Cisco and IHS Markit predictions [4,5], the number of connected IoT devices will exceed
100 billion in 2030 from around 26 billion in 2020. In addition to the number of devices,
another significant challenge of the network is the management of both computation and
data communication in the post-cloud era [6]. The end-user devices generate abundant
data in the post-cloud era, and the data need to be processed for diverse applications such
as healthcare IoT, vehicular IoT, autonomous driving, unmanned aerial vehicles, satellite
IoT, and industrial IoT in wireless networks [7]. However, edge computing can bring
computation and storage power near to the user instead of the cloud; thus, edge computing
can considerably help the flow of backbone networks, improve end-to-end communication
speed, and positively contribute to the quality of experience (QoE) for the users [8]. More-
over, since edge computing provides computing and storage resources close to the end user,
edge computing enables users to execute highly demanding applications that are sensitive
to delay. Finally, edge computing is beneficial and necessary for modern IoT applications as
it can securely process sensitive data, enable large-scale data processing, facilitate real-time
data streaming, enable fast response times in smart applications, improve application
accessibility in remote areas, and decrease internet bandwidth utilization.

Edge computing systems encounter an optimization problem that involves the coordi-
nation of wireless frequency spectrum, computing, and storage resources while considering
power consumption and latency limitations. Edge services, including sensing, commu-
nication, computing, storage, and intelligence, could be provided for the users through
base stations, access points, and roadside units. Furthermore, one of the fifth-generation of
mobile communications (5G) goals is to operate for many mobile users and IoT devices with
different applications and intense processing and storage requirements [9]. Consequently,
with the advent of the 5G networks and drastic increment in the number of users and their
intense requirements, the network computing paradigm needs to change from centralized
data centers to decentralized near the edge of the network where the data are generated
and consumed. In addition to intense computation and data transmission in 5G, the latency
harms interactive response despite adequate bandwidth. In addition, data transmission is
one of the critical elements in the cloud computing paradigm; however, data transmission
encounters several challenges, such as massive data volume, communication cost, reliabil-
ity, data privacy and security, and data administrative policies. Moreover, cloud computing
suffers from end-to-end latency for highly interactive applications such as visualization,
raster graphics editor, augmented reality (AR), and virtual reality (VR) [10]. Therefore,
the network encounters massive amounts of generated data and needs to manage the
network resources for the deployed applications in the network. Furthermore, some of
the applications in healthcare, autonomous vehicle, and industrial domains deployed in
the network have one or all the following characteristics: (1) they require short or reliable
response time; (2) they have private data; and (3) they generate tremendous quantities
of data. For instance, connected and autonomous driving (CAD) is an application with
real-time requirements for avoiding collision and individuals’ safety; thus, simultaneous
localization and mapping (SLAM) is vital. However, SLAM is a time-sensitive and high-
computation operation that is needed to be executed by a server. Although the cloud can
quickly perform tasks, communication latency to the cloud is not suitable for the SLAM.
Nonetheless, the edge can satisfy both the computation and delay demands of SLAM [11].
In addition to CAD, industrial IoT services need reliable response time for the applications
such as real-time controlling actions [12]. Video surveillance is another application that, if it
is developed enough, a jumbo volume of data will generate; thus, the cloud is an inefficient
solution for video analysis due to the communication delay for the data transmission [13].

Furthermore, edge computing can address healthcare IoTs computation and storage
concerns. Since individuals who encounter chronic or critical diseases are monitored

Electronics 2023, 12, 2599 3 of 27

continuously, their data need to be processed and analyzed in real time while the data
volume is enormous. Therefore, edge computing can execute the patient data near where it
is generated, which leads to eliminating communication delays, mitigating traffic collisions,
and preventing data breaches in the network [14].

Consequently, offloading the computation of the mentioned applications to the cloud
raises safety, reliability, and communication concern. Therefore, edge computing brings com-
putation power near applications with intense computation, privacy, and safety concerns.
Edge computing enables several real-time applications, such as telemedicine, haptic telecom-
munications, and immersive VR services, which have strict real-time requirements [15].

In addition to the distance (geographical distance between a client and a data center)
that contributes to the increment of latency in cloud computing, any improvement in
security, energy efficiency, and manageability of WAN leads to higher latency in network
response. For instance, firewalls, authentications, transmission medium (link), network
device functions, and energy-aware techniques in wireless communication are employed
to improve the mentioned WAN goals while increasing the network latency.

One of the initial steps in the evolution from cloud computing to edge computing was
the development of cloudlets. Cloudlets are designed to offer computation and storage
resources at specific locations with high demand for these resources [16]. Although cloudlet
is accessible via a Wi-Fi connection, cloudlet is not part of the cloud computing network,
and the end-user needs to switch from the network (cloud computing) to Wi-Fi (cloudlet).
Nevertheless, edge computing aims to provide resources near users along with cloud
computing coverage, which can support users’ mobility throughout the network.

Many papers have reviewed the progress and development of edge computing in
recent years. In this paper, we examine the state-of-the-art surveys on scheduling algorithms
in edge computing and compare them based on specific criteria, as presented in Table 1.
We evaluate the suitability of task scheduling algorithms for time-sensitive applications
and systems, as indicated in Table 1.

Table 1. Summary of recent surveys and comparison with this review.

Ref. Edge
Computing

Resource and
Task Management

Real-Time
Perspective Summary

[17] Yes No No

Presents a classification of industrial aspects benefiting
from IoT and edge computing. Proposes two
real-world use cases that address urban smart living
challenges and proposes a new architecture based on
edge-IoT for e-healthcare.

[18] Yes No No
Explains the issues in the collaboration between edge
computing and CPS, reviewing recent papers focusing
on and classifying QoS optimization.

[14] Yes No No

Reviews the research on the collaboration between edge
computing and healthcare applications, focusing on
architecture and techniques. Discusses the challenges of
healthcare applications in edge computing and provide
an overview of all data operations.

[6] Yes No No

Investigates edge computing as a next-generation
computing technology. Elaborates on how edge
computing can reduce operating costs and enhance
security. Analyzes the aspects of data transmission and
communication within edge computing.

[1] Yes No No

Overview of edge computing architecture, applications,
and security includes the analysis of potential security
risks and vulnerabilities. Several protection methods
are explored to mitigate security threats.

Electronics 2023, 12, 2599 4 of 27

Table 1. Cont.

Ref. Edge
Computing

Resource and
Task Management

Real-Time
Perspective Summary

[19] Yes No No

Examines virtualization techniques in computation
and networking resources and explore their
deployment in edge computing. Investigates the
relationship between virtualization techniques and the
requirements of IoT services.

[20] Yes No No Explains the definitions and core characteristics of edge
computing and investigates different application scenarios.

[21] Yes Yes No

Research works on task offloading are analyzed from a
stochastic perspective, and a taxonomy comprising
Markov chains, Markov processes, and hidden Markov
models is presented.

[22] Yes Yes No
Reviews recent research on VEC regarding different
aspects, presents various VEC applications, and
categorize them.

[23] Yes Yes No

Reviews the papers on resource management in edge
computing, wherein different aspects of resource
management are explained, including computation
offloading, resource allocation, and resource provisioning.

[24] Yes Yes No

Examines various task scheduling methods in the
context of edge computing and explores the
relationship between these methods and their
corresponding problem formulations.

[25] Yes Yes No

Reviews resource management methods suitable for
cloud, edge, and fog environments. Proposes an
assessment framework comprising measurements for
resource management algorithms in edge computing.

[26] Yes Yes No

Reviews the research progress made in edge
computing regarding the service placement problem
(SPP). Categorizes the various methods employed for
task scheduling and other aspects associated with SPP.

[2] Yes Yes No Reviews recent research progress in task offloading
techniques for edge computing.

[27] Yes Yes No
Reviews the progress made on energy-aware aspects
of edge computing in different domains,
including task management.

[23] Yes Yes No

Explains the edge computing architecture and its
collaboration with different task scheduling algorithms
and classify recent research on resource management
in edge computing. Divides the scheduling algorithms
based on their operation mode.

[12] Yes Yes No

Explains the collaboration between IIoT and edge
computing, as well as the related research progress.
Provides a review of the advancements achieved in
various technical aspects of edge computing, including
task scheduling.

[28] Yes Yes No

Provides an overview of the advancements in
computation offloading and categorizes computation
offloading models into different classes. Explains the
fundamental concepts of computation offloading and
discuss various methods utilized in it.

Electronics 2023, 12, 2599 5 of 27

Table 1. Cont.

Ref. Edge
Computing

Resource and
Task Management

Real-Time
Perspective Summary

[29] Yes Yes No Provides a taxonomy of recent task scheduling
algorithms in edge/fog computing.

[30] Yes Yes No

Reviews the recent research progress of task
scheduling algorithms in edge computing, categorizing
them based on task dependency and the number of
available servers.

This paper Yes Yes Yes

A comprehensive survey examines the recent progress
in task scheduling algorithms. The algorithms are
categorized based on their operation mode, problem
formulation method, and their suitability for
time-sensitive applications.

Consequently, the contributions of this review are as follows:

• We elucidate the differences between the operation mode and execution paradigms of
edge computing and cloud computing. We analyze each paradigm from multiple aspects,
including deployment, distance, latency, computation power, and storage capacity.

• We explain the architecture of edge computing and its collaboration with the end user
and the cloud. In addition, we illustrate the network architecture, which encompasses
the end-user (things), edge, and cloud components. We also provide an explanation
of each layer within this architecture. Moreover, we conduct a comprehensive re-
view of the available computing resources within edge computing. Additionally, we
distinguish and outline the distinctive characteristics associated with each resource
type. Furthermore, we present advancements in 6G as an emerging technology and
consequential impact on edge computing.

• We present a step-by-step explanation of the task scheduling procedure in edge com-
puting and discuss why edge computing is considered a promising approach for
offloading time-sensitive and data-sensitive applications.

• We explore the optimization perspectives and objectives presented in state-of-the-art papers
on task scheduling and examine how each paper formulates the scheduling problem.

• We categorize the task scheduling techniques into two main categories, distinguished
by their operation and execution mode. Moreover, we thoroughly examine each
category, presenting a detailed discussion of their characteristics. Additionally, we
clarify the advantages and disadvantages inherent in each technique. Furthermore,
we construct a table that compares over fifty state-of-the-art works on task scheduling
to each other, considering multiple parameters.

• We clarify which task-scheduling techniques appear promising for effectively schedul-
ing time-sensitive applications.

Table 2 provides a comprehensive list of frequently used acronyms in the survey. The
rest of this paper is organized as follows. Section 2 discusses the fundamental concepts of
task scheduling in edge computing, while Section 3 outlines the research methodology used
in this study. Section 4 provides an overview of network architecture in edge computing.
Section 5 examines optimization properties and how they can be utilized to improve task
scheduling in edge computing. Section 6 discusses the current techniques for solving the
task scheduling problem in edge computing. Section 7 focuses on the suitability of different
methods for scheduling the tasks of real-time applications. Finally, Section 8 highlights the
open issues and future research directions in task scheduling in edge computing.

Electronics 2023, 12, 2599 6 of 27

Table 2. Acronyms used in this survey.

Acronym Definition

WAN Wide Area Network
QoS Quality of Service
IoT Internet of Things
QoE Quality of Experience
AR Augmented Reality
VR Virtual Reality

CAD Connected and Autonomous Driving
SLAM Simultaneous Localization and Mapping
RSU Roadside Unit
UAV Unmanned Aerial Vehicle

WBAN Wireless Body Area Networks
RQ Research Question
IC Inclusion Criteria

LTE Long-Term Evolution
Wi-Fi Wireless Fidelity
CPU Central Processing Unit
GPU Graphics Processing Unit
ASIC Application Specific Integrated Circuit
FPGA Field Programmable Gate Array
DAG Directed Acyclic Graph
XR Extended Reality
AI Artificial Intelligence
ML Machine Learning
ILP Integer Linear Programming

MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming

MDP Markov Decision Process
ADMM Alternating Direction Method of Multipliers

EDF Earliest Deadline First
FCFS First Come First Serve

NSGA Non-dominated Sorting Genetic Algorithm
MOWO Multi-Objective Whale Optimization

SLA Service Level Agreement
DRL Deep Reinforcement Learning
ASA Simulated Annealing Approach
DQN Deep Q-learning Network

FL Federated Learning
LSTM Long Short-Term Memory

MAML Model-agnostic Meta-learning
IIoT Industrial Internet of Things
IoV Internet of Vehicles

2. Task Scheduling in Edge Computing

One significant distinction between cloud computing and edge computing is their
computation paradigm, which must be considered when implementing task scheduling
methods. Cloud computing is a centralized computing paradigm, whereas edge computing
is a distributed computing paradigm. Therefore, to ensure optimal performance, the
task scheduling techniques employed in each should be different and compatible with
the characteristics of each paradigm. Although cloud computing and edge computing
are services for offloading computation tasks from the end-user device to a server, they
have different computation paradigms that make them suitable for various applications.
Cloud computing is a centralized computation facility that is proper for process-intensive
applications. In contrast, the bottleneck of cloud computing is the networks’ bandwidth
and privacy guarantee for sensitive data. Conversely, edge computing could address
concerns such as latency, bandwidth, security, privacy, and limited battery power of mobile
devices and embedded systems [7,31,32]. In addition to different computation paradigms

Electronics 2023, 12, 2599 7 of 27

in cloud computing and edge computing, cloud computing services are accessible by the
Internet for end-users. However, end-users utilize edge server nodes near them, which can
vary in different locations. Therefore, edge computing can support applications that have
latency, bandwidth, security, and privacy considerations. Table 3 highlights the technical
differences between cloud computing and edge computing [29].

Table 3. General comparison of cloud and edge computing.

Characteristic Cloud Computing Edge Computing

Deployment Centralized Distributed
Distance High Low
Latency High Low

Computation power Ample Limited
Storage capacity Ample Limited

In recent years, mobile applications such as social networks, games, healthcare, mobile
payment, VR, and AR are becoming increasingly complex and demand more computing re-
sources and energy [23]. Hence, offloading the possible tasks of the mentioned applications
to edge computing can increase the QoS and reduce energy consumption for time-sensitive
applications and power-constrained devices, respectively. For example, edge computing
enables vehicles to offload the tasks of sensory data analysis and navigation path identi-
fication to edge nodes such as roadside units (RSUs) for fast processing [33]. Moreover,
unmanned aerial vehicles (UAVs) utilize edge computing, where drones offload their image
processing tasks for navigation to the edge servers [34].

Task scheduling generally involves assigning appropriate resources to tasks for execu-
tion at the right time. The efficiency metrics of a task scheduling technique increase as it
accurately allocates tasks to a suitable server. In edge computing, task scheduling entails
participants using a methodology to allocate tasks to edge resources for execution that can
be described as follows [23]:

• Participants: the components of the network that collaborate on task execution, such
as user, edge, and cloud, are the participants [35].

• Resources: edge computing components that provide a service in the network, such
as communication resources, storage resources, caching resources, and computing
resources [36].

• Tasks: a unit work in an application in which there are different types of tasks in edge
computing such as LiDAR [37] or camera [38] of autonomous vehicles, wireless body
area networks (WBAN) of healthcare IoT applications [17].

• Methodology: different methods can be utilized to schedule tasks, including central-
ized and distributed [39].

Any efficient task scheduling method, either centralized or distributed, needs to
consider three aspects [29]:

• Computation offloading: Determining which tasks need to executed by edge computing.
• Resource allocation: Determining which of the edge computing server nodes is the

most suitable for the task.
• User mobility: The task scheduling method should regularly check the presence of the

end-user as the user might leave or join the covered area.

The network consists of three layers: things, edge, and cloud. The things layer includes
various end-user devices, such as smart home devices, surveillance cameras, autonomous
vehicles, VR and AR gadgets, unmanned aerial vehicles, and industrial devices in smart
factories. The edge and cloud layers host servers that carry out tasks for these end-user
devices. The edge servers, situated close to the end users, are suitable for time-sensitive
and data-sensitive applications. However, it should be noted that the Edge servers have
lower computing power and storage capacity compared to the cloud servers. Accordingly,
a task scheduling algorithm considers the availability of servers, including edge servers

Electronics 2023, 12, 2599 8 of 27

and cloud, as well as the tasks of end-users. The algorithm then schedules end-user tasks
by considering the requirements of end-users’ tasks and the capabilities of edge servers and
the cloud. For example, consider Figure 1, which depicts two cars as end-users, three edge
servers, and the cloud. Each car wants to offload its entertainment tasks, such as gaming
and multimedia player tasks. Now, the scheduling algorithm has two users with specified
tasks. The algorithm schedules the tasks based on their computing, memory, and time
requirements to edge servers or the cloud. If the tasks are time-sensitive and data-sensitive,
they will be scheduled on edge servers. The task scheduling algorithm selects an edge
server from all the available edge servers with sufficient computing power and memory
capacity to execute the task within the required latency based on the task’s requirements.
However, if the tasks are compute-intensive and memory-intensive, they will be offloaded
to the cloud. The task scheduling algorithm continuously checks for the arrival of new
tasks or users to the network to promptly respond and schedule tasks without any delay.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 28

such as gaming and multimedia player tasks. Now, the scheduling algorithm has two us-

ers with specified tasks. The algorithm schedules the tasks based on their computing,

memory, and time requirements to edge servers or the cloud. If the tasks are time-sensitive

and data-sensitive, they will be scheduled on edge servers. The task scheduling algorithm

selects an edge server from all the available edge servers with sufficient computing power

and memory capacity to execute the task within the required latency based on the task’s

requirements. However, if the tasks are compute-intensive and memory-intensive, they

will be offloaded to the cloud. The task scheduling algorithm continuously checks for the

arrival of new tasks or users to the network to promptly respond and schedule tasks with-

out any delay.

Figure 1. Users, edge, and cloud collaboration.

3. Method

This review paper adheres to the spirit of the guidelines proposed by Kitchenham et

al. [40]. This section discusses the methodology used to conduct this review, including the

research questions and inclusion criteria considered.

3.1. Research Question

This study intends to answer the following research questions (RQs):

• RQ1: What techniques have been utilized for scheduling the tasks in edge compu-

ting?

o Through resolving these investigations, a more comprehensive comprehension

of different task scheduling methods can be achieved, facilitating an exploration

of the advantages and disadvantages of each method to determine appropriate

task scheduling approaches for time-sensitive applications.

• RQ2: What techniques are suitable for scheduling the tasks of time-sensitive applica-

tions?

o Answering this inquiry would clarify which task-scheduling technique is more

suitable for time-sensitive applications.

Figure 1. Users, edge, and cloud collaboration.

3. Method

This review paper adheres to the spirit of the guidelines proposed by Kitchenham et al. [40].
This section discusses the methodology used to conduct this review, including the research
questions and inclusion criteria considered.

3.1. Research Question

This study intends to answer the following research questions (RQs):

• RQ1: What techniques have been utilized for scheduling the tasks in edge computing?

o Through resolving these investigations, a more comprehensive comprehension
of different task scheduling methods can be achieved, facilitating an exploration
of the advantages and disadvantages of each method to determine appropriate
task scheduling approaches for time-sensitive applications.

• RQ2: What techniques are suitable for scheduling the tasks of time-sensitive applications?

o Answering this inquiry would clarify which task-scheduling technique is more
suitable for time-sensitive applications.

Electronics 2023, 12, 2599 9 of 27

3.2. Inclusion Criteria

Once the research questions of the review have been developed, as mentioned earlier,
it is essential to establish appropriate inclusion criteria (IC) for selecting previous studies to
be reviewed. This process ensures an unbiased analysis of the primary studies. Therefore,
previous studies must fulfill at least one of the following criteria to be included in the review.
We review state-of-the-art papers that address various aspects of task scheduling, resource
management, resource usage optimization, end-user power, and delay optimization, as
well as the implementation of real-time applications and systems in edge computing.

• IC1: Address the task and resource management on edge computing.
• IC2: Address the task scheduling challenge on edge computing.
• IC3: Address the implementation and development of time-sensitive applications in

edge computing.
• IC4: Address task complexity in task scheduling to manage various tasks with different

levels of complexity.
• IC5: Address resource availability of computational resources, including processors,

memory, and storage, at edge devices into the task scheduling algorithm.
• IC6: Address latency requirements of tasks with strict latency requirements to ensure

deadlines are met.
• IC7: Address the optimization of energy consumption in edge devices.
• IC8: Address the optimization of computation latency of edge devices in edge computing.
• IC9: Address security and privacy to ensure the confidentiality and integrity of the

data being processed on edge devices.
• IC10: Address network bandwidth availability where data need to be transmitted in

the edge network.
• IC11: Address users’ preferences, such as their desired service quality level or willing-

ness to trade off performance for energy savings.

4. Network Architecture

Although cloud computing encounters difficulties in fulfilling real-time applications’
requirements due to the delay, edge computing can only partially handle some enter-
prise applications such as supply chain management, customer relationship management,
large-scale web applications, and large-scale mobile applications. Therefore, a realistic
network computing paradigm comprises cloud computing and edge computing as collabo-
rative computation platforms. Consequently, many studies [23,41,42] consider three-tier
(three-layered) network architecture composed of the cloud, the edge, and the Things layers
to take advantage of the cloud and edge resources. For instance, Fizza et al. [43] proposed
two scheduling algorithms for autonomous vehicles that execute tasks based on latency
tolerance. Hence, the scheduler executes hard real-time tasks such as braking systems on
the local processor, while the firm real-time and soft-real-time tasks are executed in the edge
and cloud platforms, respectively. In addition, a meta-heuristic task scheduling algorithm
is proposed by [44] to schedule the tasks on either local, edge, or cloud processors by con-
sidering the computation power, storage capacity, and bandwidth capability. Consequently,
Figure 2 illustrates the three-tier network architecture consisting of the things, edge, and
cloud layer adapted from [42].

4.1. Things Layer

Multitudes of different devices with various applications exist in the things layer,
including AR gadgets, smart home devices, surveillance cameras, autonomous vehicles,
unmanned aerial vehicles, and industrial devices in smart factories. Each device of the
thing layer possesses specific amounts of computation and storage capacity, while the
device can offload the tasks according to the QoS and QoE requirements. In addition to the
processing characteristics, the devices might have a dynamic location; thus, the resource
scheduling algorithm needs to consider the mobility attribute of devices.

Electronics 2023, 12, 2599 10 of 27Electronics 2023, 12, x FOR PEER REVIEW 10 of 28

Figure 2. Three-layer network architecture.

4.1. Things Layer

Multitudes of different devices with various applications exist in the things layer,

including AR gadgets, smart home devices, surveillance cameras, autonomous vehicles,

unmanned aerial vehicles, and industrial devices in smart factories. Each device of the

thing layer possesses specific amounts of computation and storage capacity, while the de-

vice can offload the tasks according to the QoS and QoE requirements. In addition to the

processing characteristics, the devices might have a dynamic location; thus, the resource

scheduling algorithm needs to consider the mobility attribute of devices.

4.2. Edge Layer

The edge layer comprises geographically distributed heterogenous nodes such as

base stations, edge servers, gateways (e.g., router or switch), and RSUs, which can provide

computation and storage capacity near the users. Edge nodes communicate with the

Things layer via different wireless access technologies, including Dedicated Short-Range

Communications, Wireless Fidelity (Wi-Fi), and Long-Term Evolution (LTE). Edge pos-

sesses a mutual connection with cloud and Things layers. Therefore, the edge can be uti-

lized to reduce the communication overhead of the cloud for users to execute users’ real-

time tasks. Moreover, edge decreases the cloud’s bandwidth usage and energy consump-

tion by executing users’ tasks that edge nodes can execute. Furthermore, the edge is a

proper solution for the cloud to balance its heavy load in specific situations.

4.3. Cloud Layer

As the most powerful processing platform in the network, the cloud provides a pool

of computation power and storage capacity. Cloud is a proper platform for deploying,

maintaining, developing, updating, and scaling enterprise and large-scale applications.

However, the challenge between users and the cloud is (1) the bandwidth limitation due

to the geographical distance between the cloud and users and (2) the tremendous number

of users that occupy the bandwidth for transmitting tasks and data.

4.4. Network Resources

The network has three different resources: computation, storage, and communica-

tion. The computing platform of edge computing is heterogenous, including central pro-

cessing unit (CPU), graphics processing unit (GPU), application specific integrated circuit

Figure 2. Three-layer network architecture.

4.2. Edge Layer

The edge layer comprises geographically distributed heterogenous nodes such as base
stations, edge servers, gateways (e.g., router or switch), and RSUs, which can provide
computation and storage capacity near the users. Edge nodes communicate with the
Things layer via different wireless access technologies, including Dedicated Short-Range
Communications, Wireless Fidelity (Wi-Fi), and Long-Term Evolution (LTE). Edge possesses
a mutual connection with cloud and Things layers. Therefore, the edge can be utilized
to reduce the communication overhead of the cloud for users to execute users’ real-time
tasks. Moreover, edge decreases the cloud’s bandwidth usage and energy consumption
by executing users’ tasks that edge nodes can execute. Furthermore, the edge is a proper
solution for the cloud to balance its heavy load in specific situations.

4.3. Cloud Layer

As the most powerful processing platform in the network, the cloud provides a pool
of computation power and storage capacity. Cloud is a proper platform for deploying,
maintaining, developing, updating, and scaling enterprise and large-scale applications.
However, the challenge between users and the cloud is (1) the bandwidth limitation due to
the geographical distance between the cloud and users and (2) the tremendous number of
users that occupy the bandwidth for transmitting tasks and data.

4.4. Network Resources

The network has three different resources: computation, storage, and communication.
The computing platform of edge computing is heterogenous, including central process-
ing unit (CPU), graphics processing unit (GPU), application specific integrated circuit
(ASIC), and field programmable gate array (FPGA). Although the cloud mainly comprises
homogenous computation elements, the edge servers comprise heterogeneous computa-
tion platforms such as CPU, GPU, and FPGA. Table 4 exhibits the characteristic of GPU,
CPU (ASIC), and FPGA. Consequently, a proper resource scheduling algorithm should
consider end-user tasks’ parameters and edge computing platforms’ characteristics to
efficiently exploit the capacity of the computation platform of edge computing for real-time
requirements [45].

Electronics 2023, 12, 2599 11 of 27

Table 4. Comparison of GPU, ASIC, FPGA.

Processor Characteristic

GPU High latency High power consumption High flexibility

ASIC Low latency Low power consumption Low flexibility

FPGA Low latency Low power consumption High flexibility

According to Table 4, FPGA is more power efficient and faster than GPU; also, re-
garding ASIC, the FPGA is configurable and more flexible; thus, FPGA can be a suitable
candidate for computation units of real-time and embedded systems with stringent resource
constraints. FPGA is configured with hardware description language (HDL); thus, the ker-
nel of deep learning operations is yielded faster in FPGA rather than GPU [46]. Since FPGA
has low power consumption, low latency, configurability, and parallelism, the combination
of FPGA and CPU is utilized in multiple edge computing systems such as 5G networks [47],
and real-time systems such as autonomous driving [48], video surveillance [49]. Regarding
real-time services in edge computing, a proper task scheduler is needed to satisfy the
real-time performance requirement of edge computing. The foundation of a task scheduler
algorithm for real-time services is to assemble an appropriate graph of tasks, a directed
acyclic graph (DAG), consisting of serial and parallel tasks. However, scheduling tasks
based on the DAG representing a real-time application is an NP-hard problem [50].

Moreover, the storage capacity of edge computing is geographically distributed among
edge servers. Furthermore, each edge server possesses its data communication capacity,
which varies for each edge server.

4.5. 6G Networks

The sixth-generation mobile system (6G) standard and network goals are to enhance
connectivity and service coverage, provide a reliable platform for vertical applications,
and guarantee a reliable response time. The 6G is needed to fulfill the QoS and industrial
control of Industry 4.0, the required data rate of extended reality (XR), the requirements of
diverse AI applications, and to provide a reliable service for autonomous vehicles. The 6G
deployment requirements are 1Tbps data rate, 1Kbps/Hz spectral efficiency, and latency of
approximately µ-seconds; these specifications can be referred to as 6G TKµ. In [51], a novel
task-centric three-layer decentralized model architecture is proposed for 6G, incorporating a
super edge node. This architecture is designed to support various services and applications.
In addition, a comprehensive review of reinforcement learning-based techniques for edge
computing in 6G is presented in [52].

Moreover, combining 6G and edge computing provides a suitable platform for imple-
menting federated learning techniques on edge devices for AI applications. However, the
heterogeneity of edge devices and their limited resources pose challenges in the training
process of federated learning and increase the training time. Therefore, the authors of [53]
proposed a new approach to accelerate the federated learning technique.

5. Optimization Properties

Each study presents a formulation of the scheduling problem for desired applications
in edge computing based on different criteria related to the application structure, envi-
ronmental factors, and desired outcomes. The optimization properties can be classified
based on the main viewpoint of the study, the number and type of factors considered for
optimization, and the formulation method of the optimization problem [54].

5.1. Main Viewpoint

The optimization goals of studies on task scheduling in edge computing can be broadly
categorized into three areas:

Electronics 2023, 12, 2599 12 of 27

• End-user devices: the scheduling techniques consider optimizing parameters such as
energy consumption, response time, or cost on the side of end-user devices.

• Edge servers: given the limited computational and storage resources of end-user
devices, the proposed scheduling techniques aim to enhance the efficiency of edge
servers. Specifically, these techniques strive to minimize energy consumption, improve
resource utilization, and minimize costs.

• Hybrid: subsequent studies in this field have focused on hybrid scheduling techniques
that optimize the parameters of both end-user devices and edge servers. These studies
acknowledge that end-user devices have modest computational resources and explore
the offloading of specific tasks to edge servers to improve the overall performance of
the edge computing platform, including both end-user devices and edge servers.

5.2. Optimization Objective

Research papers on task scheduling can be classified as either single-objective or
multi-objective. Single-objective papers attempt to optimize a single parameter, while
multi-objective papers optimize multiple parameters simultaneously.

Each study set a goal for optimizing an aspect of the platform, such as response time,
energy consumption, and cost.

According to the optimization goals and parameters, the optimization problem can
be formulated by different methods, including Integer linear programming (ILP), mixed
integer linear programming (MILP), mixed integer non-linear programming (MINLP), and
Markov decision process (MDP).

6. RQ1: Centralized and Distributed Task Scheduling Techniques

Cloud computing is a centralized computation platform, while edge computing is a
distributed one. In addition, edge servers possess limited resources compared to cloud
servers. Finally, edge computing needs efficient scheduling techniques as it is dynamic,
distributed, and heterogenous.

The scheduler has prior knowledge of future tasks in the offline scheduling algo-
rithm. Therefore, the optimal offline scheduling algorithm can achieve the upper bound
performance. On the contrary, there has yet to be prior knowledge about tasks in online
scheduling algorithms. As soon as a task arrives in the system, the online scheduling
algorithm realizes the task’s parameters [55]. Although some of the offline scheduling
algorithms mentioned in [29] outperform the online scheduling algorithms, the latest online
scheduling algorithm performs better than offline scheduling algorithms. The advantage of
online scheduling algorithms is attention to the dynamic of the edge computing network.
One of the most significant steps in the offloading task to edge computing is allocating an
appropriate resource to a task by considering the characteristics of both the resource and
task. Therefore, task scheduling is a multi-objective optimization problem, which means
jointly allocating communication, computing, and storage resources in edge computing is a
multi-objective optimization problem [23]. Considerable hardships in resource scheduling
for edge computing are the heterogeneity of computation platforms (CPU, GPU, FPGA)
and resource limitations rather than cloud computing. Therefore, providing an appropri-
ate task graph is an NP-hard problem. Several objectives, such as QoS, average latency,
suitable edge server, and the number of edge users, must be considered [56]. According
to the controlling manner, task scheduling techniques in edge computing are divided into
centralized and distributed methods.

6.1. Centralized Task Scheduling Technique

Centralized methods offer a holistic system perspective, allowing them to make op-
timal decisions based on complete information about available resources and required
tasks. Moreover, centralized methods are easier to manage and monitor because they
permit centralized control of the system and centralized data storage. One of the central-
ized methods is convex optimization which involves finding the optimal solution to a

Electronics 2023, 12, 2599 13 of 27

mathematical optimization problem subject to constraints. Approximation algorithms are
another method that provides a near-optimal solution to a problem within a reasonable
time frame. On the contrary, heuristic algorithms use a rule-based approach to find a
solution that may not be optimal but is acceptable. Meta-heuristic algorithms, such as
genetic algorithms and simulated annealing, are more complex approaches often used to
find near-optimal solutions to complex problems. Finally, machine learning methods are
increasingly being used for task scheduling in edge computing, with techniques such as
reinforcement learning and deep learning showing promise in improving the efficiency
and accuracy of task scheduling.

6.1.1. Convex Optimization

Task scheduling in edge computing is an NP-hard and “non-convex” problem; thus,
the researchers attempted to convert the “non-convex” problem to a “near-convex” or “con-
vex” optimization problem. Hence, the researchers can solve the scheduling problem with
the convex optimization method as an offline task scheduling method. Lyapunov [57–60],
decomposition [61], and alternating direction method of multipliers (ADMM) [62,63]
techniques are mathematical optimization techniques utilized to solve “near-convex” or
“convex” optimization problems. The proposed scheme in [63] aims to maximize the overall
system reliability by intelligently allocating tasks to edge servers and cloud servers. The
scheme consists of two main components: a task allocation algorithm and a task offloading
algorithm. The task allocation algorithm allocates tasks to edge and cloud servers based
on their reliability levels, computational capacity, and communication bandwidth. The
task offloading algorithm determines the optimal offloading strategy for each task based
on the reliability of the edge servers and cloud servers and the communication cost [63].
The proposed mechanism in [62], POTAM, considers computation and communication
costs to allocate tasks to the most appropriate edge servers. The POTAM utilizes ADMM
and a parallel algorithm to solve the large-scale task scheduling problem in a reasonable
amount of time, which involves minimizing the total delay of executing multiple tasks on
distributed edge servers while satisfying resource constraints [62]. The convex problem
is solved with the Lyapunov technique in [64] in polynomial time, as the objective of task
scheduling was minimizing the response time.

6.1.2. Approximation Algorithms

It is an offline task scheduling method, and many studies utilize an approximation al-
gorithm to solve non-convex and NP-hard resource scheduling problems. The optimization
problem is solved based on different approximation algorithms, including deterministic
approximation algorithm [65] and local search-based approximation algorithm [66], or by
utilizing different techniques such as MDP [67], K-means clustering, and hybrid quadratic
programming [68] to solve an approximate method.

6.1.3. Heuristic

They are challenging to be a dynamic method for task scheduling due to the time-
consuming and complex computation. In [69], a heuristic algorithm is proposed for task
allocation and scheduling in the edge layer. This algorithm adopts a priority-based ap-
proach to allocate and schedule tasks in the edge layer based on their deadlines and
computational requirements [69]. The study [70] presented a multi-objective optimiza-
tion model for scheduling tasks in an integrated edge-cloud environment. The model
includes makespan, energy consumption, and processing cost as the objectives. A heuristic
algorithm is proposed to solve the model efficiently. Moreover, The scheduling algorithm
utilized in [71] is a modified version of the earliest deadline first (EDF) algorithm, where
tasks are prioritized based on their deadlines and processing time requirements at the edge
servers. In addition, a two-step approach to solve the task scheduling problem is designed
in [72]. In the first step, the algorithm determines the optimal task-to-device assignment
that minimizes the overall completion time of the tasks, subject to the bandwidth con-

Electronics 2023, 12, 2599 14 of 27

straints and the resource availability of the edge computing devices. In the second step, the
algorithm schedules the tasks on the selected devices based on EDF [72]. Yi-Han et al. [73]
proposed a task offloading and scheduling technique that considers dependent tasks in
edge computing. Consequently, a joint cotask-aware offloading and scheduling (JCAOS)
algorithm is presented that packs dependent tasks in “cotasks” and then creates a graph.
In the next step, the algorithm schedules and offloads the “cotasks” regarding three param-
eters such as dependent degree, computational requirements, and network conditions. The
scheduling algorithm prioritizes the task with the higher dependency. Since the JCAOS
algorithm is a heuristic algorithm based on a first come first serve (FCFS) mechanism, it is
hard for the JCAOS algorithm to provide a real-time solution for changes that happen in
edge computing. The greedy algorithm is one of the heuristic methods utilized to solve
resource scheduling in edge computing [70,74]. For example, the article [71] aggregates
vehicular resources and proposes a latency-aware real-time scheduling framework (LARS)
for offloading applications to appropriate vehicular resources in real time. The proposed
framework includes a clustering-based algorithm for generating end-users and a greedy-
based task-scheduling algorithm for offloading jobs to minimize job latency and maximize
resource utilization [71].

6.1.4. Metaheuristic

They are proposed by utilizing different algorithms such as genetic algorithm [75–77],
non-dominated sorting genetic algorithm (NSGA) [78–82], particle swarm optimization
(PSO) [83], tabu search [84], ant colony [85,86], evolutionary algorithm [87], a combination of
genetic algorithm and particle swarm optimization techniques [88]. In addition, the proposed
technique in [89] employs the multi-objective whale optimization (MOWO) Algorithm, a
meta-heuristic algorithm, to schedule tasks among multiple edge servers. The MOWO
algorithm minimizes the system’s overall energy consumption and total processing time
while maximizing the number of completed tasks [89]. The paper [76] focused on the service
placement problem concerning workload distribution across multiple edge servers for the
applications. This problem is particularly relevant for IoT applications, as the limitations of
edge computing resources and other objectives can lead to service level agreement (SLA)
violations. To address this challenge, the authors of [76] propose a multi-objective genetic
algorithm that combines random and heuristic solutions to generate near-optimal solutions.
The designed algorithm in [76] aims to minimize SLA violations while considering competing
load distribution and placement objectives. Furthermore, the VECMAN framework [90]
includes a genetic algorithm for task scheduling while consisting of a heuristic algorithm for
vehicle clustering and a machine-learning model for energy prediction.

6.1.5. Machine Learning

ML approaches utilizing deep learning [91] and reinforcement learning can achieve
an optimal solution and are more compatible with the dynamic environment of edge
computing rather than traditional static methods such as convex optimization and ap-
proximation [92]. MDP is suitable for modeling the online task scheduling problem in the
dynamic environment of edge computing, and the reinforcement learning technique solves
the model. Task scheduling in edge computing is defined as an optimization problem
using MDP in [93]. The study proposes solving this optimization problem with deep
reinforcement learning (DRL) to maximize the total reward in the dynamic environment of
edge computing. However, the proposed DRL-based method in [93] only considers com-
putational resources, disregarding memory, storage, and network bandwidth resources.In
addition, the article [94] designed an online task scheduling framework for the edge com-
puting platform to minimize task latency by optimizing offloading decisions, transmission
power, and resource allocation. To this end, a DRL-based approach is developed, including
a related and regularized stacked autoencoder that compresses data, an adaptive simulated
annealing approach (ASA) for action search, and a preserved and prioritized experience
replay mechanism (2pER) for training the policy network [94].

Electronics 2023, 12, 2599 15 of 27

Moreover, one of the efficient types of reinforcement learning algorithms is Q-learning
which is a value-based learning and an iterative algorithm learning the optimal Q-values [95].
Therefore, the paper [95] proposed an optimization approach where the goal is to minimize
the execution time and power consumption of computational tasks by determining the
optimal order and edge server for task offloading. Deep Q-learning network (DQN), as one
of the DRL algorithms, addresses the dynamic environment of edge and efficiently solves
the MDP model of online offloading problem [96]. A task allocation in a dynamic edge
computing environment can be accomplished by combining DRLs shared experience replay
mechanism with a DQN, as mentioned in [97]. Therefore, agents can learn from each other’s
experiences; each agent’s experience is a batch of experiences stored in the replay buffer
instead of only the most recent experiences of each agent. Accordingly, a centralized actor
network (CAN) receives agents’ policies and jointly trains them in a centralized manner,
then CAN update each agent’s Q-values. DQN demonstrates considerable results for online
offloading problems in the dynamic environment of the edge [98–102], and the combination
of DQN with long short-term memory (LSTM) [103] and federated learning (FL) [104]
assemble appropriate schedulers for edge computing. In [26], Wang et al. proposed to
solve the problem of online task scheduling with the meta-RL-based method, in which
the second-order gradient in model-agnostic meta-learning (MAML) is replaced with a
first-order approximation to reduce the cost of training.

6.2. Distributed Task Scheduling Techniques

Distributed methods are more fault-tolerant than centralized methods, as they can
continue to operate even if some servers fail or leave the system. Since distributed meth-
ods allow the system to be easily expanded by adding new servers without requiring a
significant overhaul of the system architecture, distributed methods are more scalable than
centralized methods. Moreover, distributed methods can be more resilient to network
disruptions or communication delays, as they allow for local decision-making without
requiring constant communication with a central node. Furthermore, distributed methods
enhance privacy and security by enabling local data processing on edge servers rather than
sending them to a central location. Game theory, matching theory, auction, and FL are all ex-
amples of such techniques, each with unique strengths and applications. Game theory and
matching theory are concerned with modeling the behavior of multiple decision-makers
and finding optimal outcomes in complex situations. Auctions provide a mechanism for
allocating resources or tasks among multiple bidders based on their bids. FL enables
multiple parties to collaborate on training a machine learning model while preserving
their data privacy. These techniques offer various benefits, including efficiency, fairness,
privacy-preserving, and trust, making them applicable for task scheduling in the edge
computing platform.

6.2.1. Game Theory

Game theory can schedule tasks in the edge computing [105–108]. Entities interact
based on self-interest without intense complexity, and game theory analyzes the interac-
tions. Smys et al. [109] proposed a task scheduling method based on game theory, which
utilizes both cooperative and non-cooperative models. The method consists of three ele-
ments: (1) players, (2) their strategies in different situations, and (3) rewards. The objective
of the game theory-based scheduler in [109] is to minimize waiting time; thus, to achieve
this, the scheduler orders the tasks based on their deadlines.

In [110], they increased the task scheduling speed by utilizing the metadata of tasks
in the scheduling procedure instead of receiving all data of tasks. Therefore, the commu-
nication overhead is significantly reduced. The goal of their scheduler is to maximize the
efficiency of the edge system. Teng et al. [110] converted the scheduling problem to a
cooperative game.

Electronics 2023, 12, 2599 16 of 27

6.2.2. Matching Theory

It is a promising method for solving mixed-integer and the non-linear problem of task
scheduling and resource management [111,112]. There is mutual matching between users
and servers based on users’ and servers’ preferences; thus, there will be an association
mapping between users and edge servers in task scheduling using match theory. Each edge
server sorts tasks based on its preference relation in matching theory. The match graph
(M) is a sub-graph of graph (I) that (M) has neither a common vertex nor an adjacent edge.
In contrast, graph (I) is an initial graph of the whole edge computing network composed
of all edge nodes, including edge servers and edge users. An energy-aware scheduler for
edge computing is proposed by [113] using match theory by considering computation,
communication, and delay limitations. In addition, low computational complexity is the
objective of the scheduler in [114], and the scheduler considers both computation offloading
and resource allocation.

6.2.3. Auction

Auction operates as the users publish their tasks and the rewards to the edge com-
puting system. Then, edge servers analyze the rewards they can obtain through executing
the tasks and submit their bids to the system. Finally, the system assigns the task to the
edge node, which submitted the highest bids [115–118]; thus, the scheduler solves the task
scheduling problem with a polynomial complexity that is near optimal. Several studies
by [119] utilized the auction method to provide a solution for the task scheduling problem.

6.2.4. Distributed Machine Learning

An algorithm named P2D3PG, based on distributed deep reinforcement learning, is
proposed in [120]. This algorithm aims to maximize cache hit rates on edge devices while
preserving users’ data. Since edge caching represents a distributed optimization problem,
the authors of [120] formulate it as a model-free Markov decision process. By employing
an appropriate caching method, the algorithm reduces bandwidth overhead and facilitates
the implementation of computation-intensive and time-sensitive applications.

Moreover, edge caching plays a crucial role in the Industrial Internet of Things (IIoT)
as it enables real-time control and application. However, accurately predicting popularity
patterns among devices in edge computing requires significant time and effort. The chal-
lenges associated with predicting popularity include limited data in data-sensitive systems
and the high cost of labeling in supervised learning. As a result, a secure unsupervised
framework is proposed in [121] for predicting the popularity of IIoT in edge computing.
The popularity prediction problem is formulated using a model-free Markov chain in [121].
The authors of [121] address this problem by dividing popularity into local and global
measures, and they propose an unsupervised recurrent federated learning algorithm.

FL is a distributed ML algorithm developed by Google researchers; FL distributes the
DRL algorithm, and FL trains DRL agents in a distributed manner. In addition, since edge
computing is a distributed computing paradigm, FL as a distributed ML is a suitable tech-
nique to solve the resource scheduling problem [122–126]. The traditional ML techniques
are centralized and utilize cloud infrastructure for storage and computation demands.
However, the idea of FL is to implement DRL algorithms in a distributed manner and it is
possible to deploy ML services near the users via edge computing; thus, FL can mitigate all
communication costs, data privacy, and legalization concerns. FL is a collaborative learn-
ing method suitable for geographically distributed edge servers to train task scheduling
algorithms with online responses to the dynamic behavior of edge computing networks
and without intense data communication and private data relocation. FL is studied in
time-critical industrial applications with a massive quantity of sensitive data. FL enables
Industrial Internet of Things (IIoT) devices to train and develop an intelligent framework
for task scheduling [127]. Since estimating the exact execution time is hard, especially in
the Internet of Vehicles (IoV), providing an optimal task scheduling algorithm is a sub-
stantial challenge. Therefore, a task scheduling technique is proposed by [128] based on

Electronics 2023, 12, 2599 17 of 27

FL by considering the power-delay product parameter for optimization. A context-aware
scheduling algorithm is proposed by [129] to schedule VR tasks over an edge network, and
FL implements DRL on edge nodes. According to [129], FL provides the proper solutions
for training with a distributed dataset, updating the scheduler algorithms with available
nodes in unstable communication.

Finally, the advantages and disadvantages of both centralized and distributed task
scheduling techniques are provided in Table 5, and a comprehensive comparison of the
different criteria is provided in Table 6.

Table 5. Comparison of advantages and disadvantages of current task scheduling techniques.

Technique Operation Manner Advantages Disadvantages

Convex optimization Centralized
(1) Mature and widely used.
(2) The sub-optimal optimization

results are Easily achievable.

(1) Complex and time-cons-
uming calculations.

(2) Challenging to implement
in systems.

Approximation Centralized

(1) Flexible and straightforward to
be implemented.

(2) A local search algorithm can be
simply designed for the most
difficult NP-hard problems.

(1) Local optimum issue.
(2) Unreliable performance due to

inherent randomness of
approximation manner.

Heuristic methods Centralized
(1) Mature and widely used.
(2) Efficient.

(1) Complex and time-consu-
ming calculations.

(2) Challenging to be compatible
with the dynamic environment
of edge computing.

(3) Local optimal issue.

Meta-heuristic methods Centralized
(1) Mature and widely used.
(2) Efficient.

(1) Many parameters
should be defined in
Meta-heuristic methods.

(2) Hard to adjust the parameters
of meta-heuristic algorithm.

Machine Learning Centralized

(1) Strong parallel
processing capability.

(2) Strong distributed storage and
learning capability.

(1) Require a large number
of parameters.

(2) A black-box process and
learning process cannot
be observed.

(3) Long learning time.
(4) Local optimal issue.

Game Theory Distributed (1) Straightforward to implement.

(1) Mutual solution may not be the
optimal solution.

(2) Requirement of Nash
Equilibrium and its
continuous calculation.

Matching Theory Distributed
(1) Suitable for high

dynamic network.
(2) Practical for complex network.

(1) Suitable for binary offloading
instead of partially offloading.

Federated Learning Distributed

(1) The training process is
distributed between nodes;
thus, uploading data to a server
is unnecessary.

(2) As data are not uploaded, it is
beneficial for user privacy.

(3) Low transmission rate.
(4) Low training time.

(1) Numerous devices
are involved.

(2) Vulnerable to malicious
communication attacks.

Electronics 2023, 12, 2599 18 of 27

Table 6. Comprehensive comparison of selected papers on task scheduling in edge computing.

Reference Main Viewpoint Optimization
Goal

Objective
Number

Modeling
Problem Utilized Technique

Applicable for
Real-Time

Task Scheduling

[57] edge servers Energy Single MINLP Convex optimization
(Lyapunov technique) No

[58] End-user devices Privacy, Energy Multiple ILP Convex optimization
(Lyapunov technique) No

[59] edge servers Energy Single MINLP Convex optimization
(Lyapunov technique) No

[60] edge servers Time, Energy,
Data transmission Multiple MINLP Convex optimization

(Lyapunov technique) No

[90] End-user devices Energy Single MILP Meta-heuristic (genetic algorithm) No

[69] End-user devices Time Single MILP Heuristic (EDF) Yes

[130] End-user devices QoE Multiple MDP Machine learning
(deep reinforcement learning) No

[77] End-user devices Time Single MIP Meta-heuristic (genetic algorithm) Yes

[131] End-user devices Energy,
Time, Cost Multiple MDP Machine learning

(deep reinforcement learning) No

[89] edge servers Energy Multiple MILP Meta-heuristic
(Whale Optimization Algorithm) No

[75] edge servers Energy, Time Multiple ILP Meta-heuristic (genetic algorithm) Yes

[132] End-user devices Energy, Time Multiple ILP Machine learning (deep
reinforcement learning) Yes

[70] edge servers Energy Single MINLP Heuristic (semi-greedy) Yes

[92] Hybrid Energy, Time Multiple MILP Machine learning (deep learning) No

[91] End-user devices Energy Single MINLP Machine learning (deep learning) Yes

[94] End-user devices Time Single MINLP Machine learning
(deep reinforcement learning) No

[71] End-user devices Time Single MILP Heuristic (Greedy Algorithm) Yes

[76] Hybrid Time, Cost Multiple MINLP Meta-heuristic (genetic algorithm) No

[133] End-user devices Energy, Time Multiple MDP Machine learning
(deep reinforcement learning) No

[134] Hybrid Time, Energy Multiple MDP Machine learning
(deep reinforcement learning) No

[135] Hybrid Energy, QoS Multiple MDP Machine learning
(deep reinforcement learning) No

[136] End-user devices Energy, Task
finish ratio Multiple MDP Machine learning

(deep reinforcement learning) No

[61] End-user devices Time Single MINLP Heuristic No

[63] edge server Time Single MILP Heuristic No

[62] edge server Time, Cost Multiple MILP Heuristic No

[64] edge server Energy, Time Multiple ILP Heuristic (Lyapunov) Yes

[65] edge server Cost Single MILP Approximation No

[73] Hybrid Energy Single MILP Heuristic (variation of FCFS) No

[74] edge server Time, Energy Multiple MILP Heuristic (Greedy Algorithm) No

[87] edge server Time,
Energy, Cost Multiple MINLP Meta-heuristic

(Evolutionary Algorithm) No

[76] Hybrid Service Level
Agreement Multiple MINLP Meta-heuristic (Genetic Algorithm) No

Electronics 2023, 12, 2599 19 of 27

Table 6. Cont.

Reference Main Viewpoint Optimization
Goal

Objective
Number

Modeling
Problem Utilized Technique

Applicable for
Real-Time

Task Scheduling

[85] End-user devices Time Single ILP Meta-heuristic (Ant colony) No

[86] End-user devices Energy Single MILP Meta-heuristic (Ant colony) No

[88] End-user devices Energy Single MINLP
Meta-heuristic (Genetic

algorithm + Particle
swarm optimization)

No

[78] End-user devices Time, Energy Multiple MILP Meta-heuristic (NSGA-III) No

[72] End-user devices Time Single ILP Heuristic (EDF) Yes

[59] edge servers Energy Single MINLP Convex optimization
(Lyapunov technique) No

[60] edge servers Time, Energy,
Data transmission Multiple MINLP Convex optimization

(Lyapunov technique) No

[90] End-user devices Energy Single MILP Meta-heuristic (genetic algorithm) No

[69] End-user devices Time Single MILP Heuristic (EDF) Yes

[130] End-user devices QoE Multiple MDP Machine learning
(deep reinforcement learning) No

[77] End-user devices Time Single MIP Meta-heuristic (genetic algorithm) Yes

[131] End-user devices Energy,
Time, Cost Multiple MDP Machine learning

(deep reinforcement learning) No

[89] edge servers Energy Multiple MILP Meta-heuristic
(Whale Optimization Algorithm) No

[75] edge servers Energy, Time Multiple ILP Meta-heuristic (genetic algorithm) Yes

[132] End-user devices Energy, Time Multiple ILP Machine learning
(deep reinforcement learning) Yes

[70] edge servers Energy Single MINLP Heuristic (semi-greedy) Yes

[92] Hybrid Energy, Time Multiple MILP Machine learning (deep learning) No

[91] End-user devices Energy Single MINLP Machine learning (deep learning) Yes

[94] End-user devices Time Single MINLP Machine learning
(deep reinforcement learning) No

[71] End-user devices Time Single MILP Heuristic (Greedy Algorithm) Yes

[76] Hybrid Time, Cost Multiple MINLP Meta-heuristic (genetic algorithm) No

[85] End-user devices Time Single ILP Meta-heuristic (Ant colony) No

[86] End-user devices Energy Single MILP Meta-heuristic (Ant colony) No

[88] End-user devices Energy Single MINLP
Meta-heuristic (Genetic

algorithm + Particle
swarm optimization)

No

[78] End-user devices Time, Energy Multiple MILP Meta-heuristic (NSGA-III) No

[72] End-user devices Time Single ILP Heuristic (EDF) Yes

7. RQ2: Scheduling Real-Time Embedded System Application Tasks

Table 5 presents ten studies [64,69–72,75,77,91,94,132] that are suitable for schedul-
ing real-time systems on edge computing. The majority of these studies use heuristic
approaches to schedule tasks [64,69–72], while the remaining studies employ distinct meth-
ods. Although heuristic techniques are mature enough, they can suffer from delays due to
their complex and time-consuming computations. Therefore, utilizing the heuristic method
in a highly dynamic edge computing environment can be challenging. In addition to timing
issues, the local optima problem is common in heuristic techniques for scheduling tasks in
edge computing environments, which have many variables and parameters.

The meta-heuristic methods, particularly genetic algorithms [75,77], are utilized for
task scheduling in edge computing based on Table 5. The meta-heuristic approaches

Electronics 2023, 12, 2599 20 of 27

encounter challenges such as high computational complexity, lengthy calculation time
to achieve acceptable accuracy, and slow convergence during the optimization process
and period of evolution [91]. Therefore, meta-heuristic algorithms may not be suitable for
real-time system optimization in dynamic environments. Furthermore, the efficiency of
meta-heuristic-based approaches decreases as the number of users on the edge computing
platform increases. In contrast, machine learning methods offer faster adaptability, decision-
making, and scalability, providing significant advantages over heuristic algorithms and
meta-heuristic techniques [132].

According to Table 5, some studies employ centralized machine learning approaches
such as deep learning [91] and deep reinforcement learning [94,132]. While machine
learning techniques increase computation speed through parallel processing, the learning
time of ML can become lengthy when considering a large number of parameters in an edge
computing environment. As a result, centralized ML techniques might not be efficient for
scheduling time-sensitive edge computing applications.

However, distributed ML techniques can rectify the long run-time of the training proce-
dure by increasing parallel processing and decreasing data communication overhead in edge
computing [137]. Accordingly, there is no need to gather all the data on a single machine when
the data are inherently distributed over the network. FL is a distributed ML implementation
that enables the exploitation of distributed resources. In FL, all users collaborate in the training
phase without moving their data to a server. In addition to facilitating the training phase, FL
increases the security and privacy of users’ data by eliminating the need for users to move
their data to an external location. Therefore, FL is a promising technique for systems with
sensitive data, including healthcare and financial applications.

8. Challenges and Future Research Directions

Despite significant progress in research on resource management and task scheduling
in edge computing, several important issues regarding integrating real-time systems with
edge computing still need to be fully explored. This section discusses the current challenges
and suggests potential research directions for future research.

8.1. Requirements of Realtime Systems

Real-time systems have strict QoS requirements, including response time, throughput,
and reliability. Real-time tasks require the availability of various resources, including com-
putation, storage, data, input/output, and others, prior to their deadlines. Therefore, timely
task execution within the deadline is critical for real-time systems. Failure to meet deadlines
can result in a decrease in QoS and consequences of varying severity, depending on whether
the system is a soft or hard real-time system [138]. Ensuring tasks’ deadlines in real-time
applications employing scheduling techniques is already challenging in a single-processor
system. However, the complexity increases in edge computing, which is a distributed
system with heterogeneous computational and storage resources spread across the network.
Alongside computational and storage features, communication plays a crucial role that
must be considered. Therefore, the scheduling technique needs to consider the various
communication bandwidths to ensure low latency in data transmission while scheduling
tasks for real-time applications. Most existing task-scheduling techniques in edge comput-
ing only consider computational resources when scheduling tasks. However, a practical
task-scheduling technique needs to consider communication and storage parameters, in ad-
dition to computing parameters, to provide a realistic solution for scheduling tasks in edge
computing. Future studies should focus on proposing reliable task-scheduling techniques
for the edge computing platform that fully meet the real-time system requirements. These
techniques should consider the computational, communication, and storage resources
of edge computing. Evaluation of these techniques can be based on their miss-ratio to
demonstrate their effectiveness in task scheduling on the edge computing platform.

Electronics 2023, 12, 2599 21 of 27

8.2. Dynamic Environments and Tasks Dependancy

Since devices frequently move, join, and leave the network, the edge computing
environment is dynamic. As a result, the set of tasks that need to be executed would change;
thus, a proper scheduling algorithm is needed to adapt to these changes and maintain
acceptable effectiveness quickly. The scheduling algorithm should schedule the new tasks
and previous tasks together in a way that none of the tasks of real-time application miss
their deadline. Consequently, the task scheduling technique should respond fast enough to
the change in the set of tasks in edge computing. However, the mobility characteristics of
devices are often overlooked in most existing works, even though user mobility was one of
the driving factors behind the creation of edge computing platforms. Consequently, the
task scheduler must track the trajectory of devices and consider them when scheduling
tasks. In addition, the tasks depend on each other in the real world, while to the best of our
knowledge, most existing works only consider the independent task model instead of the
dependent one [138]. Therefore, future work on task scheduling in edge computing should
consider task dependencies in their scheduling procedure. Consequently, developing a
holistic task scheduling algorithm is necessary to handle task dependencies and adapt to
network changes effectively.

8.3. Security and Privacy

The real-time systems implemented by edge devices often process sensitive data and
typically serve a monitoring and controlling role, such as surveillance cameras, fire and
smoke alarms. Comparatively, the conventional security techniques are too much to be exe-
cuted on the edge users; thus, lightweight security techniques or frameworks are needed to
be developed specifically for edge computing [139]. In addition, conventional trust manage-
ment algorithms are excessively demanding for edge devices. Therefore, the development
of trust management algorithms compatible with the limited resources of edge devices is
crucial. This area holds great potential as a promising research topic for future exploration.
Furthermore, conventional cryptographic techniques are known to be resource intensive.
Consequently, implementing these techniques on edge devices is impracticable; thus, there
is a pressing need for edge-compatible cryptographic techniques [140]. Furthermore, con-
sidering that edge computing comprises various software and hardware components, it is
critical to establish unified security schemes that can adequately support and address the
inherent heterogeneity of the platform.

Finally, the security-aware scheduling algorithms can prevent data breaches during
processing, ensure that the return result from edge servers is not corrupted, and authorize
both the edge server and user in the edge computing platform. Additionally, since the edge
computing architecture spans multiple layers, it is vulnerable to hostile attacks. Consequently,
fault-tolerant task scheduling algorithms are needed to handle edge server failures.

9. Conclusions

Edge computing is a distributed computing architecture composed of geographically
distributed edge servers with heterogeneous processing units such as CPUs, GPUs, DSPs,
and FPGAs. Therefore, edge computing is a suitable platform for IoT devices to offload
computational tasks and utilize the storage capacity of edge servers. This review aims to
review the state-of-the-art studies on task scheduling comprehensively approaches in edge
computing. The review discusses task scheduling techniques, which can be centralized
or distributed. Centralized techniques require a server to compute, store, monitor, and
control the scheduler’s decisions. The centralized techniques include convex optimization,
approximation algorithms, heuristics, meta-heuristics, and machine learning techniques.
Each method has specific advantages and disadvantages that make it suitable for different
applications and environments. Alternatively, distributed techniques, such as game theory,
matching theory, auction, and federated learning, are designed to execute over multiple
devices, eliminating the need for a single server. By leveraging the power of distributed
computing, these techniques accelerate computation by parallel processing and offer a

Electronics 2023, 12, 2599 22 of 27

more scalable and fault-tolerant solution for task scheduling. Consequently, distributed
techniques reduce the data communication overhead and keep user data safe and secure
by not moving it to an external server. The advantages and disadvantages of centralized
and distributed techniques are clarified.

Task scheduling is an optimization problem that involves setting specific goals and
employing a method to formulate the problem. State-of-the-art papers on task scheduling
employed different approaches, including integer linear programming (ILP), mixed integer
linear programming (MILP), mixed integer non-linear programming (MINLP), and Markov
decision process (MDP) to formulate the optimization problem. After conducting a thor-
ough comparison, meta-heuristic and machine learning approaches are the most promising
techniques for scheduling tasks in real-time edge computing applications. These techniques
are capable of handling the dynamic environment of edge computing effectively.

The challenges facing task scheduling in edge computing for time-sensitive applica-
tions are managing the QoS requirement, handling dynamic environments, and addressing
security and privacy concerns. Each of these challenges represents a potential research
direction for future investigations.

Author Contributions: Writing—original draft preparation, A.A. (Amin Avan); supervision and
writing—review and editing, A.A. (Akramul Azim); supervision and writing—review and editing,
Q.H.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ali, B.; Gregory, M.A.; Li, S. Multi-access edge computing architecture, data security and privacy: A review. IEEE Access 2021,

9, 18706–18721. [CrossRef]
2. Islam, A.; Debnath, A.; Ghose, M.; Chakraborty, S. A survey on task offloading in multi-access edge computing. J. Syst. Archit.

2021, 118, 102225. [CrossRef]
3. Ahmed, A.A.; Echi, M. Hawk-eye: An ai-powered threat detector for intelligent surveillance cameras. IEEE Access 2021,

9, 63283–63293. [CrossRef]
4. Gupta, B. Analysis of IoT concept applications: Smart home perspective. In Proceedings of the Future Access Enablers for

Ubiquitous and Intelligent Infrastructures: 5th EAI International Conference, FABULOUS 2021, Virtual Event, 6–7 May 2021;
Volume 382, p. 167.

5. Rana, B.; Singh, Y.; Singh, P.K. A systematic survey on internet of things: Energy efficiency and interoperability perspective. Trans.
Emerg. Telecommun. Technol. 2021, 32, e4166. [CrossRef]

6. Atieh, A.T. The next generation cloud technologies: A review on distributed cloud, fog and edge computing and their opportuni-
ties and challenges. Res. Rev. Sci. Technol. 2021, 1, 1–15.

7. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A
comprehensive survey. IEEE Internet Things J. 2021, 9, 359–383. [CrossRef]

8. Deng, Y.; Chen, X.; Zhu, G.; Fang, Y.; Chen, Z.; Deng, X. Actions at the Edge: Jointly Optimizing the Resources in Multi-access
Edge Computing. IEEE Wirel. Commun. 2022, 29, 192–198. [CrossRef]

9. Busacca, F.; Galluccio, L.; Palazzo, S. Drone-assisted edge computing: A game-theoretical approach. In Proceedings of the IEEE
INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada,
6–9 July 2020; pp. 671–676.

10. Shannigrahi, S.; Mastorakis, S.; Ortega, F.R. Next-generation networking and edge computing for mixed reality real-time
interactive systems. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops),
Dublin, Ireland, 7–11 June 2020; pp. 1–6.

11. Cui, M.; Zhong, S.; Li, B.; Chen, X.; Huang, K. Offloading autonomous driving services via edge computing. IEEE Internet Things J.
2020, 7, 10535–10547. [CrossRef]

12. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture,
advances and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]

13. Chen, Y.-Y.; Lin, Y.-H.; Hu, Y.-C.; Hsia, C.-H.; Lian, Y.-A.; Jhong, S.-Y. Distributed Real-Time Object Detection Based on Edge-Cloud
Collaboration for Smart Video Surveillance Applications. IEEE Access 2022, 10, 93745–93759. [CrossRef]

14. Hartmann, M.; Hashmi, U.S.; Imran, A. Edge computing in smart health care systems: Review, challenges, and research directions.
Trans. Emerg. Telecommun. Technol. 2022, 33, e3710. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3053233
https://doi.org/10.1016/j.sysarc.2021.102225
https://doi.org/10.1109/ACCESS.2021.3074319
https://doi.org/10.1002/ett.4166
https://doi.org/10.1109/JIOT.2021.3103320
https://doi.org/10.1109/MWC.006.2100699
https://doi.org/10.1109/JIOT.2020.3001218
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1109/ACCESS.2022.3203053
https://doi.org/10.1002/ett.3710

Electronics 2023, 12, 2599 23 of 27

15. Sacco, A.; Esposito, F.; Marchetto, G. Restoring Application Traffic of Latency-Sensitive Networked Systems Using Adversarial
Autoencoders. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2521–2535. [CrossRef]

16. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The case for vm-based cloudlets in mobile computing. IEEE Pervasive Comput.
2009, 8, 14–23. [CrossRef]

17. Ray, P.P.; Dash, D.; De, D. Edge computing for Internet of Things: A survey, e-healthcare case study and future direction. J. Netw.
Comput. Appl. 2019, 140, 1–22. [CrossRef]

18. Cao, K.; Hu, S.; Shi, Y.; Colombo, A.W.; Karnouskos, S.; Li, X. A survey on edge and edge-cloud computing assisted cyber-physical
systems. IEEE Trans. Ind. Inform. 2021, 17, 7806–7819. [CrossRef]

19. Mansouri, Y.; Babar, M.A. A review of edge computing: Features and resource virtualization. J. Parallel Distrib. Comput. 2021,
150, 155–183. [CrossRef]

20. Carvalho, G.; Cabral, B.; Pereira, V.; Bernardino, J. Edge computing: Current trends, research challenges and future directions.
Computing 2021, 103, 993–1023. [CrossRef]

21. Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A survey on the computation offloading approaches in mobile
edge/cloud computing environment: A stochastic-based perspective. J. Grid Comput. 2020, 18, 639–671. [CrossRef]

22. Liu, L.; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular edge computing and networking: A survey. Mob. Netw. Appl. 2021,
26, 1145–1168. [CrossRef]

23. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource scheduling in edge computing: A survey. IEEE Commun. Surv. Tutor. 2021,
23, 2131–2165. [CrossRef]

24. Chen, S.; Li, Q.; Zhou, M.; Abusorrah, A. Recent advances in collaborative scheduling of computing tasks in an edge computing
paradigm. Sensors 2021, 21, 779. [CrossRef] [PubMed]

25. Mijuskovic, A.; Chiumento, A.; Bemthuis, R.; Aldea, A.; Havinga, P. Resource management techniques for cloud/fog and edge
computing: An evaluation framework and classification. Sensors 2021, 21, 1832. [CrossRef] [PubMed]

26. Salaht, F.A.; Desprez, F.; Lebre, A. An overview of service placement problem in fog and edge computing. ACM Comput. Surv.
CSUR 2020, 53, 1–35. [CrossRef]

27. Jiang, C.; Fan, T.; Gao, H.; Shi, W.; Liu, L.; Cérin, C.; Wan, J. Energy aware edge computing: A survey. Comput. Commun. 2020,
151, 556–580. [CrossRef]

28. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A survey on computation offloading modeling for edge computing. J. Netw.
Comput. Appl. 2020, 169, 102781. [CrossRef]

29. Goudarzi, M.; Palaniswami, M.; Buyya, R. Scheduling IoT applications in edge and fog computing environments: A taxonomy
and future directions. ACM Comput. Surv. 2022, 55, 1–41. [CrossRef]

30. Jia, M.; Fan, Y.; Cai, Y. A Survey on Task Scheduling Schemes in Mobile Edge Computing. In Proceedings of the Big
Data and Security: Third International Conference, ICBDS 2021, Shenzhen, China, 26–28 November 2021; Proceedings.
Springer: Berlin/Heidelberg, Germany, 2022; pp. 426–439.

31. Avan, A.; Taheri, M.; Moaiyeri, M.H.; Navi, K. Energy-Efficient approximate compressor design for error-resilient digital signal
processing. Int. J. Electron. 2022, 1–23. [CrossRef]

32. Avan, A.; Maleknejad, M.; Navi, K. High-speed energy efficient process, voltage and temperature tolerant hybrid multi-threshold
4: 2 compressor design in CNFET technology. IET Circuits Devices Syst. 2020, 14, 357–368. [CrossRef]

33. Busacca, F.; Grasso, C.; Palazzo, S.; Schembra, G. A smart road side unit in a microeolic box to provide edge computing for
vehicular applications. IEEE Trans. Green Commun. Netw. 2022, 7, 194–210. [CrossRef]

34. Hayat, S.; Jung, R.; Hellwagner, H.; Bettstetter, C.; Emini, D.; Schnieders, D. Edge computing in 5G for drone navigation: What to
offload? IEEE Robot. Autom. Lett. 2021, 6, 2571–2578. [CrossRef]

35. Zhang, G.; Ni, S.; Zhao, P. Learning-Based Joint Optimization of Energy Delay and Privacy in Multiple-User Edge-Cloud
Collaboration MEC Systems. IEEE Internet Things J. 2021, 9, 1491–1502. [CrossRef]

36. Zhang, H.; Yang, Y.; Shang, B.; Zhang, P. Joint Resource Allocation and Multi-Part Collaborative Task Offloading in MEC Systems.
IEEE Trans. Veh. Technol. 2022, 71, 8877–8890. [CrossRef]

37. Choi, J.D.; Kim, M.Y. A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles and deep
learning based object detection. ICT Express 2022, 9, 222–227. [CrossRef]

38. Liang, S.; Wu, H.; Zhen, L.; Hua, Q.; Garg, S.; Kaddoum, G.; Hassan, M.M.; Yu, K. Edge YOLO: Real-time intelligent object
detection system based on edge-cloud cooperation in autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25345–25360.
[CrossRef]

39. Gao, Y.; Yang, S.; Li, F.; Trajanovski, S.; Zhou, P.; Hui, P.; Fu, X. Video Content Placement At the Network Edge: Centralized and
Distributed Algorithms. IEEE Trans. Mob. Comput. 2022, 1–17. [CrossRef]

40. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software
engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [CrossRef]

41. Mahjoubi, A.; Grinnemo, K.-J.; Taheri, J. EHGA: A Genetic Algorithm Based Approach for Scheduling Tasks on Distributed Edge-
Cloud Infrastructures. In Proceedings of the 2022 13th International Conference on Network of the Future (NoF), Ghent, Belgium,
5–7 October 2022; pp. 1–5.

https://doi.org/10.1109/TNSM.2022.3192305
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1016/j.jnca.2019.05.005
https://doi.org/10.1109/TII.2021.3073066
https://doi.org/10.1016/j.jpdc.2020.12.015
https://doi.org/10.1007/s00607-020-00896-5
https://doi.org/10.1007/s10723-020-09530-2
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1109/COMST.2021.3106401
https://doi.org/10.3390/s21030779
https://www.ncbi.nlm.nih.gov/pubmed/33498910
https://doi.org/10.3390/s21051832
https://www.ncbi.nlm.nih.gov/pubmed/33808037
https://doi.org/10.1145/3391196
https://doi.org/10.1016/j.comcom.2020.01.004
https://doi.org/10.1016/j.jnca.2020.102781
https://doi.org/10.1145/3544836
https://doi.org/10.1080/00207217.2022.2117854
https://doi.org/10.1049/iet-cds.2019.0105
https://doi.org/10.1109/TGCN.2022.3187674
https://doi.org/10.1109/LRA.2021.3062319
https://doi.org/10.1109/JIOT.2021.3088607
https://doi.org/10.1109/TVT.2022.3174530
https://doi.org/10.1016/j.icte.2021.12.016
https://doi.org/10.1109/TITS.2022.3158253
https://doi.org/10.1109/TMC.2022.3200401
https://doi.org/10.1016/j.infsof.2008.09.009

Electronics 2023, 12, 2599 24 of 27

42. Mahjoubi, A.; Taheri, J.; Grinnemo, K.-J.; Deng, S. Optimal Placement of Recurrent Service Chains on Distributed Edge-Cloud
Infrastructures. In Proceedings of the 2021 IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, AB, Canada,
4–7 October 2021; pp. 495–502.

43. Fizza, K.; Auluck, N.; Azim, A. Improving the schedulability of real-time tasks using fog computing. IEEE Trans. Serv. Comput.
2019, 15, 372–385. [CrossRef]

44. Mahjoubi, A.; Grinnemo, K.-J.; Taheri, J. An Efficient Simulated Annealing-based Task Scheduling Technique for Task Offloading
in a Mobile Edge Architecture. In Proceedings of the 2022 IEEE 11th International Conference on Cloud Networking (CloudNet),
Paris, France, 7–10 November 2022; pp. 159–167.

45. Zhu, Z.; Zhang, J.; Zhao, J.; Cao, J.; Zhao, D.; Jia, G.; Meng, Q. A hardware and software task-scheduling framework based on
CPU+ FPGA heterogeneous architecture in edge computing. IEEE Access 2019, 7, 148975–148988. [CrossRef]

46. Boutros, A.; Nurvitadhi, E.; Ma, R.; Gribok, S.; Zhao, Z.; Hoe, J.C.; Betz, V.; Langhammer, M. Beyond peak performance:
Comparing the real performance of AI-optimized FPGAs and GPUs. In Proceedings of the 2020 International Conference on
Field-Programmable Technology (ICFPT), Maui, HI, USA, 9–11 December 2020; pp. 10–19.

47. Yan, L.; Cao, S.; Gong, Y.; Han, H.; Wei, J.; Zhao, Y.; Yang, S. SatEC: A 5G satellite edge computing framework based on
microservice architecture. Sensors 2019, 19, 831. [CrossRef]

48. Du, S.; Huang, T.; Hou, J.; Song, S.; Song, Y. FPGA based acceleration of game theory algorithm in edge computing for autonomous
driving. J. Syst. Archit. 2019, 93, 33–39. [CrossRef]

49. Cho, G.; Kim, S.-H.; Youn, C.-H. Hybrid Resource Scheduling Scheme for Video Surveillance in GPU-FPGA Accelerated Edge
Computing System. In Advances in Artificial Intelligence and Applied Cognitive Computing; Springer: Berlin/Heidelberg, Germany,
2021; pp. 679–694.

50. Simon, B. Scheduling Task Graphs on Modern Computing Platforms. Ph.D. Thesis, Université de Lyon, Lyon, France, 2018.
51. You, X.; Huang, Y.; Liu, S.; Wang, D.; Ma, J.; Xu, W.; Zhang, C.; Zhan, H.; Zhang, C.; Zhang, J. Toward 6G TK $\mu $ Extreme

Connectivity: Architecture, Key Technologies and Experiments. arXiv 2022, arXiv:2208.01190.
52. Wei, P.; Guo, K.; Li, Y.; Wang, J.; Feng, W.; Jin, S.; Ge, N.; Liang, Y.-C. Reinforcement learning-empowered mobile edge computing

for 6G edge intelligence. IEEE Access 2022, 10, 65156–65192. [CrossRef]
53. He, J.; Guo, S.; Li, M.; Zhu, Y. AceFL: Federated Learning Accelerating in 6G-enabled Mobile Edge Computing Networks. IEEE

Trans. Netw. Sci. Eng. 2022, 10, 1364–1375. [CrossRef]
54. Goudarzi, M. Energy and Time Aware Scheduling of Applications in Edge and Fog Computing Environments. 2022. Available

online: https://www.researchgate.net/publication/361431337_Energy_and_Time_Aware_Scheduling_of_Applications_in_Edge_
and_Fog_Computing_Environments (accessed on 8 May 2023).

55. Atoui, W.S.; Ajib, W.; Boukadoum, M. Offline and online scheduling algorithms for energy harvesting RSUs in VANETs. IEEE
Trans. Veh. Technol. 2018, 67, 6370–6382. [CrossRef]

56. Liu, H.; Long, X.; Li, Z.; Long, S.; Rong, R.; Wang, H.-M. Joint Optimization of Request Assignment and Computing Resource
Allocation in Multi-Access Edge Computing. IEEE Trans. Serv. Comput. 2022, 16, 1254–1267. [CrossRef]

57. Chen, L.; Zhou, S.; Xu, J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks.
IEEE/ACM Trans. Netw. 2018, 26, 1619–1632. [CrossRef]

58. He, X.; Jin, R.; Dai, H. Peace: Privacy-preserving and cost-efficient task offloading for mobile-edge computing. IEEE Trans. Wirel.
Commun. 2019, 19, 1814–1824. [CrossRef]

59. Zhang, Q.; Gui, L.; Hou, F.; Chen, J.; Zhu, S.; Tian, F. Dynamic task offloading and resource allocation for mobile-edge computing
in dense cloud RAN. IEEE Internet Things J. 2020, 7, 3282–3299. [CrossRef]

60. Li, C.; Tang, J.; Luo, Y. Dynamic multi-user computation offloading for wireless powered mobile edge computing. J. Netw. Comput.
Appl. 2019, 131, 1–15. [CrossRef]

61. Saleem, U.; Liu, Y.; Jangsher, S.; Tao, X.; Li, Y. Latency minimization for D2D-enabled partial computation offloading in mobile
edge computing. IEEE Trans. Veh. Technol. 2020, 69, 4472–4486. [CrossRef]

62. Zhong, X.; Wang, X.; Yang, T.; Yang, Y.; Qin, Y.; Ma, X. POTAM: A parallel optimal task allocation mechanism for large-scale delay
sensitive mobile edge computing. IEEE Trans. Commun. 2022, 70, 2499–2517. [CrossRef]

63. Liang, J.; Ma, B.; Feng, Z.; Huang, J. Reliability-aware Task Processing and Offloading for Data-intensive Applications in Edge
computing. IEEE Trans. Netw. Serv. Manag. 2023, 1. [CrossRef]

64. Deng, Y.; Chen, Z.; Yao, X.; Hassan, S.; Ibrahim, A.M. Parallel offloading in green and sustainable mobile edge computing for
delay-constrained IoT system. IEEE Trans. Veh. Technol. 2019, 68, 12202–12214. [CrossRef]

65. Pasteris, S.; Wang, S.; Herbster, M.; He, T. Service placement with provable guarantees in heterogeneous edge computing systems.
In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 514–522.

66. Lu, S.; Wu, J.; Duan, Y.; Wang, N.; Fang, J. Cost-efficient resource provision for multiple mobile users in fog computing. In
Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China,
4–6 December 2019; pp. 422–429.

67. Meng, X.; Wang, W.; Wang, Y.; Lau, V.K.; Zhang, Z. Closed-form delay-optimal computation offloading in mobile edge computing
systems. IEEE Trans. Wirel. Commun. 2019, 18, 4653–4667. [CrossRef]

https://doi.org/10.1109/TSC.2019.2944360
https://doi.org/10.1109/ACCESS.2019.2943179
https://doi.org/10.3390/s19040831
https://doi.org/10.1016/j.sysarc.2018.12.009
https://doi.org/10.1109/ACCESS.2022.3183647
https://doi.org/10.1109/TNSE.2022.3190330
https://www.researchgate.net/publication/361431337_Energy_and_Time_Aware_Scheduling_of_Applications_in_Edge_and_Fog_Computing_Environments
https://www.researchgate.net/publication/361431337_Energy_and_Time_Aware_Scheduling_of_Applications_in_Edge_and_Fog_Computing_Environments
https://doi.org/10.1109/TVT.2018.2797002
https://doi.org/10.1109/TSC.2022.3180105
https://doi.org/10.1109/TNET.2018.2841758
https://doi.org/10.1109/TWC.2019.2958091
https://doi.org/10.1109/JIOT.2020.2967502
https://doi.org/10.1016/j.jnca.2019.01.020
https://doi.org/10.1109/TVT.2020.2978027
https://doi.org/10.1109/TCOMM.2022.3151064
https://doi.org/10.1109/TNSM.2023.3258191
https://doi.org/10.1109/TVT.2019.2944926
https://doi.org/10.1109/TWC.2019.2926465

Electronics 2023, 12, 2599 25 of 27

68. Guo, Y.; Wang, S.; Zhou, A.; Xu, J.; Yuan, J.; Hsu, C.H. User allocation-aware edge cloud placement in mobile edge computing.
Softw. Pract. Exp. 2020, 50, 489–502. [CrossRef]

69. Stavrinides, G.L.; Karatza, H.D. A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments.
Multimed. Tools Appl. 2019, 78, 24639–24655. [CrossRef]

70. Azizi, S.; Shojafar, M.; Abawajy, J.; Buyya, R. Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A
semi-greedy approach. J. Netw. Comput. Appl. 2022, 201, 103333. [CrossRef]

71. Hu, S.; Li, G.; Shi, W. Lars: A latency-aware and real-time scheduling framework for edge-enabled internet of vehicles. IEEE
Trans. Serv. Comput. 2021, 16, 398–411. [CrossRef]

72. Meng, J.; Tan, H.; Xu, C.; Cao, W.; Liu, L.; Li, B. Dedas: Online task dispatching and scheduling with bandwidth constraint in
edge computing. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France,
29 April–2 May 2019; pp. 2287–2295.

73. Chiang, Y.-H.; Zhang, T.; Ji, Y. Joint cotask-aware offloading and scheduling in mobile edge computing systems. IEEE Access 2019,
7, 105008–105018. [CrossRef]

74. Ben Salah, N.; Bellamine Ben Saoud, N. An IoT-oriented Multiple Data Replicas Placement Strategy in Hybrid Fog-Cloud
Environment. In Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Virtual Event,
31 May–2 June 2021; pp. 119–128.

75. Hoseiny, F.; Azizi, S.; Shojafar, M.; Ahmadiazar, F.; Tafazolli, R. PGA: A priority-aware genetic algorithm for task scheduling in
heterogeneous fog-cloud computing. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 10–13 May 2021; pp. 1–6.

76. Maia, A.M.; Ghamri-Doudane, Y.; Vieira, D.; de Castro, M.F. An improved multi-objective genetic algorithm with heuristic
initialization for service placement and load distribution in edge computing. Comput. Netw. 2021, 194, 108146. [CrossRef]

77. Aburukba, R.O.; Landolsi, T.; Omer, D. A heuristic scheduling approach for fog-cloud computing environment with stationary
IoT devices. J. Netw. Comput. Appl. 2021, 180, 102994. [CrossRef]

78. Xu, X.; Liu, Q.; Luo, Y.; Peng, K.; Zhang, X.; Meng, S.; Qi, L. A computation offloading method over big data for IoT-enabled
cloud-edge computing. Future Gener. Comput. Syst. 2019, 95, 522–533. [CrossRef]

79. Peng, K.; Zhu, M.; Zhang, Y.; Liu, L.; Zhang, J.; Leung, V.; Zheng, L. An energy-and cost-aware computation offloading method
for workflow applications in mobile edge computing. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–15. [CrossRef]

80. Xu, X.; Cao, H.; Geng, Q.; Liu, X.; Dai, F.; Wang, C. Dynamic resource provisioning for workflow scheduling under uncertainty in
edge computing environment. Concurr. Comput. Pract. Exp. 2022, 34, e5674. [CrossRef]

81. Hu, S.; Li, G. Dynamic request scheduling optimization in mobile edge computing for IoT applications. IEEE Internet Things J.
2019, 7, 1426–1437. [CrossRef]

82. Xu, X.; Li, Y.; Huang, T.; Xue, Y.; Peng, K.; Qi, L.; Dou, W. An energy-aware computation offloading method for smart edge
computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 2019, 133, 75–85. [CrossRef]

83. Mseddi, A.; Jaafar, W.; Elbiaze, H.; Ajib, W. Joint container placement and task provisioning in dynamic fog computing. IEEE
Internet Things J. 2019, 6, 10028–10040. [CrossRef]

84. Wu, Y.; Wu, J.; Chen, L.; Yan, J.; Luo, Y. Efficient task scheduling for servers with dynamic states in vehicular edge computing.
Comput. Commun. 2020, 150, 245–253. [CrossRef]

85. Kishor, A.; Chakarbarty, C. Task offloading in fog computing for using smart ant colony optimization. Wirel. Pers. Commun. 2021,
127, 1683–1704. [CrossRef]

86. Huang, P.-Q.; Wang, Y.; Wang, K.; Liu, Z.-Z. A bilevel optimization approach for joint offloading decision and resource allocation
in cooperative mobile edge computing. IEEE Trans. Cybern. 2019, 50, 4228–4241. [CrossRef]

87. Hussain, M.; Azar, A.T.; Ahmed, R.; Umar Amin, S.; Qureshi, B.; Dinesh Reddy, V.; Alam, I.; Khan, Z.I. SONG: A Multi-Objective
Evolutionary Algorithm for Delay and Energy Aware Facility Location in Vehicular Fog Networks. Sensors 2023, 23, 667.
[CrossRef]

88. Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C. An efficient computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [CrossRef]

89. Chen, W.; Wang, D.; Li, K. Multi-user multi-task computation offloading in green mobile edge cloud computing. IEEE Trans. Serv.
Comput. 2018, 12, 726–738. [CrossRef]

90. Bahreini, T.; Brocanelli, M.; Grosu, D. VECMAN: A framework for energy-aware resource management in vehicular edge
computing systems. IEEE Trans. Mob. Comput. 2021, 22, 1231–1245. [CrossRef]

91. Jiang, F.; Wang, K.; Dong, L.; Pan, C.; Xu, W.; Yang, K. Deep-learning-based joint resource scheduling algorithms for hybrid MEC
networks. IEEE Internet Things J. 2019, 7, 6252–6265. [CrossRef]

92. Huang, L.; Feng, X.; Feng, A.; Huang, Y.; Qian, L.P. Distributed deep learning-based offloading for mobile edge computing
networks. Mob. Netw. Appl. 2018, 27, 1123–1130. [CrossRef]

93. Sheng, S.; Chen, P.; Chen, Z.; Wu, L.; Yao, Y. Deep reinforcement learning-based task scheduling in iot edge computing. Sensors
2021, 21, 1666. [CrossRef]

94. Jiang, F.; Wang, K.; Dong, L.; Pan, C.; Yang, K. Stacked autoencoder-based deep reinforcement learning for online resource
scheduling in large-scale MEC networks. IEEE Internet Things J. 2020, 7, 9278–9290. [CrossRef]

95. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]

https://doi.org/10.1002/spe.2685
https://doi.org/10.1007/s11042-018-7051-9
https://doi.org/10.1016/j.jnca.2022.103333
https://doi.org/10.1109/TSC.2021.3106260
https://doi.org/10.1109/ACCESS.2019.2931336
https://doi.org/10.1016/j.comnet.2021.108146
https://doi.org/10.1016/j.jnca.2021.102994
https://doi.org/10.1016/j.future.2018.12.055
https://doi.org/10.1155/2019/1949638
https://doi.org/10.1002/cpe.5674
https://doi.org/10.1109/JIOT.2019.2955311
https://doi.org/10.1016/j.jnca.2019.02.008
https://doi.org/10.1109/JIOT.2019.2935056
https://doi.org/10.1016/j.comcom.2019.11.019
https://doi.org/10.1007/s11277-021-08714-7
https://doi.org/10.1109/TCYB.2019.2916728
https://doi.org/10.3390/s23020667
https://doi.org/10.1109/TNET.2018.2873002
https://doi.org/10.1109/TSC.2018.2826544
https://doi.org/10.1109/TMC.2021.3089338
https://doi.org/10.1109/JIOT.2019.2954503
https://doi.org/10.1007/s11036-018-1177-x
https://doi.org/10.3390/s21051666
https://doi.org/10.1109/JIOT.2020.2988457
https://doi.org/10.1007/BF00992698

Electronics 2023, 12, 2599 26 of 27

96. Qiu, X.; Liu, L.; Chen, W.; Hong, Z.; Zheng, Z. Online deep reinforcement learning for computation offloading in blockchain-
empowered mobile edge computing. IEEE Trans. Veh. Technol. 2019, 68, 8050–8062. [CrossRef]

97. Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges,
solutions, and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [CrossRef] [PubMed]

98. Liu, X.; Yu, J.; Wang, J.; Gao, Y. Resource allocation with edge computing in IoT networks via machine learning. IEEE Internet
Things J. 2020, 7, 3415–3426. [CrossRef]

99. Wang, J.; Hu, J.; Min, G.; Zhan, W.; Ni, Q.; Georgalas, N. Computation offloading in multi-access edge computing using a deep
sequential model based on reinforcement learning. IEEE Commun. Mag. 2019, 57, 64–69. [CrossRef]

100. Zhang, K.; Zhu, Y.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Deep learning empowered task offloading for mobile edge computing
in urban informatics. IEEE Internet Things J. 2019, 6, 7635–7647. [CrossRef]

101. Xiong, X.; Zheng, K.; Lei, L.; Hou, L. Resource allocation based on deep reinforcement learning in IoT edge computing. IEEE J.
Sel. Areas Commun. 2020, 38, 1133–1146. [CrossRef]

102. Zhai, Y.; Bao, T.; Zhu, L.; Shen, M.; Du, X.; Guizani, M. Toward reinforcement-learning-based service deployment of 5G mobile
edge computing with request-aware scheduling. IEEE Wirel. Commun. 2020, 27, 84–91. [CrossRef]

103. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based on
deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861. [CrossRef]

104. Shen, S.; Han, Y.; Wang, X.; Wang, Y. Computation offloading with multiple agents in edge-computing–supported IoT. ACM
Trans. Sens. Netw. TOSN 2019, 16, 1–27. [CrossRef]

105. Li, Q.; Zhao, J.; Gong, Y. Cooperative computation offloading and resource allocation for mobile edge computing. In Proceedings of
the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6.

106. Ranadheera, S.; Maghsudi, S.; Hossain, E. Computation offloading and activation of mobile edge computing servers: A minority
game. IEEE Wirel. Commun. Lett. 2018, 7, 688–691. [CrossRef]

107. Zhang, J.; Xia, W.; Yan, F.; Shen, L. Joint computation offloading and resource allocation optimization in heterogeneous networks
with mobile edge computing. IEEE Access 2018, 6, 19324–19337. [CrossRef]

108. Asheralieva, A.; Niyato, D. Hierarchical game-theoretic and reinforcement learning framework for computational offloading
in UAV-enabled mobile edge computing networks with multiple service providers. IEEE Internet Things J. 2019, 6, 8753–8769.
[CrossRef]

109. Smys, S.; Ranganathan, G. Performance evaluation of game theory based efficient task scheduling for edge computing. J. ISMAC
2020, 2, 50–61.

110. Teng, H.; Li, Z.; Cao, K.; Long, S.; Guo, S.; Liu, A. Game theoretical task offloading for profit maximization in mobile edge
computing. IEEE Trans. Mob. Comput. 2022, 1. [CrossRef]

111. Gu, B.; Zhou, Z. Task offloading in vehicular mobile edge computing: A matching-theoretic framework. IEEE Veh. Technol. Mag.
2019, 14, 100–106. [CrossRef]

112. Chiti, F.; Fantacci, R.; Paganelli, F.; Picano, B. Virtual functions placement with time constraints in fog computing: A matching
theory perspective. IEEE Trans. Netw. Serv. Manag. 2019, 16, 980–989. [CrossRef]

113. Gu, B.; Zhou, Z.; Mumtaz, S.; Frascolla, V.; Bashir, A.K. Context-aware task offloading for multi-access edge computing:
Matching with externalities. In Proceedings of the 2018 IEEE global communications conference (GLOBECOM), Abu Dhabi,
United Arab Emirates, 9–13 December 2018; pp. 1–6.

114. Pham, Q.-V.; Leanh, T.; Tran, N.H.; Park, B.J.; Hong, C.S. Decentralized computation offloading and resource allocation for
mobile-edge computing: A matching game approach. IEEE Access 2018, 6, 75868–75885. [CrossRef]

115. Zhang, D.; Tan, L.; Ren, J.; Awad, M.K.; Zhang, S.; Zhang, Y.; Wan, P.-J. Near-optimal and truthful online auction for computation
offloading in green edge-computing systems. IEEE Trans. Mob. Comput. 2019, 19, 880–893. [CrossRef]

116. Ma, L.; Wang, X.; Wang, X.; Wang, L.; Shi, Y.; Huang, M. TCDA: Truthful combinatorial double auctions for mobile edge
computing in industrial Internet of Things. IEEE Trans. Mob. Comput. 2021, 21, 4125–4138. [CrossRef]

117. Peng, X.; Ota, K.; Dong, M. Multiattribute-based double auction toward resource allocation in vehicular fog computing. IEEE
Internet Things J. 2020, 7, 3094–3103. [CrossRef]

118. Zhou, H.; Wu, T.; Chen, X.; He, S.; Guo, D.; Wu, J. Reverse auction-based computation offloading and resource allocation in
mobile cloud-edge computing. IEEE Trans. Mob. Comput. 2022, 1–15. [CrossRef]

119. He, J.; Zhang, D.; Zhou, Y.; Zhang, Y. A truthful online mechanism for collaborative computation offloading in mobile edge
computing. IEEE Trans. Ind. Inform. 2019, 16, 4832–4841. [CrossRef]

120. Liu, S.; Zheng, C.; Huang, Y.; Quek, T.Q. Distributed reinforcement learning for privacy-preserving dynamic edge caching. IEEE J.
Sel. Areas Commun. 2022, 40, 749–760. [CrossRef]

121. Zheng, C.; Liu, S.; Huang, Y.; Zhang, W.; Yang, L. Unsupervised Recurrent Federated Learning for Edge Popularity Prediction in
Privacy-Preserving Mobile-Edge Computing Networks. IEEE Internet Things J. 2022, 9, 24328–24345. [CrossRef]

122. Nguyen, D.C.; Ding, M.; Pham, Q.-V.; Pathirana, P.N.; Le, L.B.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. Federated learning
meets blockchain in edge computing: Opportunities and challenges. IEEE Internet Things J. 2021, 8, 12806–12825. [CrossRef]

123. Wang, R.; Lai, J.; Zhang, Z.; Li, X.; Vijayakumar, P.; Karuppiah, M. Privacy-preserving federated learning for internet of medical
things under edge computing. IEEE J. Biomed. Health Inform. 2022, 27, 854–865. [CrossRef]

https://doi.org/10.1109/TVT.2019.2924015
https://doi.org/10.1109/TCYB.2020.2977374
https://www.ncbi.nlm.nih.gov/pubmed/32203045
https://doi.org/10.1109/JIOT.2020.2970110
https://doi.org/10.1109/MCOM.2019.1800971
https://doi.org/10.1109/JIOT.2019.2903191
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/MWC.001.1900298
https://doi.org/10.1016/j.future.2019.07.019
https://doi.org/10.1145/3372025
https://doi.org/10.1109/LWC.2018.2810292
https://doi.org/10.1109/ACCESS.2018.2819690
https://doi.org/10.1109/JIOT.2019.2923702
https://doi.org/10.1109/TMC.2022.3175218
https://doi.org/10.1109/MVT.2019.2902637
https://doi.org/10.1109/TNSM.2019.2918637
https://doi.org/10.1109/ACCESS.2018.2882800
https://doi.org/10.1109/TMC.2019.2901474
https://doi.org/10.1109/TMC.2021.3064314
https://doi.org/10.1109/JIOT.2020.2965009
https://doi.org/10.1109/TMC.2022.3189050
https://doi.org/10.1109/TII.2019.2960127
https://doi.org/10.1109/JSAC.2022.3142348
https://doi.org/10.1109/JIOT.2022.3189055
https://doi.org/10.1109/JIOT.2021.3072611
https://doi.org/10.1109/JBHI.2022.3157725

Electronics 2023, 12, 2599 27 of 27

124. Lakhan, A.; Mohammed, M.A.; Kadry, S.; AlQahtani, S.A.; Maashi, M.S.; Abdulkareem, K.H. Federated learning-aware multi-
objective modeling and blockchain-enable system for IIoT applications. Comput. Electr. Eng. 2022, 100, 107839. [CrossRef]

125. Shi, T.; Tian, H.; Zhang, T.; Loo, J.; Ou, J.; Fan, C.; Yang, D. Task Scheduling with Collaborative Computing of MEC System Based
on Federated Learning. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki,
Finland, 19–22 June 2022; pp. 1–5.

126. Zhang, Y.; Zhang, X.; Cai, Y. Multi-task Federated Learning based on Client Scheduling in Mobile Edge Computing. In Proceedings of
the 2022 IEEE/CIC International Conference on Communications in China (ICCC), Foshan, China, 11–13 August 2022; pp. 185–190.

127. Zhang, L.; Wu, S.; Xu, H.; Liu, Q.; Hong, C.S.; Han, Z. Federated Learning Over the Industrial Internet of Things: A Joint
Optimization of Edge Association and Resource Allocation. 2022. Available online: https://www.techrxiv.org/articles/preprint/
Federated_Learning_Over_the_Industrial_Internet_of_Things_A_Joint_Optimization_of_Edge_Association_and_Resource_
Allocation/20784001 (accessed on 8 May 2023).

128. Sun, F.; Zhang, Z.; Zeadally, S.; Han, G.; Tong, S. Edge Computing-Enabled Internet of Vehicles: Towards Federated Learning
Empowered Scheduling. IEEE Trans. Veh. Technol. 2022, 71, 10088–10103. [CrossRef]

129. Shahidinejad, A.; Farahbakhsh, F.; Ghobaei-Arani, M.; Malik, M.H.; Anwar, T. Context-aware multi-user offloading in mobile
edge computing: A federated learning-based approach. J. Grid Comput. 2021, 19, 1–23. [CrossRef]

130. Lu, H.; He, X.; Du, M.; Ruan, X.; Sun, Y.; Wang, K. Edge QoE: Computation offloading with deep reinforcement learning for
Internet of Things. IEEE Internet Things J. 2020, 7, 9255–9265. [CrossRef]

131. Wang, J.; Hu, J.; Min, G.; Zhan, W.; Zomaya, A.Y.; Georgalas, N. Dependent task offloading for edge computing based on deep
reinforcement learning. IEEE Trans. Comput. 2021, 71, 2449–2461. [CrossRef]

132. Yeganeh, S.; Sangar, A.B.; Azizi, S. A novel Q-learning-based hybrid algorithm for the optimal offloading and scheduling in
mobile edge computing environments. J. Netw. Comput. Appl. 2023, 214, 103617. [CrossRef]

133. Cheng, Z.; Min, M.; Liwang, M.; Huang, L.; Gao, Z. Multiagent DDPG-based joint task partitioning and power control in Fog
computing networks. IEEE Internet Things J. 2021, 9, 104–116. [CrossRef]

134. Cheng, Z.; Liwang, M.; Chen, N.; Huang, L.; Du, X.; Guizani, M. Deep reinforcement learning-based joint task and energy
offloading in UAV-aided 6G intelligent edge networks. Comput. Commun. 2022, 192, 234–244. [CrossRef]

135. Zhou, X.; Liang, W.; Yan, K.; Li, W.; Kevin, I.; Wang, K.; Ma, J.; Jin, Q. Edge-Enabled Two-Stage Scheduling Based on Deep
Reinforcement Learning for Internet of Everything. IEEE Internet Things J. 2022, 10, 3295–3304. [CrossRef]

136. Chen, Y.; Gu, W.; Li, K. Dynamic task offloading for internet of things in mobile edge computing via deep reinforcement learning.
Int. J. Commun. Syst. 2022, e5154. [CrossRef]

137. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning.
Acm Comput. Surv. Csur 2020, 53, 1–33. [CrossRef]

138. Kopetz, H.; Steiner, W. Real-Time Systems: Design Principles for Distributed Embedded Applications; Springer Nature: Berlin/Heidelberg,
Germany, 2022.

139. Alwarafy, A.; Al-Thelaya, K.A.; Abdallah, M.; Schneider, J.; Hamdi, M. A survey on security and privacy issues in edge-computing-
assisted internet of things. IEEE Internet Things J. 2020, 8, 4004–4022. [CrossRef]

140. Yahuza, M.; Idris, M.Y.I.B.; Wahab, A.W.B.A.; Ho, A.T.; Khan, S.; Musa, S.N.B.; Taha, A.Z.B. Systematic review on security and
privacy requirements in edge computing: State of the art and future research opportunities. IEEE Access 2020, 8, 76541–76567.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compeleceng.2022.107839
https://www.techrxiv.org/articles/preprint/Federated_Learning_Over_the_Industrial_Internet_of_Things_A_Joint_Optimization_of_Edge_Association_and_Resource_Allocation/20784001
https://www.techrxiv.org/articles/preprint/Federated_Learning_Over_the_Industrial_Internet_of_Things_A_Joint_Optimization_of_Edge_Association_and_Resource_Allocation/20784001
https://www.techrxiv.org/articles/preprint/Federated_Learning_Over_the_Industrial_Internet_of_Things_A_Joint_Optimization_of_Edge_Association_and_Resource_Allocation/20784001
https://doi.org/10.1109/TVT.2022.3182782
https://doi.org/10.1007/s10723-021-09559-x
https://doi.org/10.1109/JIOT.2020.2981557
https://doi.org/10.1109/TC.2021.3131040
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1109/JIOT.2021.3091508
https://doi.org/10.1016/j.comcom.2022.06.017
https://doi.org/10.1109/JIOT.2022.3179231
https://doi.org/10.1002/dac.5154
https://doi.org/10.1145/3377454
https://doi.org/10.1109/JIOT.2020.3015432
https://doi.org/10.1109/ACCESS.2020.2989456

	Introduction
	Task Scheduling in Edge Computing
	Method
	Research Question
	Inclusion Criteria

	Network Architecture
	Things Layer
	Edge Layer
	Cloud Layer
	Network Resources
	6G Networks

	Optimization Properties
	Main Viewpoint
	Optimization Objective

	RQ1: Centralized and Distributed Task Scheduling Techniques
	Centralized Task Scheduling Technique
	Convex Optimization
	Approximation Algorithms
	Heuristic
	Metaheuristic
	Machine Learning

	Distributed Task Scheduling Techniques
	Game Theory
	Matching Theory
	Auction
	Distributed Machine Learning

	RQ2: Scheduling Real-Time Embedded System Application Tasks
	Challenges and Future Research Directions
	Requirements of Realtime Systems
	Dynamic Environments and Tasks Dependancy
	Security and Privacy

	Conclusions
	References

