
Citation: Lola, J.; Serrão, C.; Casal, J.

Towards Transparent and Secure IoT:

Improving the Security and Privacy

through a User-Centric Rules-Based

System. Electronics 2023, 12, 2589.

https://doi.org/10.3390/

electronics12122589

Academic Editors: Tiago Cruz and

Bruno Sousa

Received: 13 April 2023

Revised: 29 May 2023

Accepted: 6 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Towards Transparent and Secure IoT: Improving the Security
and Privacy through a User-Centric Rules-Based System
João Lola 1, Carlos Serrão 1,* and João Casal 2

1 Information Sciences, Technologies and Architecture Research Center (ISTAR), Instituto Universitário de
Lisboa (ISCTE-IUL), 1600-189 Lisboa, Portugal; joao_pedro_lola@iscte-iul.pt

2 SCNL Truphone, S.A., 1700-158 Lisboa, Portugal; joao.casal@truphone.com
* Correspondence: carlos.serrao@iscte-iul.pt

Abstract: In recent years, we have seen a growing wave in the integration of IoT (Internet of Things)
technologies into society. This has created new opportunities, but at the same time given rise to
several critical issues, creating new challenges that need to be addressed. One of the main challenges
is the security and privacy of information that is processed by IoT devices in our daily lives. Users are,
most of the time, unaware of IoT devices’ personal information collection and transmission activities
that affect their security and privacy. In this work, we propose a solution that aims to increase
the privacy and security of data in IoT devices, through a system that controls the IoT device’s
communication on the network. This system is based on two basic and simple principles. First, the
IoT device manufacturer declares their device’s data collection intentions. Second, the user declares
their own preferences of what is permitted to the IoT device. The design of the system includes
tools capable of analyzing packets sent by IoT devices and applying network traffic control rules.
The objective is to allow the declaration and verification of communication intentions of IoT devices
and control the communication of such devices to detect potential security and privacy violations.
We have created a test-bed to validate the developed solution, based on virtual machines, and we
concluded that our system has little impact on how the overall system performed.

Keywords: security; privacy; IoT networks; intent declaration; communication rights and permissions;
traffic analysis

1. Introduction

Information security and privacy are two of the most critical topics when addressing
Internet-related technology. They represent the two most fundamental elements in estab-
lishing trust between companies and their users. An organisation that does not possess
strong data security can be seen by users as less trustworthy than a competitor. Relaxed
data security policies can lead to risks of compromising personally identifiable information,
personal health information, medical records, banking information, intellectual property,
and other types of valuable or sensitive data. Without a proper security strategy, companies
can suffer data breaches that may result in huge reputation damages and financial losses.
In a worst-case scenario, this may even terminate the organisation itself. Therefore, infor-
mation security systems must enforce three essential principles: confidentiality, integrity,
and availability.

The increasingly rapid growth of Internet-connected IoT devices is causing privacy
and security concerns, as reported in several studies [1]. Most of these concerns are related
to relaxed communication security policies to prevent security infringements and data
leaks. Other problems reside in the fact that IoT devices are poorly designed from a
security standpoint, which makes them easily exploitable by any malicious actor. Looking
at the literature, it is possible to find multiple examples of this. For instance, Amazon’s
Alexa sends privately recorded conversations to random numbers on the owner’s list of

Electronics 2023, 12, 2589. https://doi.org/10.3390/electronics12122589 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122589
https://doi.org/10.3390/electronics12122589
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4847-2432
https://doi.org/10.3390/electronics12122589
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122589?type=check_update&version=1

Electronics 2023, 12, 2589 2 of 23

contacts [2]; Google Nest IP cameras, doorbells, and thermostats can be hacked by third
parties [3]; Google Home Hub captures footage from Xiaomi Mijia surveillance cameras
from other dwellings [4]; and Samsung Smart TVs had a vulnerability that allowed third
parties to view everything that was going on in the room where the TV was located via the
embedded camera and microphone [5]. This security panorama is of concern.

Another aspect is also related to the IoT device manufacturers’ lack of transparency
on the way they collect, process, protect, and transmit data about their users. One example
was Google’s failure to disclose in its Nest Guard product specifications that the device
had a built-in microphone [6]. Another example was Amazon’s revelation that, in addition
to artificial intelligence algorithms, their employees listened to samples of recordings of
Amazon Echo devices to improve the quality of service [7,8].

A study conducted by Mozilla revealed that 45% of the 190,000 participants surveyed
considered that privacy was the biggest concern when it came to the use of IoT devices,
and 34.5% of them considered that it was up to them to keep connected IoT devices secure
and private, versus 34% who believed that it was up to device manufacturers to ensure
the privacy and security of their devices [9]. The study reveals that consumers do not
trust manufacturers to keep their devices secure and feel it is up to them to safeguard their
privacy and security. The results of this study reflect that many consumers consider that the
privacy and security of data should be assured both by them and the device manufacturers.

In another study conducted by the Economist Intelligence Unit, a global leader in
business intelligence, 92% of the 1629 IoT consumers surveyed said that privacy was their
primary concern and wished to be informed when IoT devices were collecting their personal
information and having greater control over the data collected and transmitted [10].

This work focuses on a specific consumer IoT device that connects through the con-
sumer’s networks using a specific gateway. It addresses some of the consumer IoT security
risks by proposing a system that will control the data communication between the IoT
device on a network and any external systems. The control is established in two different
ways. One of the ways is through the IoT device manufacturer’s declaration about what
data will be collected and sent by the device. The other concerns the specific data permis-
sions the IoT device owner wants to impose on their network. So, in a scenario where we
have an IoT device that wants to send video data to the network (and the manufacturer
expresses such intention), the user may also use their specific preferences, imposing that
the IoT device can only send such video data in a particular time of the day. The proposed
system focuses on ensuring transparency of information transmitted by consumers’ IoT
devices on networks, giving them control over how they communicate and their behaviour
to achieve higher levels of privacy and security.

In this article, we start by providing a short introduction to the problem and explain
how this problem is relevant in this context. After, a short section about some related work
is presented, where some related approaches are presented and how they approach similar
problems. The following section introduces and explains the system developed in this
work, explains how the system works, and highlights some results. In the final section of
this article, some conclusions are presented about the conducted work.

2. Related Work

This section presents a summary of the relevant literature in this field. To conduct this
literature review, we used well-known scientific databases (Google Scholar, IEEExplore,
and ACM Library) and searched for terms such as “iot security and privacy” and “iot
communication control”. We have only considered works published in English since 2016.

The scientific literature contains a large number of articles published on the topic of
IoT security and privacy. Although the IoT ecosystem brought immense benefits, it creates
several challenges, especially regarding security and privacy. Handling these issues and
ensuring security and privacy for IoT products and services must be a fundamental priority.
Users need to establish trust in IoT devices and related services. Moreover, IoT devices
may be under attack, and their functionality may be changed by attackers, therefore, IoT

Electronics 2023, 12, 2589 3 of 23

device’s behaviour must be controlled. The authors of this work provide a discussion
of IoT security, privacy, safety, and ethics [11]. Furthermore, the authors often discuss
IoT’s different challenges in terms of security and privacy and propose some possible
solutions [12–14].

One of the main security concerns regarding IoT devices is their susceptibility to cyber-
attacks. Some of the analysed works proposed using intrusion detection systems based
on machine learning and blockchain technologies [15–18]. These approaches often use
machine learning algorithms to detect abnormal behaviour in IoT devices and blockchain
technology to securely store intrusion detection information [19–21]. This is a similar
approach to the one followed by this article; however, in our case, we have introduced
the opportunity for the user to control what the consumer IoT device can do on the user’s
home network.

Another important aspect of IoT security is firmware security [22]. Some authors
propose an approach that uses a combination of static and dynamic analysis techniques
to identify vulnerabilities in firmware and a fuzz testing approach to verify firmware
robustness [23,24].

In addition to technical solutions, user education is an important aspect of IoT security.
Some authors propose an IoT security awareness framework for end-users [25]. Their
approach educates users on basic IoT security measures, such as password management
and network security [26–28].

However, despite all the proposed solutions in the literature, IoT security and privacy
remains a major challenge. As the IoT scene continues to expand and evolve, addressing
security and privacy challenges will require a multifaceted approach that includes technical
solutions, user education, and regulatory measures. As reviewed, recent works proposed
various frameworks and technologies to enhance the security and privacy of IoT devices,
including intrusion detection, firmware security, blockchain, edge computing, machine
learning, and supply chain security. However, as the IoT continues to evolve and expand,
much work still needs to be conducted to ensure its security and protect users’ privacy.

The work that is presented in this article addresses IoT security by exploring the
capability of enforcing normative functionality to IoT devices and detecting violations of
those behaviours. Moreover, this article presents contributions to the state of the art in two
different key aspects. First, it allows the manufacturers of consumer IoT devices to declare
their intentions in terms of data collection from the user and communication to the network.
These intentions can be expressed through a specific Web interface and REST API (although
more options may be available) converted to a specific rules-based controlled environment
that will confine the IoT device’s communication behaviour. Second, our system also puts
the end-user in control of its privacy because it allows users to establish their preferences
regarding data that the IoT device can collect and send through the network. Combining the
declaration of the manufacturer’s intentions and the end-users’ preferences will contribute
to a more secure and private IoT environment.

3. System Design

This section presents the system prototype implemented and the components that
ensure the transparency of the information transmitted by consumers’ IoT devices in the
networks, providing them with control over their devices’ communications and ensuring
that they communicate following what is stated on their manifests.

3.1. Architecture

In the architecture of the system (Figure 1), there are two different main actors: the “IoT
Device Manufacturer” and the “IoT Device Owner”. The “Intent Rules” represents the
device manufacturer’s traffic control rules, and the “User Rules” represents the consumer
IoT device owner’s traffic control rules.

“Intent Rules” depict the intentions and specifications of the “IoT Device Manu-
facturer”, to be defined in the IoT device manifest, regarding the device communication

Electronics 2023, 12, 2589 4 of 23

requirements, the information the device sensors collects and what is transmitted to the
network. These rules will make the communication transparent to the consumers that will
be using the device. Furthermore, they will make it possible to check whether the device’s
behaviour complies with its declared manifest. This is considered normal behaviour if the
device complies with the manifest intentions. If not, the system will inform the “IoT Device
Owner”, and it will be up to them to decide what to do next (e.g., to block a device from
communicating sound to the Internet). Finally, the “IoT Device Owner” is empowered to
act upon their device’s behaviour with the “User Rules”.

The “User Rules” represents the IoT device owner’s intentions and specifications
regarding what they permit the device to send to the Internet. These rules give the owner
of the device complete control over it. In this way, the owner can create rules to block the
device from sending unwanted information that, in their view, violates their privacy and
security.

Figure 1. System high-level architecture.

By creating these two types of traffic control rules, we have implemented whitelisting
and blacklisting of data communication. The blacklist concept is applied to the “User
Rules”. In this case, we create rules that prevent the packets from reaching their destination
to enforce the user’s control over their IoT traffic to control their privacy and security. The
whitelist concept is applied to the “Intent Rules” and aims to describe the rules based on
the IoT device declaration of intentions (as described previously). These rules are used by
the system to learn when devices are not complying with their manifest by creating rules
that trigger specific alarms (e.g., according to the packets’ content and destination). We can
also generate blacklist rules from the whitelist rules if necessary.

The “Intent and User Rules Management” service has two components. The “Web
Management Interface”, provides the appropriate mechanisms for the consumer IoT de-
vice owner and manufacturer to enter, modify, and delete user-defined rules and man-
ufacturer declaration of intents, respectively. The “Network Traffic Rules” component
represents the backend of the interface, where the CRUD (Create, Read, Update, and

Electronics 2023, 12, 2589 5 of 23

Delete) database operations of the user rules and manufacturer declaration of intents are
implemented.

The system uses its own rules specification to define the traffic control rules in the
“Intents and User Rule Management” service. Our traffic control rule specification is
compact, generic, and easy to understand because it was created from scratch with network
traffic control in mind.

The “Translator” is the service that receives the traffic control rules from the “Intent
and User Rules Management” service and translates them into the rule’s expression tech-
nique used by the “Network Traffic Capturing and Filtering” service to define traffic
control rules. This service is implemented on the same machine where the “Network
Traffic Capturing and Filtering” service is installed and configured to store the translated
rules directly in the rules folder of the “Network Traffic Capturing and Filtering” service
configuration folders. This translation service could have been implemented directly in
the “Intent and User Rules Management” service but we decided to implement it in a
separate service to ensure its portability and interoperability with other existing traffic
policy control systems.

The “Network Traffic Capturing and Filtering” service consists of three components:
“Network Traffic Identifier”, “Network Traffic Analyser”, and “Alarms”. These three
components were implemented using the Snort IDPS installed and configured to perform
the IoT device’s network traffic control.

In the case of the implemented system, and also a limitation of it, we assumed that
the content of the packets issued by the IoT devices and captured by the “Network Traffic
Capturing and Filtering” service is transported via HTTP (Hypertext Transfer Protocol)
messages and not HTTPS (Hypertext Transfer Protocol Secure) messages, so the content
that is parsed is not encrypted.

This option also finds strengths in the research of [29], where some of the devices
used in their studies revealed that the communication of device states and credentials was
completed via plain HTTP with other devices and the outside world. Their study also
showed that some devices received software updates via HTTP and that most of this traffic
corresponds to requested images and video thumbnails from manufacturer servers. In
another study [30], they noted that all smart home IoT devices, except for smart cameras,
access the web over HTTP for some portion of traffic, with health and wearable devices,
intelligent assistants, and smart TV corresponding to around 20% of traffic over HTTP.

The “Network Traffic Identifier” is the component that identifies whether traffic
being sent to the Internet originates from a consumer IoT device. If so, it is sent to the
“Network Traffic Analyser”; otherwise, the network traffic goes directly to the Internet.
For simulation purposes, all the generated consumer IoT traffic captured by this component
is created by the Ostinato [31] traffic generator before the “Network Traffic Capturing and
Filtering” service. Ostinato simulates the consumer IoT device’s behaviour when violating
the manufacturer’s manifest communication intents and user-defined rules. The identifier
of IoT traffic is contained inside the packet that is captured for analysis and is made up of
the TAC (Type Allocation Code), a unique 8-digit code, which allows identification of the
manufacturer and model of the device individually within a network for the manufacturer
intents, and the IMEI (International Mobile Equipment Identity), a unique 15-digit code
which acts as a fingerprint of the device, allowing it to be identified within a network for
the user-defined rules.

The “Network Traffic Analyser” analyses the IoT traffic according to defined traffic
control rules. If the traffic complies with what is specified, it is redirected to the Internet; if
not, alarms will be triggered if traffic violates the manufacturer’s intent manifest or blocked
from reaching the Internet if the traffic violates the user-defined rules.

The “Alarms” component receives information about network traffic that complied
with the rules and the traffic that did not. This component mainly alerts the IoT device
owner to the system activity, especially to any device with behaviour not declared by the
manufacturer. With this information, the user may block traffic from the device that falls

Electronics 2023, 12, 2589 6 of 23

outside the intentions manifest. The information presented to the owner consists of the
timestamp of the captured packet, the transport protocol, source and destination addresses,
and the content it was carrying that triggered the specific policy rule violation.

As previously stated, regarding the “Network Traffic Capturing and Filtering” ser-
vice, we decided to use the Snort IPS Deep Packet Content Filtering and Blocking, a tool
designed primarily for network traffic intrusion detection. This tool is configured to act as
an IPS, enabling it to perform DPI (Deep Packet Inspection) on packets captured from the
network and apply user-defined rules to block packets or allow them to pass through to
the network.

The typical usage of the system, according to the architecture presented in Figure 1
could go as follows:

1. The “IoT Device Manufacturer” specifies and definies their own intentions that are
translated to simple rules (“Intent Rules”);

2. The “IoT Device Owner” specifies and definies their own rules (“User Rules”);
3. Both the “Intent Rules” and the “User Rules” are stored on the “Intent and User

Rules Management” service;
4. Rules are sent to the “Translator” service that is responsible for conducting the rules

translation to the appropriate network filtering service (in this case, it will be Snort);
5. “Translator” service sends the translated rules to the “Network Traffic Capturing

and Filtering” service through the “Network Traffic Analyser” component;
6. “IoT Devices” produce network traffic. This network traffic is captured by the

“Network Traffic Capturing and Filtering” service, through the “Network Traffic
Identifier” component;

7. If the “Network Traffic Identifier” identifies the traffic as having origin in an IoT
device, the traffic is redirected to the “Network Traffic Analyser”;

8. If it is not IoT device traffic, it is redirected to the Internet;
9. If the “Network Traffic Analyser” verifies that the traffic is compliant with the rules,

then the traffic is routed to the internet;
10. If not, traffic is blocked;
11. “Network Traffic Analyser” component produces a set of analytical data that will be

used to generate alarms or simply collect information about the system usage;
12. Alarm information is sent by the “Alarms” component of the system to the “IoT

Device Owner”.

3.1.1. Intents and User Rule Management REST API

The Intents and User Rule Management REST API is designed to allow manufacturers
to state their communication intentions and enable the IoT device owner to create user rules
to control the information the devices communicate. This API provides manufacturers
and IoT device owners alike with endpoints to allow the intentions and user-defined rules
to be retrieved from the local database to be displayed. The entry methods enable the
manufacturer to enter their device communication intent statements and the IoT device
owner to insert their defined rules to control the device communication intents into the
database. The update methods allow for modifying existing intents and user-defined rules
in the database. Finally, the delete method enables the withdrawal of device intents or
user-defined rules from the database.

For this REST API, two entities were created to represent the manufacturer’s intent
and the user-defined rules, designated as intent and rule.

A UUID (Universal Unique Identifier) defines an intent and the device type the TAC
represents. Furthermore, part of the intent is the properties, as defined by the content type,
such as Audio, Video, or Text, by the communication protocol, which is used to represent
the message that contains that content, such as HTTP, RTSP (Real-Time Streaming Protocol),
or SIP (Session Initiation Protocol), and by the destination address of the intent, which is
represented by a range of IPs to which the content is to be sent.

Electronics 2023, 12, 2589 7 of 23

A rule has the same fields as the intent, except the device identifier field, represented
by the device’s IMEI.

3.1.2. Translator (Integration Layer with Filtering Tool)

The Translator REST API is designed to allow the translation of intents and IoT device
owner rules that it receives from the Intents and User Rule Management REST API into the
rules format used by Snort. This REST API provides the methods to create Snort-compatible
rules from the manufacturer’s intents and user-defined rules created in the Intents and User
Rule Management REST API. The update methods allow modification of the existing Snort
rules by replacing them with new ones entered by the manufacturer or IoT device owner.
The delete method enables the withdrawal of device Snort rules from the rule files located
in the Snort configuration folders. To allow Snort to detect and interpret the content of a
packet it has captured, a method has been created to transform the content type it receives
from the Intents and User Rule Management REST API service from text to hexadecimal
when the Snort rule is created.

For this REST API, another entity called a Snort rule has been created to complement
existing ones in Intents and User Rule Management REST API. A Snort rule is defined by:

• Rule Action—specifies what action the Snort rule performs on the packet it received,
such as alert, drop, log, pass, reject, or drop.

• Rule Protocol—specifies which protocol should be parsed for suspicious behaviour,
such as TCP, UDP, ICMP, or IP.

• Source IP—specifies the packet’s source IP(s) address(es).
• Source Port—specifies which source port(s) of the packet.
• Flow Direction—specifies which direction of the packet flow, unidirectional (->) or

bidirectional (<>).
• Destination IP—specifies the destination address(es) of the packet.
• Destination Port—specifies the destination port(s) of the packet.
• Rule Options—specify what content the rule should analyse, where it is located

within the packet, the packet size, the message shown when the alert is triggered, and
the rule ID.

3.1.3. Snort IPS

Snort IPS [32] is the chosen tool to detect manufacturer intention violations and allow
IoT device owners to block content communication according to their security and privacy
preferences. Snort is an open-source rules-based NIDPS (Network Intrusion Detection
and Prevention System) software to detect and prevent malicious attacks or information
leakages, with the ability to analyse traffic in real-time, log packets, and generate alerts for
users when packet content matches the defined rules.

To enable the option to block packets with content that violates the privacy and security
of the owner from reaching their destination, it was necessary to configure Snort using
the “snort.conf” file, selecting the DAQ (Data Acquisition Library) module “Afpacket”.
This allows us to run Snort in “inline” mode with two network interfaces. Only in “inline”
mode can Snort block the packets it captures. In “normal” mode, it only generates alerts for
the captured packets. Through the “buffer_size_mb” variable, we can define the memory
to be assigned to the DAQ, considering the amount of traffic to be analysed, the number of
rules activated, and the hardware Snort is running on. It was also necessary to configure
Snort to consider the rule files for each device, both for the manufacturer’s intentions
and for the IoT device owner’s rules. The following represents the command that allows
Snort to run. It is made up of four main arguments and an optional fifth argument. The
alerts mode (1), your configuration file (2), the interfaces where Snort “listens” for traffic to
analyse (3), and the operation mode (4):

sudo snort -A console -c /etc/snort/snort.conf -i ens33:ens34 -Q

Electronics 2023, 12, 2589 8 of 23

• -A console: this argument configures Snort so that the alerts it generates are sent to
the console.

• -c /etc/snort/snort.conf: this argument allows you to choose the configuration
file of the Snort settings that should be executed.

• -i ens33: ens34: this argument chooses the interfaces to listen for traffic.
• -Q: this argument allows you to run Snort in inline mode.

3.1.4. Web Management Interface

The Web Management Interface was designed to support the Intent and User Rule
Management REST API and, consequently, the Translator backend. This interface allows the
manufacturer to read, insert, update, and delete the device intentions rules. Additionally, it
enables the IoT device owner to read, insert, update, and delete user-defined rules.

The intentions and user-defined rules are displayed in tables in the intent list and rule
list tabs, respectively, as shown in Figure 2. The intents table displays Device Type (TAC),
Content-Type, Communication Protocol, Destination Address, and Actions (Delete and
Update). The rules table indicates the Device ID (IMEI), Content-Type, Communication
Protocol, Destination Address, and Actions (Delete and Update).

Intent List

Rule List

Device Type

Device ID

17588438

175884384586938

22414291

224142912994314

55412560

554125609860594

37521735

375217352060204

video/mp4, audio/mpeg

video/x-msvideo,audio/ogg

video/quicktime, audio/x-aiff

audio/basic,video/h264

audio/vorbis, video/3gpp

image/jpeg,text/csv

audio/vorbis, video/h265

image/jpeg

audio/basic, video/h264

image/jpeg,text/plain

audio/ogg, video/h265

image/jpeg,text/csv

image/png, audio/x-aiff

audio/basic,text/html

video/3gpp, audio/vnd.wav

HTTP;RTSP

HTTP;RTSP

RTSP;SIP

SIP;RTSP

HTTP;RTSP

HTTP;RTSP

SIP;RTSP

RTSP

HTTP;RTSP

HTTP;RTSP

SIP;RTSP

RTSP;HTTP

HTTP;SIP

SIP;HTTP

RTSP;SIP

192.168.0.1/24, 192.168.1.1/24

192.168.2.1/24, 192.168.3.1/24

192.168.0.1/24, 192.168.1.1/24

192.168.2.1/24, 192.168.3.1/24

192.168.7.1/24, 192.168.8.1/24

192.168.9.1/24, 192.168.10.1/24

192.168.8.1/24, 192.168.9.1/24

192.168.10.1/24

192.168.4.1/24, 192.168.5.1/24

192.168.6.1/24, 192.168.7.1/24

192.168.4.1/24, 192.168.5.1/24

192.168.6.1/24, 192.168.7.1/24

192.168.11.1/24, 192.168.12.1/24

192.168.13.1/24, 192.168.14.1/24

192.168.11.1/24, 192.168.12.1/24

Content Type

Content Type

Communication Protocol

Communication Protocol

Destination Address

Destination Address

Actions

Actions

Delete

Delete

Delete

Delete

Delete

Delete

Delete

Delete

Update

Update

Update

Update

Update

Update

Update

Update

Figure 2. Intent and Rules list table.

To enter a new intent, the manufacturer must navigate to the intent form in the intent
tab, where they are greeted with the above-mentioned fields. After they enter the data and

Electronics 2023, 12, 2589 9 of 23

save the intent in the database, it is automatically translated by the system into a Snort
rule, utterly transparent to the manufacturer. The translated intents will be written in a file
corresponding to the device’s TAC ID. When the manufacturer deletes a device from the
database, the file containing the corresponding Snort rules for that device is also deleted.
When the device intents are updated, the intents that existed previously are replaced with
those entered by the manufacturer. The same process is followed for the user-defined
rules entered by the IoT device owner in the rule tab, but with the slight difference that
user-defined rules are written to a file corresponding to the device IMEI ID (Figure 3).

Create Intent Create Rule

Device Type: Device ID:

Content Type Content Type

Communication Protocol Communication Protocol

Destination Address Destination Address

Intent Properties Intent Properties

Device TAC Device IMEI

Choose Content Choose Content

Choose Protocol Choose Protocol

Destination Address Destination Address

+ +

+ +

+ +

Add Intent Property Add Rule Property

Save Intent Save Rule

Figure 3. Intent and Rules Insert/Update form.

For more advanced users who have experience working with Snort and its rules, we
have provided an appropriate interface that allows them to download the text rule files
to edit (located in the download tab) and upload them again (located in the upload tab),
replacing the existing ones with the ones they have modified to their liking.

3.2. Snort Implementation Workflow

This section presents the Snort workflow for each packet captured by the Network
Traffic Filtering and Capturing service. We focus on two different scenarios. The first
scenario is when the IoT device violates the communication intents: this happens when the
device deviates from its expected behaviour as defined by the manufacturer. This deviation
may occur because the manufacturer tries to misbehave or because the device has been
compromised. The second scenario occurs when the IoT device violates the user-stipulated
rules: this occurs when the device deviates from the behaviour the user sets for it.

The flow that represents the device intent communication violation scenario is pre-
sented in Figure 4. Snort starts by capturing a packet sent by an IoT device for inspection
(1). Then, the decoder can analyse that packet to identify the transport protocol used and
check for conflicts with the intent rules (2). When the decoder finishes the identification
and classification process, it sends the packet to the pre-processor (3), which is responsible
for preparing the packet to be processed more easily by the detection engine, which flags
the traffic flow by looking for a match in the ruleset for traffic that is violating the defined
policies (4). If a match is found by TAC (device type) and content type in packet load, an
intents violation alert is generated (5), followed by event logging (6). Otherwise, Snort
takes another packet and repeats the same process. In this scenario, Snort acts in detection

Electronics 2023, 12, 2589 10 of 23

mode only, as it does not perform any action on the packet but simply triggers an alert for
a defined policy violation.

Packet Capture
Modules captures a

packet (1)

Classifier identifies the
protocol and classifies

the packet (2)

Pre-processor prepares
the packet (3)

Detection engine
checks for rule that

applies (4)

Generate Alert (5)

Log event (6)

Is there a rule
that applies?

No

Yes

Figure 4. Intent scenario—system workflow.

Considering the flow of the user-defined rules violation scenario presented in Figure 5,
when it is detected that a device sends a packet that represents a violation of the privacy
and security of its owner, the process is the same, but after generating the alert, Snort blocks
and discards the packet (6) that contains the device IMEI and the content type the IoT
device owner has specified to be blocked, stopping it from reaching its destination, and
then logs the event that occurred (7). Again, if no packet matches the user-defined rules,
another is captured for analysis. In this scenario, Snort acts in prevention mode because it
stops the packet from reaching its destination by performing a drop action on the packet.

Electronics 2023, 12, 2589 11 of 23

Packet Capture
Modules captures a

packet (1)

Classifier identifies the
protocol and classifies

the packet (2)

Pre-processor prepares
the packet (3)

Detection engine
checks for rule that

applies (4)

Generate Alert (5)

Log event (7)

Is there a rule
that applies?

No

Yes

Drop Packet (6)

Figure 5. Rule scenario—system workflow.

When the manufacturer enters the intents for the IoT device using the Web Manage-
ment Interface, the intents are stored and then sent from the Intent and User Management
Rest API to the Translator REST API to be translated from intent into alert Snort rules
because in the intent case, our aim is only to alert the IoT device owner to the fact that their
device is not complying with their communication intents, without blocking the content.

alert tcp $HOME_NET any -> [192.168.19.1/24,192.168.20.1/24] any (msg:
"ALERT -DESTINATION ADDRESS NOT OK For Intent Of Device TAC 17020105.
Intent{ContentType: [audio/mpeg, video/mp4] Destination Address:
[192.168.19.1/24, 192.168.20.1/24]";flow:stateless; content:"|31 37
30 32 30 31 30 35|"; offset:4; depth:8; content:"|5b 61 75 64 69 6f
2f 6d 70 65 67 2c 76 69 64 65 6f 2f 6d 70 34 5d|"; distance:14;
within:22;classtype:policy-violation; sid:1137585;)

When the IoT device owner enters the user-defined rules using the Web Management
Interface, the rules are stored and then sent from the Intents and User Rule Management
REST API to the Translator REST API to be translated from a user-defined rule into a drop

Electronics 2023, 12, 2589 12 of 23

Snort rule, because in the user rule case, we want to prevent some of the content sent by
the devices reaching the Internet, violating owner privacy and security.

drop tcp $HOME_NET any -> [192.168.0.1/24,192.168.1.1/24] any (msg:
"DROP - Rule Device IMEI 175884384586938{ Content-Type:
[video/quicktime, audio/x-aiff] Destination Address: [192.168.0.1/24,
192.168.1.1/24] }"; flow:stateless; content: "|31 37 35 38 38 34 33
38 34 35 38 36 39 33 38|"; offset:5; depth:15; content: "|5b 76 69
64 65 6f 2f 71 75 69 63 6b 74 69 6d 65 2c 61 75 64 69 6f 2f 78 2d
61 69 66 66 5d|"; distance:14; with-in:30;classtype:policy-violation;
sid:8181915;)

4. System Validation and Testing

This section describes the test environment implemented to perform the required
tests to test the developed solution. The developed solution was tested on a virtualised
environment, as described in the next sections of this article.

This system was tested in two different aspects. The first one tested the different
functionalities of the developed system throughout two specially defined scenarios: one
that analyses the system’s capability for detecting violations of the IoT manufacturer intent
rules and another that analyses the system’s capability for detecting violations of the user-
defined preferences. The second aspect that was tested was the system’s performance
where we analysed the system’s behaviour when high volumes of traffic were generated.

4.1. Test System Deployment

The test deployment system presented in Figure 6 was created to allow the testing
of the violation of manufacturer-defined intents and violation of the user-defined rules
scenarios.

The intents scenario is essential to test if the IoT device is not complying with the
behaviour defined by the manufacturer because we need proof that guarantees to us those
manufacturers and their devices can be trusted and are not being used to spy on innocent
consumers. The user-defined rules scenario is vital to test so that consumers possess a
mechanism to protect themselves against an untrustworthy manufacturer using the devices
in their home to gather information about them.

Figure 6. Test Deployment system.

Electronics 2023, 12, 2589 13 of 23

This system comprises two virtual machines, VM A and VM B, and a physical host
machine. The approach presented was inspired by a solution offered before [33]. Our
system, much like Hafeez’s, uses Snort in intrusion “prevention” mode for network traffic
control by making all the traffic from the Traffic Generator (VM A) pass through the
Translator and Snort IPS (VM B) before reaching the Internet router allowing DPI analysis
of the packets and application of the desired traffic control rules to the packet flow.

Virtual machine A (VM A) was created to represent an IoT device to generate network
traffic collected and analysed by Snort IPS, located on virtual machine B (VM B) (1).
Virtual machine B (VM B) was created to contain the traffic control and analysis software
that collects and analyses traffic from the IoT devices connected to this virtual machine.
In addition, this machine acts as an internal server to check IoT device network traffic
compliance with the traffic control rules and to forward it to the Internet if no violations
occurred; if any violation did occur, an alert would be displayed, followed by blocking
of the traffic (2). The physical host machine contains the Web Management Interface and
the Intent and User Rule Management REST API that allow manufacturers and IoT device
users to specify intents and define rules for their devices by creating, reading, modifying,
and deleting rules contained within a database. The Interface component of the Rules
Management service calls the endpoint of the Translator service (3).

The need for a virtual machine stems from the open-source software selected here,
which is designed to run on open-source Linux core-based operating systems. As this is
open-source, it is free of use.

An open-source version of the Ostinato software [31] was chosen to generate traffic
streams to simulate the various devices present on an IoT network. Ostinato is an open-
source tool that allows us to test bandwidth, create, and configure multiple streams, specify
how data are sent, set the number of packets or bursts to be sent per second, view real-time
statistical data for network monitoring and measurement, read statistical measurements of
lost packets per stream, and offer support for the most common standard protocols.

Using this software, we created multiple streams to cover the IoT device owner rules
and the manufacturer-specified intent scenarios. For these streams, we defined the protocol
data settings, the packet’s source and destination IP address, the transport protocol, and
the HTTP, RTSP, or SIP text messages. In the intent case, the TAC of the device, the content
it transmits, and—in the case of the IoT device owner’s rule—the IMEI of the device and
the content it sends. Finally, we defined the stream control settings, the type we wish to
send—whether packet or burst—the number of packets or bursts, the rate of packets or
bursts per second, and what action to take when the stream ends, as explained above.

4.2. Functional Tests

In this section, we introduce the functional scenarios used in the proposal: one that
tests intent violations and another that tests the user’s control over their devices’ communi-
cation. We also present and discuss the test results.

These tests are essential to ensure that our implemented system performs as expected.
To prove this, we must test the system to see if it can detect violations of the declared
manufacturer intents and generate alerts whenever the IoT device transmits packets that
carry information that does not match the specifications of the intents manifest of the
IoT device manufacturer. To conduct this test, the system creates test packets using the
traffic generator to simulate the misbehaviour of the IoT device. These packets must
contain information that diverges from the information specified in the manufacturer’s
intents manifest. This test is successful if alerts are triggered for each packet that violates
the manufacturer’s intent manifest specifications. Thus, such devices will not be able to
compromise the privacy and security of the owner, who can be assured that devices do
what is stated in their manifest. To prove that the IoT device owner has control over the
privacy and security of the device’s communication, we must create test packets using the
same traffic generator as mentioned above with content that violates user-defined rules,
so when the system detects this content, it blocks it from reaching its destination. In this

Electronics 2023, 12, 2589 14 of 23

manner, the system implemented can assure the IoT device owner of control over their
device’s communication and guarantee their privacy and security.

4.2.1. Test Scenario I—Violations of the Manifest of Intents

In this test scenario, we simulate network traffic that violates manufacturers’ intents
and analyse the system’s reaction. To do so, we use the intents of three different devices,
which have been specified by the manufacturer, as set out in Table 1.

Table 1. Test Intents.

Device Device Type (TAC) Declared
Content-Type

Declared
Communication

Protocol

Declared Destination
Addresses

Samsung Android Tablet 09951213

[video/mp4,
audio/mpeg] [HTTP, RTSP] [192.168.21.0/24,

192.168.22.0/24]
[video/x-msvideo,

audio/ogg] [HTTP, RTSP] [192.168.23.0/24,
192.168.24.0/24]

Apple iOS Smartphone 42245111

[audio/basic,
video/h264] [HTTP, RTSP] [192.168.25.0/24,

192.168.26.0/24]
[image/jpeg,
text/plain] [HTTP, RTSP] [192.168.27.0/24,

192.168.28.0/24]

Huawei Android
Smartphone 33292418 [audio/mpeg,

video/mp4] [SIP, RTSP] [192.168.29.0/24,
192.168.30.0/24]

Analysing the intents defined by the manufacturers in the previous table, we see how
they have specified communication intents for three well-known IoT devices. First, the
unique eight-digit TAC is required to identify a device by its brand and model on the
network that it is connected to. The content type that the device sends to the Internet
is specified using MIME (Multipurpose Internet Mail Extensions) types. This content
can originate from the device camera, microphone, location sensor, humidity sensor, or
other device sensors. Finally, the communication protocol represents the protocol used to
transport the TAC and content-type information to one of the IPs defined in the destination
address.

The intents content type and destination addresses, as shown in Table 1, must be
denied so that it is possible to validate whether the manufacturer-defined intent is fulfilling
the device communication intentions. This way, we can evaluate if the content type and
destination addresses defined in the device’s intents are the same as those the device
sends to the Internet. If true, users should not be confronted with them in an execution
environment, as they comply with the manufacturer-defined intent. If not, the user should
be presented with alert messages in an execution environment, alerting them to non-
compliance with the manufacturer-defined intent.

After the intents are created and translated, it is necessary to create network traffic,
meaning the packets, content type, and destination address—which must be different from
what is specified by the manufacturer so that the alerts can be triggered. Table 2 shows
an example of a packet whose content type does not match the content type specified
by the manufacturer but whose destination address corresponds to one of the ranges.
Table 3 shows a packet with a destination address that differs from the specified one whose
contents match the set.

Electronics 2023, 12, 2589 15 of 23

Table 2. Content type not matching.

Protocol Data

Source IP: 10.0.0.10 Destination IP: 192.168.21.10

Text Protocol

TAC:09951213
Content-Type: [text/plain, video/h264]

Table 3. Destination address not matching.

Protocol Data

Source IP: 10.0.0.10 Destination IP: 192.168.30.10

Text Protocol

TAC:09951213
Content-Type: [video/mp4, audio/mpeg]

The following picture (Figure 7) represents the Snort messages displayed when the
content and destination address of the previously created packets do not match the content
and destination address specified by the manufacturer in the intent.

Figure 7. Intent violation alerts.

Analysing the messages displayed, Snort tells us that, for example, the device with
the TAC 099551213 has committed four intent violations. The first was that the content
type the device was sending did not match the content type the manufacturer specified
in their intent: the manufacturer specified the device was supposed to send the content
[video/mp4, audio/mpeg], but instead, after analysing the packet on Wireshark from
source IP 10.0.0.10:80 to destination IP 192.168.21.10:80 and TAC 099551213, we saw
that the content the device sent was [text/plain, video/h264]. The second was that the
destination address to which the packet was intended to go did not match the address
the manufacturer specified in their intent: the manufacturer specified that the device
was supposed to send the content [video/mp4, audio/mpeg] to one IP address from the
following IP ranges [192.168.21.1/24, 192.168.22.1/24], but instead, after analysing
the packet from source IP 10.0.0.10:80 and TAC 099551213, we saw that the actual
destination IP address was 192.168.30.10. The two other intent violations are identical to
those described above, only with different destination addresses and content types.

In the Snort log folder, we can view the files with the capture timestamp and where
the captured packets are recorded, which can be opened in a program such as Wireshark

Electronics 2023, 12, 2589 16 of 23

or another relevant program. These logs represent the packets whose content triggered
the alarms for intent manifest violations. Thus, we possess detailed reports that users can
check for the number of traffic control rule violations and the number of alarms triggered
in the process. Furthermore, depending on how the Snort alarm mode is configured, we
can also access the log files in the same folder of the Snort events to check the number of
alarms and triggered rules.

In this test, we have shown that the detection and alarm functional process succeeded.
The system detected that the virtual device content and destination address in the test
packets were not compliant with the content type and destination address specified in the
device intentions. Therefore, it generated a log of alerts for these events, reporting that
the content or content destination was incorrect according to the device intent manifest
specifications. If the device was indeed complying with the device intents, no log of alerts
would have been generated, meaning no violations of intents occurred that could have
jeopardised the privacy and security of the IoT device owner.

In the eventuality of a manufacturer failing to correctly specify their device’s real
communication intentions, our system will be able to inform the IoT device owner, whether
their device is reliable or not, meaning it will tell the device owner if the device is complying
with the manufacturer’s intents or not.

4.2.2. Test Scenario II—Violations of the User Rules

In this test scenario, we simulate the violation of defined rules of privacy and infor-
mation security by three devices and how the system is supposed to react when such an
event occurs. To do this, we use the following rules specified by the owner, which enable
the submission of unapproved content to be blocked, as seen in Table 4.

Table 4. Test User Rules.

Device Device ID (IMEI)
Content-Type

Allowed by Device
Owner

Communication
Protocol Allowed by

Device Owner

Destination Address
Allowed by Device

Owner

Samsung Android Tablet 099512133857038

[video/quicktime,
audio/x-aiff] [RTSP, SIP] [192.168.21.0/24,

192.168.22.0/24]
[audio/basic,
video/h264] [SIP, RTSP] [192.168.23.0/24,

192.168.24.0/24]

Apple iOS Smartphone 422451118095078

[audio/ogg,
video/h265] [SIP, RTSP] [192.168.25.0/24,

192.168.26.0/24]

[image/jpeg, text/csv] [RTSP, SIP] [192.168.27.0/24,
192.168.28.0/24]

Huawei Android
Smartphone 332924181938544 [image/jpeg] [RTSP] [192.168.29.0/24,

192.168.30.0/24]

In the previous table (Table 4), we show user-defined rules to prevent certain types
of content from three IoT devices from leaking to the Internet, possibly violating users’
privacy and security. The user rules seen here are defined by their IMEI, which acts as the
device identifier, and the content type that the user has chosen to block is also specified
using the MIME types.

The user-defined rules, shown in Table 4, are written to prevent packets that meet
the specified conditions from reaching the Internet. Whenever it is found that a device
with a particular IMEI is submitting the specified content to one of the specified addresses,
the rule should be activated and the event logged, followed by immediate rejection of the
packet.

After creating the rules and their translation, it is necessary to create the packets. The
content must correspond to what is specified by the owner so that the packet can be rejected
for violating the rules defined by the owner. Table 5 shows an example of a packet whose
contents are specified in the rule to be dropped.

Electronics 2023, 12, 2589 17 of 23

Table 5. Content test rule packet.

Protocol Data

Source IP: 10.0.0.5 Destination IP: 192.168.21.2

Text Protocol

IMEI: 099512133857038
Content-Type: [text/plain, video/h264]

The following image (Figure 8) represents the Snort messages that inform us that a
packet has been discarded for violating the user-defined rules.

Figure 8. Snort output showing discarded packets.

Analysing the messages displayed, Snort informs us that, for example, the device with
the IMEI 422451118095078 has committed two user-defined policy violations. The first was
that the content type of the packet sent by the device—viewed in Wireshark for the packet
sent from source IP address 10.0.0.5 to destination IP address 192.168.25.5—matches
the content type defined by the user to be blocked [audio/ogg, video/h265]. The second
was that the content type of the packet sent by the device—viewed in Wireshark for the
packet sent from source IP address 10.0.0.5 to destination address IP 192.168.28.5—
matches the content type that the user has defined to be blocked [image/jpeg, text/csv].

In the same location mentioned in the previous subsection, we can also see the packet
files containing the captured packets that have violated the user-defined rules, with the
information about the content they were carrying and the capture timestamp. In addition,
the log files containing the event logs of the rules triggered by the test packets are also
located in the same folder.

In this test, we have shown that the detection and blocking process succeeded. The
system was able to detect that the virtual IoT device content present in the test packets
violated the user-defined rules, resulting in a compromise of the user-defined privacy
and security rules. It, therefore, dropped the packets that violated the user-defined rules,
stopping them from reaching their destination.

The results of this test prove that the traffic control rules defined by the user enable
them to control how their device communicates, ensuring that the user can guarantee the
privacy and security of their personal information when the intentions of manufacturers
and the actions of their devices are not to be trusted.

4.3. System Performance

This section describes the performance tests performed for 10,000 packets in the
selected traffic generator generated for different packet throughputs. For this test, we used
10 devices for which 19 intent and 15 user-defined rules were created. The metrics chosen
for analysing the system performance were:

Electronics 2023, 12, 2589 18 of 23

• Packets Received—represents the number of packets that were captured for inspec-
tion.

• Packets Analysed—represents the number of packets parsed from packets received.
• Dropped Packets—represents the number of packets not found and therefore not

analysed by the analysis component.
• Packets Whitelisted/Blacklisted—represents the number of packets whose content

and destination address violated the manufacturer’s specifications or IoT device owner
rules.

• Analysis Runtime—represents the time taken to analyse and classify packets received
by the traffic capture component.

• Dump Runtime—represents the time taken to generate and send packets to the net-
work.

• Delay—represents the additional expense required to analyse the generated packets.

These performance tests aim to test how Snort performs in the worst-case scenarios,
to measure if high throughput significantly impacts the time taken to analyse the packet’s
content and detect that the content violates manufacturer intents or user-defined rules.

4.3.1. Intent Scenario Results

In Figure 9, we can view the data collected from the tests performed for 10,000 pack-
ets. The longest Snort analysis runtime recorded for this test was 16 min and 45 s for a
throughput of 100 packets/s, and the shortest was 1 min and 36 s for a throughput of
9000 packets/s. The average Snort analysis runtime was approximately 4 min and 23 s. The
longest packet dump runtime recorded in this test was 16 min and 39 s for a throughput of
100 packets/s, and the shortest was 10 s for a throughput of 9000 packets/s. The average
packet dump runtime was approximately 3 min and 17 s. The longest delay recorded in
this test was 3 min and 15 s for a throughput of 9000 packets/s; the shortest was 6 s for
100 packets/s. The average delay was approximately 1 min and 37 s.

Figure 9. The 10,000 Packets runtime data.

Table 6 shows the remaining data collected for other variables. All the packets captured
by Snort during the execution of this test were analysed, meaning no packets were skipped
or dropped during that time. Of all the packets captured, a percentage between 2% and
12% corresponded to packets whose content violated the manufacturer’s intent on the
device manifest. In contrast, the remaining percentage corresponded to miscellaneous
traffic captured by Snort.

Electronics 2023, 12, 2589 19 of 23

Table 6. The 10,000 packet variable data.

Packets/s
Throughput

Packets
Captured

Packets
Analysed

Packets
Dropped

Packets
Blacklisted

100 113,019 100% 0% 88.48%
500 102,240 100% 0% 97.62%

1000 101,391 100% 0% 98.62%
3000 105,846 100% 0% 94.25%
5000 100,941 100% 0% 98.71%
7000 102,817 100% 0% 94.81%
9000 101,165 100% 0% 96.37%

With these results, we proved that the system implemented detected and handled
multiple packets at various throughputs without ever showing service breaks during the
analysis for high packet loads, maintaining a cadence of approximately 13 s per packet
without missing or skipping packets.

According to the results, the analysis of the captured packets took the longest time
in 10,000 packets per second tests when the rate of packet throughput was the lowest at
100 packets per second because Snort could analyse only 100 packets at a time. How-
ever, with increased throughput, we saw that time decreased progressively to 22 s for the
10,000-packet tests. This gives a packet analysis average after the consistency of approxi-
mately 19 s in the 10,000-packet test (Table 7).

Table 7. Intent Scenario Results Summary.

10,000 Packets/s

Analysis Runtime High/Low 16 min 45 s / 1 min 36 s
Dump Runtime High/Low 16 min 39 s/10 s
Delay Runtime High/Low 1 min 48 s/6 s
Average Analysis Runtime 4min 23 s

Average Dump Runtime 3min 17 s
Average Delay Runtime 1 min 06 s

4.3.2. Rules Scenario Results

Figure 10 shows the data collected from the tests performed for 10,000 packets. The
longest Snort analysis runtime recorded in this test was 19 min and 3 s for a throughput of
100 packets per second, and the shortest was 2 min and 50 s for a throughput of 7000 packets
per second. This test’s average Snort analysis runtime was approximately 5 min and 53 s.
The longest packet dump runtime recorded was 16 min and 40 s for a throughput of
100 packets/s, and the shortest was 10 s for a throughput of 9000 packets/s. This test’s
average packet dump runtime was approximately 3 min and 17 s. The longest delay we
recorded was 2 min and 23 s for a throughput of 100 packets/s; the shortest was 1 min and
57 s for a throughput of 500 packets/s. The average delay in this test was approximately
2 min and 36 s.

Table 8 shows the remaining data collected for other variables. All the packets captured
by Snort during the execution of this test were analysed, meaning no packets were skipped
or dropped during that time. Of all the packets captured, 40% and 97% corresponded to
packets whose content violated the user-defined rules, while the remaining percentage
corresponded to the miscellaneous traffic captured by Snort.

In the results, we proved that the system implemented, detected, and dropped the
packets accordingly, without ever showing service breaks during the analysis for high
packet loads, maintaining a cadence of approximately 30 s per packet without missing or
skipping packets (Table 9).

Electronics 2023, 12, 2589 20 of 23

Figure 10. The 10,000 packets of runtime data.

Table 8. The 10,000 packet variable data.

Packets/s
Throughput

Packets
Captured

Packets
Analysed

Packets
Dropped

Packets
Blacklisted

100 247,000 100% 0% 40.44%
500 121,334 100% 0% 82.40%

1000 106,842 100% 0% 93.39%
3000 102,444 100% 0% 97.19%
5000 101,960 100% 0% 97.72%
7000 102,255 100% 0% 97.33%
9000 104,410 100% 0% 95.75%

Table 9. Rule Test Scenario Results Summary.

10,000 Packets/s

Analysis Runtime High/Low 19 min 03 s/2 min 50 s
Dump Runtime High/Low 16 min 40 s/10 s
Delay Runtime High/Low 3 min 15 s/1 min 57 s
Average Analysis Runtime 5 min 53 s

Average Dump Runtime 3 min 17 s
Average Delay Runtime 2 min 36 s

5. Conclusions

In this work, we presented and tested a system capable of, on the one hand, bringing
transparency to IoT systems, where manufacturers declare what their devices will do
(communicate) and these declarations are verifiable, and, on the other, giving IoT users
control over their data privacy and security, by controlling the communication of their
networked IoT devices. We believe that this contributes to establishing trust between
device manufacturers and their users/consumers and contribute to a more secure and
privacy-aware IoT ecosystem.

The system developed comprises three main components: rule definition, incident
detection, and action according to the incident. The rule definition phase consists of
defining the intents and rules the system will comply with when filtering traffic to analyse
if violations of those rules are happening. The detection phase consists of analysing the
contents of the packets of the network traffic being mirrored to Snort by checking for the
content specified in the translated Snort rules. The action phase consists of the system’s
reaction when the content and destination of a packet comply with its rules, or if the intent
is being violated, an alarm is triggered, according to whether the violation relates to the

Electronics 2023, 12, 2589 21 of 23

content or to the destination address. If a rule is being violated, the system will drop that
packet, preventing it from reaching its destination.

With this mechanism, the user/consumer knows whether their devices comply with
the communication intents defined by the manufacturer. The system will show them alerts
if such a violation occurs, as demonstrated in the test results. With their defined traffic
control rules, the user now possesses control over communication intents by monitoring
exactly the amount and type of information the device is sending back to the manufacturer
or some other source and by blocking information that might compromise their privacy,
thus ensuring that their IoT device is secure, as demonstrated in the test results.

A known limitation of the described work is that the approach followed is only capable
of handling non-encrypted network traffic. Supporting a mechanism that may act as an
encryption proxy will also contribute to analysing this type of traffic. Another known
limitation of the implemented system is related to the lack of knowledge the end-users will
have to be able to properly define their user rules—it will be necessary to conduct further
research and develop an easier way for end-users to interact with the system, to express
their preferences without the technological burden.

The authors also recognise that the system could be largely improved in performance.
The system was tested in a virtualised environment, and performance could change signifi-
cantly when using real physical devices. Furthermore, it would be interesting to consider
machine learning as a way to allow the system to improve the controlling rules and con-
tribute to an even better IoT private and secure environment.

Author Contributions: Conceptualization, J.L., J.C. and C.S.; methodology, J.L. and C.S.; software,
J.L.; validation, J.L., J.C. and C.S.; formal analysis, J.L.; investigation, J.L.; writing—original draft
preparation, C.S.; writing—review and editing, C.S. and J.C.; supervision, C.S. and J.C.; project
administration, C.S. and J.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data used in this work was generated by Ostinato traffic generator
tool. This tool generated simulated traffic that was processed and analysed in our work.

Acknowledgments: We would like to thank all the support provided by SCNL Truphone, S.A. Also,
we would like to thank the research environment provided by the Information Sciences, Technologies,
and Architecture Research Center (ISTAR), supported by Fundação para a Ciência e a Tecnologia
(FCT), Portugal, under projects UIDB/04466/2020 and UIDP/04466/2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhosale, D.A.; Mane, V.M. Comparative study and analysis of network intrusion detection tools. In Proceedings of the 2015

International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, India,
29–31 October 2015; pp. 312–315.

2. Nest Home Security Devices Have a Hidden Microphone. Google Calls It an “Error”. Section: Security. Available online:
https://www.popularmechanics.com/technology/security/a26448907/google-nest-hidden-microphone/ (accessed on 3
April 2023).

3. Calado, J.P.d.C. Open Source IDS/IPS in a Production Environment: Comparing, Assessing and Implementing. Master’s Thesis,
Universidade de Lisboa, Lisbon, Portugal, 2018.

4. Chakraborty, S. When Smart Gadgets Spy on You: Your Home Life Is Less Private Than You Think. Available online:
https://economictimes.indiatimes.com/tech/internet/when-smart-gadgets-spy-on-you-your-home-life-is-less-private-than-
you-think/articleshow/60984623.cms?from=mdr (accessed on 3 April 2023).

5. Coble, S. Xiaomi Security Camera Shows User Wrong Video Feed. Available online: https://www.infosecurity-magazine.com/
news/xiaomi-camera-shows-wrong-video/ (accessed on 3 April 2023).

6. Google Nest Guard Has Microphone That Wasn’t Disclosed. Available online: https://www.mercurynews.com/2019/02/20
/google-nest-guard-has-a-microphone-but-it-didnt-say-that-on-the-box/ (accessed on 3 April 2023).

7. Statt, N. Amazon’s Alexa Isn’t just AI—Thousands of Humans Are Listening. Available online: https://www.theverge.com/20
19/4/10/18305378/amazon-alexa-ai-voice-assistant-annotation-listen-private-recordings (accessed on 3 April 2023).

https://www.popularmechanics.com/technology/security/a26448907/google-nest-hidden-microphone/
https://economictimes.indiatimes.com/tech/internet/when-smart-gadgets-spy-on-you-your-home-life-is-less-private-than-you-think/articleshow/60984623.cms?from=mdr
https://economictimes.indiatimes.com/tech/internet/when-smart-gadgets-spy-on-you-your-home-life-is-less-private-than-you-think/articleshow/60984623.cms?from=mdr
https://www.infosecurity-magazine.com/news/xiaomi-camera-shows-wrong-video/
https://www.infosecurity-magazine.com/news/xiaomi-camera-shows-wrong-video/
https://www.mercurynews.com/2019/02/20/google-nest-guard-has-a-microphone-but-it-didnt-say-that-on-the-box/
https://www.mercurynews.com/2019/02/20/google-nest-guard-has-a-microphone-but-it-didnt-say-that-on-the-box/
https://www.theverge.com/2019/4/10/18305378/amazon-alexa-ai-voice-assistant-annotation-listen-private-recordings
https://www.theverge.com/2019/4/10/18305378/amazon-alexa-ai-voice-assistant-annotation-listen-private-recordings

Electronics 2023, 12, 2589 22 of 23

8. Amazon Alexa Heard and Sent Private Chat. Available online: https://www.bbc.com/news/technology-44248122 (accessed on
3 April 2023).

9. 10 Fascinating Things We Learned When We Asked The World ’How Connected Are You?’ | The Mozilla Blog. Available
online: https://blog.mozilla.org/en/mozilla/10-fascinating-things-we-learned-when-we-asked-the-world-how-connected-
are-you/ (accessed on 3 April 2023).

10. What the Internet of Things Means for Consumer Privacy. Available online: https://impact.economist.com/perspectives/
technology-innovation/what-internet-things-means-consumer-privacy-0/white-paper/what-internet-things-means-consumer-
privacy (accessed on 3 April 2023).

11. Atlam, H.F.; Wills, G.B. IoT Security, Privacy, Safety and Ethics. In Digital Twin Technologies and Smart Cities; Internet of Things;
Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 123–149. [CrossRef]

12. Assiri, A.; Almagwashi, H. IoT Security and Privacy Issues. In Proceedings of the 2018 1st International Conference on Computer
Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 4–6 April 2018; pp. 1–5. [CrossRef]

13. Chanal, P.M.; Kakkasageri, M.S. Security and Privacy in IoT: A Survey. Wirel. Pers. Commun. 2020, 115, 1667–1693. [CrossRef]
14. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020,

10, 4102. [CrossRef]
15. Khowaja, S.A.; Khuwaja, P.; Dev, K.; Lee, I.H.; Khan, W.U.; Wang, W.; Qureshi, N.M.F.; Magarini, M. A secure data sharing

scheme in Community Segmented Vehicular Social Networks for 6G. IEEE Trans. Ind. Inform. 2022, 19, 890–899. [CrossRef]
16. Zhang, L.; Li, Y.; Jin, T.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. SPCBIG-EC: A robust serial hybrid model for smart contract

vulnerability detection. Sensors 2022, 22, 4621. [CrossRef] [PubMed]
17. Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Smart contract vulnerability detection combined with multi-objective

detection. Comput. Netw. 2022, 217, 109289. [CrossRef]
18. Ren, Y.; Zhu, F.; Sharma, P.K.; Wang, T.; Wang, J.; Alfarraj, O.; Tolba, A. Data query mechanism based on hash computing power

of blockchain in internet of things. Sensors 2019, 20, 207. [CrossRef]
19. Abdul-Ghani, H.A.; Konstantas, D. A Comprehensive Study of Security and Privacy Guidelines, Threats, and Countermeasures:

An IoT Perspective. J. Sens. Actuator Netw. 2019, 8, 22. [CrossRef]
20. Shen, Y.; Vervier, P.A. IoT Security and Privacy Labels. In Proceedings of the Privacy Technologies and Policy; Lecture Notes in

Computer Science; Naldi, M., Italiano, G.F., Rannenberg, K., Medina, M., Bourka, A., Eds.; Springer: Cham, Switzerland, 2019;
pp. 136–147. [CrossRef]

21. Mohanta, B.K.; Jena, D.; Ramasubbareddy, S.; Daneshmand, M.; Gandomi, A.H. Addressing Security and Privacy Issues of IoT
Using Blockchain Technology. IEEE Internet Things J. 2021, 8, 881–888. [CrossRef]

22. Bettayeb, M.; Nasir, Q.; Talib, M.A. Firmware Update Attacks and Security for IoT Devices: Survey. In Proceedings of the
ArabWIC 6th Annual International Conference Research Track, Rabat, Morocco, 7–9 March 2019; pp. 1–6. [CrossRef]

23. Sun, P.; Garcia, L.; Salles-Loustau, G.; Zonouz, S. Hybrid Firmware Analysis for Known Mobile and IoT Security Vulnerabilities.
In Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
Valencia, Spain, 29 June–2 July 2020; pp. 373–384. [CrossRef]

24. Srivastava, P.; Peng, H.; Li, J.; Okhravi, H.; Shrobe, H.; Payer, M. FirmFuzz: Automated IoT Firmware Introspection and Analysis.
In Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things, London, UK, 15
November 2019; pp. 15–21. [CrossRef]

25. Government Efforts toward Promoting IoT Security Awareness for end Users: A Study of Existing Initiatives—ProQuest.
Available online: https://www.proquest.com/openview/e8826900b7596e3720cbc3c9c8786ec0/1?pq-origsite=gscholar&cbl=39
6497 (accessed on 3 April 2023).

26. Bugeja, J.; Vogel, B.; Jacobsson, A.; Varshney, R. IoTSM: An End-to-End Security Model for IoT Ecosystems. In Proceedings of the
2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto,
Japan, 1–15 March 2019; pp. 267–272. [CrossRef]

27. Jaigirdar, F.T.; Rudolph, C.; Bain, C. Prov-IoT: A Security-Aware IoT Provenance Model. In Proceedings of the 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29
December 2020–1 January 2021; pp. 1360–1367. [CrossRef]

28. Irshad, M. A Systematic Review of Information Security Frameworks in the Internet of Things (IoT). In Proceedings of the 2016
IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference
on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, NSW, Australia,
12–14 December 2016; pp. 1270–1275. [CrossRef]

29. Amar, Y.; Haddadi, H.; Mortier, R.; Brown, A.; Colley, J.; Crabtree, A. An Analysis of Home IoT Network Traffic and Behaviour.
arXiv 2018, arXiv:1803.0536. https://doi.org/10.48550/arXiv.1803.05368.

30. Mazhar, M.H.; Shafiq, Z. Characterizing Smart Home IoT Traffic in the Wild. In Proceedings of the 2020 IEEE/ACM Fifth
International Conference on Internet-of-Things Design and Implementation (IoTDI), Sydney, NSW, Australia, 21–24 April 2020;
pp. 203–215. [CrossRef]

31. Ostinato Traffic Generator for Network Engineers. Available online: https://ostinato.org/ (accessed on 3 April 2023).

https://www.bbc.com/news/technology-44248122
https://blog.mozilla.org/en/mozilla/10-fascinating-things-we-learned-when-we-asked-the-world-how-connected-are-you/
https://blog.mozilla.org/en/mozilla/10-fascinating-things-we-learned-when-we-asked-the-world-how-connected-are-you/
https://impact.economist.com/perspectives/technology-innovation/what-internet-things-means-consumer-privacy-0/white-paper/what-internet-things-means-consumer-privacy
https://impact.economist.com/perspectives/technology-innovation/what-internet-things-means-consumer-privacy-0/white-paper/what-internet-things-means-consumer-privacy
https://impact.economist.com/perspectives/technology-innovation/what-internet-things-means-consumer-privacy-0/white-paper/what-internet-things-means-consumer-privacy
http://doi.org/10.1007/978-3-030-18732-3_8
http://dx.doi.org/10.1109/CAIS.2018.8442002
http://dx.doi.org/10.1007/s11277-020-07649-9
http://dx.doi.org/10.3390/app10124102
http://dx.doi.org/10.1109/TII.2022.3188963
http://dx.doi.org/10.3390/s22124621
http://www.ncbi.nlm.nih.gov/pubmed/35746403
http://dx.doi.org/10.1016/j.comnet.2022.109289
http://dx.doi.org/10.3390/s20010207
http://dx.doi.org/10.3390/jsan8020022
http://dx.doi.org/10.1007/978-3-030-21752-5_9
http://dx.doi.org/10.1109/JIOT.2020.3008906
http://dx.doi.org/10.1145/3333165.3333169
http://dx.doi.org/10.1109/DSN48063.2020.00053
http://dx.doi.org/10.1145/3338507.3358616
https://www.proquest.com/openview/e8826900b7596e3720cbc3c9c8786ec0/1?pq-origsite=gscholar&cbl=396497
https://www.proquest.com/openview/e8826900b7596e3720cbc3c9c8786ec0/1?pq-origsite=gscholar&cbl=396497
http://dx.doi.org/10.1109/PERCOMW.2019.8730672
http://dx.doi.org/10.1109/TrustCom50675.2020.00183
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2016.0180
https://doi.org/10.48550/arXiv.1803.05368
http://dx.doi.org/10.1109/IoTDI49375.2020.00027
https://ostinato.org/

Electronics 2023, 12, 2589 23 of 23

32. Snort—Network Intrusion Detection & Prevention System. Available online: https://www.snort.org/ (accessed on 3 April 2023).
33. Hafeez, S.; Eng, B. Deep Packet Inspection Using Snort. Master’s Thesis, University of Victoria, Victoria, Canada, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.snort.org/

	Introduction
	Related Work
	System Design
	Architecture
	Intents and User Rule Management REST API
	Translator (Integration Layer with Filtering Tool)
	Snort IPS
	Web Management Interface

	Snort Implementation Workflow

	System Validation and Testing
	Test System Deployment
	Functional Tests
	Test Scenario I—Violations of the Manifest of Intents
	Test Scenario II—Violations of the User Rules

	System Performance
	Intent Scenario Results
	Rules Scenario Results

	Conclusions
	References

