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Abstract: Traditional systems typically require different models for processing different modalities,
such as one model for RGB images and another for depth images. Recent research has demonstrated
that a single model for one modality can be adapted for another using cross-modality transfer
learning. In this paper, we extend this approach by combining cross/inter-modality transfer learning
with a vision transformer to develop a unified detector that achieves superior performance across
diverse modalities. Our research envisions an application scenario for robotics, where the unified
system seamlessly switches between RGB cameras and depth sensors in varying lighting conditions.
Importantly, the system requires no model architecture or weight updates to enable this smooth
transition. Specifically, the system uses a depth sensor in low light conditions (night time) and
both an RGB camera and a depth sensor or RGB camera only in well-lit environments. We evaluate
our unified model on the SUN RGB-D dataset and demonstrate that it achieves a similar or better
performance in terms of the mAP50 compared to state-of-the-art methods in the SUNRGBD16
category and a comparable performance in point-cloud-only mode. We also introduce a novel inter-
modality mixing method that enables our model to achieve significantly better results than previous
methods. We provide our code, including training/inference logs and model checkpoints, to facilitate
reproducibility and further research.

Keywords: object detection; different modalities; vision transformers; unified model

1. Introduction

Advances in computer vision and artificial intelligence have enabled the development
of increasingly sophisticated robotic applications that enhance human lives. Autonomous
vehicles, for instance, can transport individuals to their destination without the need for a
human driver/operator, while autonomous mobile robots operating in warehouses can
assist in order preparation. However, many robotic systems rely on multiple sensors, such
as cameras and 3D sensors (LiDAR or depth), and not all sensors are equally effective in
all scenarios. For instance, camera sensors may perform poorly in low-light conditions
without supplementary lighting. Thus, the ability to operate in low-light conditions can
significantly reduce electricity usage and promote environmentally friendly robot design.

The high accuracy achieved by camera-based vision systems in 2D detection owes
much to the efficacy of feature extractors based on ConvNets [1] and Transformers [2].
Concurrently, CrossTrans [3] proposes that by converting 3D sensor data into pseudo
images and applying cross-modality transfer learning, a 2D object detection system using
identical networks to those used for RGB images can produce commendable results. This
development prompts a natural question: can we further enhance performance by training
a unified network with both RGB and 3D data, adopting an identical architecture and
weights throughout? The proposed unified network accepts three types of sensor data,
namely (1) RGB images, (2) pseudo images converted from 3D sensors, and (3) both RGB
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images and pseudo images converted from 3D sensors. If a unified network can match or
exceed the detection performance of separate networks, each optimized for a particular
modality, it would make feasible the use of an eco-friendly system operating under natural
lighting conditions during the day and without any extra lighting at night.

One notable advantage of implementing a unified system resides in its capacity to
reduce memory consumption. The utilization of separate models for camera, depth, or both
camera and depth necessitates approximately two to three times more storage space to
accommodate the weight of the models. This advantage carries particular relevance for
mobile robotics, which typically possess hardware with relatively limited capabilities when
compared to consistently powered computers. Furthermore, as the size of models continues
to grow (as exemplified by the Swin Transformer v2 [4] with 3 billion parameters, while
the initial version, Swin Tiny [5], comprises less than 0.5 billion parameters), this benefit
assumes a significant role in facilitating the integration of large models within robotics
applications. This article examines the potential of such a unified system. Building on
CrossTrans [3], which demonstrates the superior performance of a Vision-Transformer-
based network over ConvNets-based networks, our study concentrates exclusively on the
Vision Transformer network.

In summary, this article aims to address the following research questions:

1. Can a unified model achieve comparable or superior performance in processing both
RGB images and pseudo images converted from point clouds?

2. If a unified model that processes both RGB and pseudo images is feasible, can the
RGB and pseudo images be further fused to enhance the model’s ability to process
both RGB and point cloud data?

We conducted experiments that resulted in insightful observations and achieved
state-of-the-art performance in 2D object detection. Our proposed unified model, named
the Unified Object Detector for Different Modalities (UODDM), is capable of processing
various types of images, including RGB images, pseudo images converted from point
clouds, and inter-modality mixing of RGB images and pseudo images converted from
point clouds. Figure 1 illustrates the differences between our model and other works.
Furthermore, the performance comparison of different methods can be found in the “Results
on the SUN RGB-D Dataset” session. Visualizations of UODDM outputs are presented
in Figure 2. More samples can be found in our demo video accessed on 31 May 2023
https://youtu.be/PuRQCLLSUDI.

The key contributions of our work can be summarized as follows:

1. We propose two inter-modality mixing methods which can combine the data from
different modalities to further feed to our unified model.

2. We propose a unified model which can process any of the following images: RGB
images, pseudo images converted from point clouds or inter-modality mixing of RGB
image, and pseudo images converted from point clouds. This unified model achieves
similar performance to RGB-only models and point-cloud-only models. Meanwhile,
by using the inter-modality mixing data as input, our model can achieve a significantly
better 2D detection performance.

3. We open source our code, training/testing logs, and model checkpoints.

Code can be found https://github.com/liketheflower/UODDM, accessed on 31
May 2023.

https://youtu.be/PuRQCLLSUDI
https://github.com/liketheflower/UODDM
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Figure 1. Model A exclusively processes RGB images, with the visualization generated solely from
the RGB-trained model presented in this study. Model B operates on pseudo images converted from
point clouds, and the visualization is derived from the CrossTrans [3] approach, which trains on these
images. Model C is capable of processing RGB images, pseudo images converted from point clouds,
or a combination of both. The visualization is based on UODDM with a Swin-T [5] backbone network.

Figure 2. 2D detection results of UODDM, using the SUN RGB-D validation dataset. It showcases
four examples of 2D detection visualization, with the left column showing RGB images, the middle
column displaying pseudo images converted from point clouds, and the right column illustrating
inter-modality mixing of RGB images and pseudo images converted from point clouds. The backbone
network used in this study is Swin-T.
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2. Related Work

Projecting 3D sensor data to 2D pseudo images: There are different ways to project
3D data to 2D features. HHA was proposed in [6], where the depth image is encoded with
three channels: horizontal disparity, height above ground, and the angle of each pixel’s
local surface normal with gravity direction. The signed angle feature described in [7]
measures the elevation of the vector formed by two consecutive points and indicates the
convexity or concavity of three consecutive points. Input features converted from depth
images of normalized depth (D), normalized relative height (H), angle with up-axis (A),
signed angle (S), and missing mask (M) were used in [8]. DHS images are used in [9,10].

Object detection based on RGB images or pseudo images from point clouds by Vision
Transformers: Object detection approaches can be summarized as two-stage frameworks
(proposal and detection stages) and one-stage frameworks (proposal and detection in
parallel). Generally speaking, two-stage methods such as R-CNN [11], Fast RCNN [12],
Faster RCNN [13], FPN [14], and mask R-CNN [15] can achieve a better detection perfor-
mance, while one-stage systems such as YOLO [16], YOLO9000 [17], and RetinaNet [18]
are faster at the cost of reduced accuracy. For deep-learning-based systems, as the size of
the network is increased, larger datasets are required. Labeled datasets such as PASCAL
VOC dataset [19] and COCO (Common Objects in Context) [20] have played important
roles in the continuous improvement of 2D detection systems. Most systems introduced
here are based on ConvNets. Nice reviews of 2D detection systems can be found in [21].
When replacing the backbone network from ConvNets to Vision Transformer, the systems
will be adopted to Vision-Transformers-backbone-based object detection systems. The most
successful systems are Swin-transformer [5] and Swin-transformer v2 [4]. CrossTrans [3]
explored the cross modality transfer learning by using both the ConvNets and Vision
Transfomers based on the SUN RGB-D dataset based on the mask R-CNN [15] approach.

Inter-modality mixing: Ref. [22] learns a dynamical and local linear interpolation be-
tween the different regions of cross-modality images in a data-dependent fashion to mix up
the RGB and infrared (IR) images. We explored both the static and dynamic mixing methods
and found the static has a better performance. Ref. [23] uses an interpolation between the
RGB and thermal images at the pixel level. As we are training a unified model supporting
both the single modality image and multiple modality images as input, we do not apply
interpolation to keep the original signal of each modality. We leverage the transformer
architecture itself to automatically build up the gap between different modalities.

Multimodal data fusion: Multimodal data fusion can be performed using three differ-
ent approaches: early fusion, late fusion, and deep fusion. Early fusion combines various
modalities of data at a lower-dimensional common space, and a feature extractor is then
employed to extract relevant information. Early fusion has been applied to object detec-
tion and audio–visual processing, as demonstrated in [24,25], respectively. Late fusion,
on the other hand, employs independent feature extractors for different data sources and
merges the extracted features in the final stage. Classical works on deep fusion for action
recognition, gesture segmentation and recognition, and emotion recognition are demon-
strated in [26–28], respectively. Deep fusion is characterized by fusing data at various
stages of model training, transforming the input data into a higher-level representation
through multiple layers, and allowing for the fusion of diverse modalities into a single
shared representation layer. Various works such as [29–34] have applied deep fusion to
object detection. The study in [35] explores all three fusion methods for indoor semantic
segmentation. In our research, we have chosen to adopt the early fusion approach for
multimodal data processing.

3. Methodology

In this section, we will describe our approach for converting structured point clouds
to pseudo images and the methods we use for mixing various modalities, as well as our
detection frameworks.
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3.1. Convert Point Clouds to Pseudo 2D Images

In order to use pretrained models based on RGB images, we convert point clouds to
pseudo 2D images with three channels. The point clouds can be converted to HHA or any
three channels from DHASM introduced in [8].

For this work, we follow the same approaches in Frustum VoxNet [9] and CrossTrans [3]
by using DHS to project 3D depth data to 2D images [8]. Here, we present a summary of
the DHS encoding method. Similar to [6,8], we adopt Depth from the sensor and Height
along the sensor-up (vertical) direction as two reliable measures. The Signed angle was
introduced in [7] and summarized in [3] as the following: “For the Signed angle: Let
us denote as Xi,k = [xik, yik, zik] the vector of 3D coordinates of the k-th point in the i-th
scanline. Knowledge of the vertical direction (axis z) is provided by many laser scanners,
or even can be computed from the data in indoor or outdoor scenarios (based on line/plane
detection or segmentation results from machine learning models) and is thus assumed
known. Define Di,k = Xi,k+1 − Xi,k (difference of two successive measurements in a given
scanline i), and Aik: the angle of the vector Di,k with the pre-determined z axis (0 to 180 de-
grees). The Signed angle Sik = sgn(Di,k · Di,k−1) ∗ Aik: the sign of the dot product between
the vectors Di,k and Di,k−1, multiplied by Vik. This sign is positive when the two vectors
have the same orientation and negative otherwise”. Following [3], these three channel
pseudo images are normalized to 0 to 1 for each channel. Some samples DHS images can
be seen in Figures 3 and 4.

Figure 3. An example of converted pseudo three channel image from the point cloud. This example
is one image selected from the validation set of the SUN RGB-D dataset. The corresponding RGB
image can be found in Figure 1.

Figure 4. Inter-modality mixing. Left column: original RGB image (up) and the original DHS image
(bottom). Middle column: the Chessboard Per Patch Mixing image. Patch size of 15 by 15 pixels (up)
and 1 by 1 pixel (bottom). Right column: the Stochastic Flood Fill Mixing image. Edge connection
probability of 0.5 and 0.5 for RGB and DHS, respectively (up), probability of 0.1 and 0.1 for RGB and
DHS, respectively (bottom).
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3.2. Inter-Modality Mixing

In order to expand the input options for our unified model, we introduce an inter-
modality mixing approach that enables us to combine images from different modalities
into a three-channel image for consumption by the model. This approach allows us to
enhance the model’s capabilities without modifying its architecture. By training a model
using RGB images, DHS images, and the mixed RGB and DHS images, we can achieve a
unified detector that is capable of processing different modalities as input.

When considering the fusion of different modalities, two approaches can be employed:
mixing them into three channels, as implemented in our study, or utilizing a six-channel
(RGBDHS) image configuration. However, we advocate for the former approach for the
following reasons: Firstly, adopting a consistent channel number for RGB, DHS, and mixed
RGB–DHS images enables the construction of a unified model. Secondly, leveraging
pretrained weights from RGB images for the mixed RGB–DHS images confers notable
benefits. The work [9] demonstrates that training a six-channel RGBDHS model from
scratch yields a significantly inferior 2D detection performance.

Various techniques can be employed to fuse images from different modalities, and we
propose two approaches:

• Per Patch Mixing (PPM): divide the whole image into different patches with equal
patch size. Randomly or alternatively select one image source for each patch.

• Stochastic Flood Fill Mixing (SFFM): Using a stochastic way to mix the images from
different modalities.

We implement the Per Patch Mixing approach with relative simplicity. Specifically,
for each patch in the image, we alternatively selected a modality image to assign to that
patch. Moreover, we opted to utilize square patches for our implementation. As a re-
sult, the mask for selecting the modality image for each patch resembles a chessboard
pattern, leading us to refer to our implementation as Chessboard Per Patch Mixing (CPPM).
Examples of CPPM are shown in the middle of Figure 4.

The Stochastic Flood Fill Mixing technique is an adaptation of the flood fill algo-
rithm [36]. The approach involves establishing connections between neighboring pixels
with a probability p, with separate probabilities for the RGB and DHS modalities. The al-
gorithm can be implemented using four or eight neighbors to build the graph, with the
latter including additional diagonal offsets. In our experiments, we used the four neighbor
approach. The Python-style pseudocode for this algorithm is illustrated in Figure 5, while
examples of SFFM are shown on the right side of Figure 4.

3.3. Two-Dimensional Detection Framework

For the purpose of 2D detection and instance segmentation, we adopt the conven-
tional object detection framework, namely Mask R-CNN [15], which is implemented in
MMDetection [37]. It follows a two-stage approach [21], namely region proposal and
detection/segmentation, for accomplishing detection and segmentation tasks. During the
fine-tuning of the model on the SUN RGB-D dataset, we disable the training of the mask
branch. However, even with the default weights from the pre-trained model, the mask pre-
diction branch can still generate acceptable mask predictions, as demonstrated in Figure 1.
This observation aligns with the findings of the research on CrossTrans [3].
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Figure 5. The pseudocode for Stochastic Flood Fill Mixing is presented in Python style, with line
17 to 20 representing the stochastic aspect that differentiates it from the original flood fill algo-
rithm. The mask is used to determine which image’s pixel value should be used in generating the
mixing image.

3.4. Two-Dimensional Detection Backbone Networks

For the backbone network, we use Swin Transformer [5]; specifically, we explored
Swin-Tiny’s and Swin-Small’s performance. The complexities of Swin-T and Swin-S are
similar to those of ResNet-50 and ResNet-101, respectively. The window size is set to M = 7
by default. The query dimension of each head is d = 32, and the expansion layer of each
MLP is α = 4. The architecture hyper-parameters of these two models are:

• Swin-T: C = 96, layer numbers = {2, 2, 6, 2}.
• Swin-S: C = 96, layer numbers = {2, 2, 18, 2}.

C is the channel number of the hidden layers in the first stage. For details of the model
architecture, please check the Swin Transformers [5] paper.

3.5. SUN RGB-D Dataset Used in This Work

The SUN RGB-D [38] dataset is an indoor dataset which provides both point cloud
and RGB images. In this work, since we are building a 3D only object detection system,
we only use the point clouds for fine tuning. The RGB images are not used during the fine
tuning process. For the point clouds, they are collected based on four types of sensors:
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Intel RealSense, Asus Xtion, Kinect v1, and Kinect v2. The first three sensors used an IR
light pattern. Kinect v2 is based on the time of flight. The longest distance captured by the
sensors is around 3.5 to 4.5 meters.

The SUN RGB-D dataset is split into a training set, which contains 5285 images, and a
testing set, which contains 5050 images. For the training set, it is further split into a training
only set, which contains 2666 images, and a validation set, which contains 2619 images.
Similar to [9,10,39,40], we fine tune our model based on the training only set and evaluate
our system based on the validation set.

3.6. Pre-Training

Both the Swin-T- and Swin-S-based networks (the pretrained weights are loaded from
mmdetection [37]) are firstly pre-trained on ImageNet [41] and then pre-trained on the
COCO dataset [20].

Data augmentation: When pre-training on the COCO dataset, image augmentations
are applied during the training stage by randomly horizontally flipping the image with
probability of 0.5; randomly resizing the image with a width of 1333 and a height from 480
to 800 (for details see the configure file from the github repository); randomly cropping the
original image with a size of 384 (height) by 600 (width); and resizing the cropped image to
a width of 1333 and a height from 480 to 800.

3.7. Fine-Tuning

Data augmentation: We follow the same augmentation as the pre-training stage.
The raw input images have a width of 730 and a height of 530. These raw images are
randomly resized and cropped during training. During testing, the images are resized to a
width of 1120 and a height of 800, which can be divided by 32.

Hardware: For fine tuning, we use a standard single NVIDIA Titan-X GPU, which
has a 12 GB memory. We fine tune the network for 133 K iterations for 100 epochs. It took
about 29 h for the Swin-T-based network with a batch size of 2 (for 133 K iterations) for the
RGB-only model. For the UODDM without the inter-modality mixing, it took about 2 days
to train the model. For the UODDM with inter-modality mixing, the speed depends on the
number of inter-modality mixing images added to the training data.

Fine-tuning subtasks: We are focused on the 2D object detection performance, so we
fine tuned the model based on 2D-detection-related labels. Similar to CrossTrans [3], we
did not train the mask branch to further verify whether reasonable mask detection can be
created by using the weights from the pre-training stage.

4. Results on the SUN RGB-D Dataset
4.1. Experiments

The primary focus of our experiments centers around the training of the model using
diverse input data and a comparison of performance differences. Specifically, we first
trained a unified model on both RGB and DHS images for the UODDM without inter-
modality mixing. In this procedure, during the training stage, RGB and DHS images were
combined, resulting in a mixed dataset. When forming batches for training, both RGB
and DHS images were selected randomly from this combined dataset. In contrast, for the
UODDM with inter-modality mixing, we augmented the training data with inter-modality
mixing images, in addition to the RGB and DHS images.

4.2. Evaluation Metrics

Following the previous works [3,6,9,40,42], we firstly used the AP50 (Average Precision
at IoU = 0.5) as an evaluation metric. We also used the COCO object detection metric which
is AP75 (Average Precision at IoU = 0.75) and a more strict one, AP at IoU = 0.50:0.05:0.95,
to evaluate the 2D detection performance.
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4.3. Evaluation Subgroups

We used the same subgroups as CrossTrans [3] to evaluate the performance. The sub-
groups are SUNRGBD10, SUNRGBD16, SUNRGBD66, and SUNRGBD79, which have 10,
16, 66, and 79 categories. A detailed list of these subgroups can be found in CrossTrans [3].

4.4. The Performance of UODDM without Inter-Modality Mixing

We first evaluated the performance of UODDM without inter-modality mixing. For this,
the model was trained based on both the RGB and DHS images. Our model architecture is
the same as the CrossTrans [3] work, which uses only DHS images to train the model. We
traines a RGB-image-only model based on the same network to compare with the UODDM
one’s performance.

The performance evaluation of our proposed UODDM approach, measured in terms
of mean average precision (mAP50), on the SUNRGBD79 dataset is presented in Figure 6.
The results show that the UODDM model performs exceptionally well on both RGB and
DHS images. Additionally, it is evident that the UODDM model significantly outperforms
the DHS-only model in terms of performance on DHS images, which can be attributed
to the inter-modality transfer learning from the RGB images. However, this performance
improvement on DHS images comes at the slight cost of a performance reduction on
RGB images. Nevertheless, the UODDM model’s overall performance is promising as
it is a single model that can handle different modalities, making it more efficient than
maintaining two separate architectures or a single architecture with two different sets of
weights. This efficiency is particularly valuable for robotics and edge devices, where a
seamless perception system can be built, even when transitioning from daytime to nighttime
scenarios. Table 1 provides additional results for our UODDM and single-modality models,
reinforcing the same conclusions.
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Figure 6. Comparison of the unified model’s and separate models’ performances with the training
epochs. The RGB-only model is our new trained model based on RGB images. The DHS-only model
is from CrossTrans [3]. The UODDM is trained based on both RGB and DHS images. The backbone
for all these experiments is based on the Swin-T model.
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Table 1. Results comparison based on mAP50 for different subgroups of UODDM and single modality
only models. The bold ones represent the best results within each test modality category.

Model Test on Backbone SUNRGBD10 SUNRGBD16 SUNRGBD66 SUNRGBD79

RGB only (ours) RGB Swin-T 54.2 52.3 29.3 25.2
UODDM (ours) RGB Swin-T 53.9 52.5 28.7 24.7

DHS only (CrossTrans [3]) DHS Swin-T 55.8 52.7 26.1 22.1
UODDM (ours) DHS Swin-T 56.6 53.4 27.7 23.5

4.5. The Performance of UODDM with Inter-Modality Mixing

In our study, we investigated two different methods for inter-modality mixing, namely
SFFM and CPPM. For SFFM, we generated six mixing images for each RGB and DHS image
pair, with connection probabilities for RGB and DHS pixels being randomly selected from
the range of 0.1 to 0.9. The first pixel’s RGB and DHS masks were randomly initialized with
equal probability. In contrast, for CPPM, we used square patches of size 1 by 1, resulting in
one CPPM image for each RGB and DHS image pair. The performance of both approaches
was evaluated and is presented in Table 2. Notably, the results suggest that the UODDM
with CPPM outperforms the UODDM with SFFM. We attribute this to the generation
of an excessive number of random images by SFFM, which can negatively impact the
performance of the unified network on RGB and DHS images. Conversely, CPPM provides
a comparable performance to the plain UODDM model. Furthermore, the use of the CPPM
images generated from both RGB and DHS images led to the best 2D detection performance.
Given the ability of UODDM with CPPM to support RGB, DHS, and CPPM images from
RGB and DHS images, we propose it as a more powerful unified model.

Table 2. Results comparison based on mAP50 for different subgroups of UODDM and single-
modality-only models. The bold ones represent the best results within each test modality category.

Model Test on Backbone SUNRGBD10 SUNRGBD16 SUNRGBD66 SUNRGBD79

UODDM RGB Swin-T 53.9 52.5 28.7 24.7
UODDM + SFFM RGB Swin-T 24.6 17.5 19.2 20.1
UODDM + CPPM RGB Swin-T 54.2 51.9 27.7 23.7
UODDM + CPPM RGB Swin-S 54.6 52.7 27.5 23.6

UODDM DHS Swin-T 56.6 53.4 27.7 23.5
UODDM + SFFM DHS Swin-T 25.6 18.7 20.0 21.3
UODDM + CPPM DHS Swin-T 55.8 52.8 26.3 22.4
UODDM + CPPM DHS Swin-S 57.4 52.5 24.8 21.1

UODDM + CPPM CPPM Swin-T 58.1 55.8 29.5 25.2
UODDM + CPPM CPPM Swin-S 58.4 56.1 28.4 24.5

4.6. Influence of Different Backbone Networks

Table 2 presents the results obtained by using Swin-T and Swin-S as the backbone
networks. It is observed that Swin-S is a more powerful network; however, the performance
gain achieved is limited. Therefore, we propose the usage of the lightweight Swin-T as the
backbone network to achieve a faster inference speed.

4.7. Comparison with Other Methods

In Table 3, we present a detailed comparison of per category results with previous
works. Specifically, we evaluate the performance of our approach under three different
input scenarios: RGB images, point cloud data, and a combination of RGB and point cloud
data using our proposed inter-modality mixing method.
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Table 3. Two-dimensional detection results based on the SUN RGB-D validation set. The evaluation metric is average precision, with a 2D IoU threshold of 0.5.
The 10 categories SUNRGBD10 results are shown. The image source indicates the image type used during inference. During the training phase, the UODDM is the
only system that employs images from various sources, as previously described. In contrast, the remaining systems utilize the same image source for both training
and testing. The best two results across all image source are highlighted in red and blue, respectively. The best result for each image source is shown in bold.

Image Source
(for testing) Methods Backbone Bed Toilet Night

Stand Bathtub Chair Dresser Sofa Table Desk Bookshelf SUNRGBD10
mAP50

RGB

2D driven [40] VGG-16 74.5 86.2 49.5 45.5 53.0 29.4 49.0 42.3 22.3 45.7 49.7
Frustum PointNets [42] VGG 56.7 43.5 37.2 81.3 64.1 33.3 57.4 49.9 77.8 67.2 56.8

F-VoxNet [9] ResNet 101 81.0 89.5 35.1 50.0 52.4 21.9 53.1 37.7 18.3 40.4 47.9
RGB only model (ours) Swin-T 83.2 93.9 51.8 54.2 60.4 23.7 51.3 46.3 22.5 54.4 54.2

UODDM (ours) Swin-T 83.6 87.1 53.3 58.8 62.5 22.6 54.2 46.8 22.0 48.0 53.9
UODDM + CPPM (ours) Swin-T 83.6 88.6 53.0 59.1 60.8 26.5 50.7 46.1 22.0 52.0 54.2

Depth/Point Cloud

F-VoxNet [9] ResNet 101 78.7 77.6 34.2 51.9 51.8 16.5 48.5 34.9 14.2 19.2 42.8
CrossTrans [3] Swin-T 87.2 87.7 51.6 69.5 69.0 27.0 60.5 48.1 19.3 38.3 55.8

UODDM (ours) Swin-T 88.1 87.6 53.8 66.8 69.5 28.7 62.2 47.2 19.7 41.9 56.6
UODDM + CPPM (ours) Swin-T 88.0 85.6 51.8 68.3 68.6 26.9 61.6 45.5 20.2 41.7 55.8

RGB and
Depth/Point Cloud

RGB-D RCNN [6] VGG 76.0 69.8 37.1 49.6 41.2 31.3 42.2 43.0 16.6 34.9 44.2
UODDM + CPPM (ours) Swin-T 86.5 91.0 54.4 70.2 67.2 30.3 57.5 48.7 22.8 52.7 58.1
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When considering RGB images as inputs, we observe that our best performing
UODDM with CPPM or RGB-only model achieve slightly worse performance (54.2 mAP50
on SUNRGBD10) than the state-of-the-art Frustum PointNets [42]. On the other hand,
when utilizing only point cloud data as inputs, our plain UODDM model (without inter-
modality mixing) demonstrates a slightly better performance (56.6 mAP50 on SUNRGBD10)
compared to the previous state-of-the-art method [3].

Remarkably, our proposed UODDM with CPPM significantly outperforms the pre-
vious best results obtained by RGB-D RCNN [6] (58.1 mAP50 on SUNRGBD10) in the
scenario where both RGB and point cloud data are available. Notably, most prior works
have focused on utilizing either RGB or point cloud data, with limited exploration of mix-
ing methods for these modalities. Therefore, the proposed inter-modality mixing method
constitutes a significant contribution to the field.

Moreover, our UODDM with CPPM method demonstrates a substantial performance
gain compared to the strongest 2D detector for RGB images, i.e., Frustum PointNets [42].
Specifically, our approach achieves 58.1 mAP50 on SUNRGBD10, which is superior to the
performance of Frustum PointNets (56.8 mAP50 on SUNRGBD10).

The results of SUNRGBD16, which has 16 categories, can be found is Table 4. From the
results, we can see that our UODDM has a much better performance than previous state-of-
the-art methods. Among the new methods, as expected, the UODDM + CPPM using both
the RGB images and depth as inputs achieves the best result.

Table 4. Two-dimensional detection results based on the SUN RGB-D validation set for SUNRGBD16.
The evaluation metric is average precision with a 2D IoU threshold of 0.5. Since the 10 categories are
provided in Table 3, only the results of the remaining 6 categories are shown in this table. The bold
ones represent the best results across all test modality categories.

Image Source
(for Testing) Methods Backbone Sofa

Chair
Kitchen
Counter

Kitchen
Cabinet

Garbage
Bin Microwave Sink SUNRGBD16

mAP50

RGB
F-VoxNet [9] ResNet 101 47.8 22.0 29.8 52.8 39.7 31.0 43.9

RGB-only model (ours) Swin-T 60.4 32.7 39.8 67.0 48.1 47.3 52.3
UODDM (ours) Swin-T 63.7 28.9 38.4 67.1 57.4 46.2 52.5

UODDM + CPPM (ours) Swin-T 60.6 31.2 37.8 64.7 54.3 40.1 51.9

Depth/Point Cloud
F-VoxNet [9] ResNet 101 48.7 19.1 18.5 30.3 22.2 30.1 37.3

CrossTrans [3] Swin-T 68.1 30.7 35.5 61.2 41.9 47.7 52.7
UODDM (ours) Swin-T 68.5 28.5 35.8 62.8 41.9 51.5 53.4

UODDM + CPPM (ours) Swin-T 67.6 29.2 33.0 61.6 47.4 47.5 52.8

RGB and
Depth/Point Cloud UODDM + CPPM (ours) Swin-T 66.6 29.2 41.2 68.6 57.9 48.0 55.8

4.8. More Results Based on Extra Evaluation Metrics

More results based on mAP/mAP75 can be found in the Appendix A.

4.9. Number of Parameters and Inference Time

Table 5 presents the number of parameters and inference time for our proposed
network architecture. The inference time reported for the Swin-T-based network is the
same as that reported in the CrossTrans [3] paper, as we used the same network and
hardware. However, since the Swin-S-based network is larger, the inference time is slower,
which is expected.

Table 5. Number of parameters and inference time comparison. All speed tests are based on a
standard single NVIDIA Titan-X GPU.

Method Backbone Network # Parameters (M) GFLOPs Inference Time (ms) FPS

F-VoxNet [9] ResNet-101 64 - 110 9.1
CrossTrans [3] ResNet-50 44 472.1 70 14.3
CrossTrans [3] Swin-T 48 476.5 105 9.5

UODDM (ours) Swin-T 48 476.5 105 9.5
UODDM (ours) Swin-S 69 419.7 148 6.8
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5. Conclusions

This paper proposes novel inter-modality mixing methods and presents a unified
model capable of processing various types of data modalities, including RGB images from
cameras, DHS images from depth sensor, and inter-modality mixing images from both RGB
and DHS sources. This unified model demonstrates a comparable performance to those of
individual models trained on each modality. By eliminating the need to maintain distinct
models for different modalities, this unified model exhibits a high memory efficiency and
can be highly reliable in robotic perception systems, particularly in scenarios involving
varying modalities such as day and night conditions.
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Appendix A. More Results

Besides the AP50, which was mainly used in previous works, we also use AP75 and
AP to compare the results based on different methods. Meanwhile, we also report AP
Across Scales of small, medium, and large by following the same standard of the COCO
dataset. These results can be found in Table A1. From the results, we see that, in general,
the UODDM with CPPM achieves the best performance on CPPM images. This is mainly
due to the fact that both the RGB and DHS images are used for the system. When only
using RGB images and when only using DHS images, the unified model UODDM with
CPPM has a similar performance to the single-modality-based model.

https://rgbd.cs.princeton.edu
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Table A1. Further results comparisons based on AP@IoU = 0.75, AP, and AP of different scales. As most other works shown in Table 3 did not report the results
AP@IoU = 0.75, AP, and AP of different scales, these works are not included in this table. The bold ones represent the best results across all test modality categories.

Method Test on Backbone Network SUNRGBD10 SUNRGBD16 SUNRGBD66 SUNRGBD79
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 APS APM APL

RGB only (Ours) RGB Swin-T 29.6 54.2 28.9 28.6 52.3 28.3 15.4 29.3 14.3 13.1 25.2 12.1 1.0 5.2 16.8
UODDM (Ours) RGB Swin-T 30.7 53.9 30.9 29.5 52.5 29.7 15.3 28.7 14.5 13.1 24.7 12.2 0.2 4.6 16.9

UODDM + CPPM (Ours) RGB Swin-T 30.9 54.2 30.5 29.2 51.9 28.9 14.5 27.7 13.2 12.4 23.7 11.1 0.7 4.1 15.7
UODDM (Ours) RGB Swin-S 31.8 54.7 32.3 30.0 52.5 29.6 15.1 28.2 13.7 12.9 24.4 11.6 0.4 4.2 16.1

UODDM + CPPM (Ours) RGB Swin-S 31.3 54.6 31.3 29.9 52.7 29.6 14.6 27.5 13.5 12.4 23.6 11.4 0.7 3.9 15.5

CrossTrans [3] DHS Swin-T 33.3 55.8 34.7 30.7 52.7 31.5 14.3 26.1 14.0 12.0 22.1 11.7 0.6 4.7 15.2
UODDM (Ours) DHS Swin-T 34.0 56.6 34.9 31.4 53.4 31.9 15.4 27.7 14.8 13.0 23.5 12.4 0.4 4.6 16.4

UODDM + CPPM (Ours) DHS Swin-T 33.8 55.8 35.9 31.3 52.8 32.5 14.9 26.3 14.7 12.6 22.4 12.4 0.6 4.4 16.0
UODDM (Ours) DHS Swin-S 34.8 57.6 37.0 31.7 53.7 32.4 14.8 26.6 14.2 12.5 22.6 12.0 0.7 4.2 15.7

UODDM + CPPM (Ours) DHS Swin-S 34.1 57.4 35.8 30.9 52.5 31.8 14.1 24.8 14.0 11.9 21.1 11.8 1.1 4.5 15.1

UODDM + CPPM (Ours) CPPM images Swin-T 34.2 58.1 35.0 32.6 55.8 33.2 16.3 29.5 15.9 13.8 25.2 13.4 0.4 5.0 17.1
UODDM + CPPM (Ours) CPPM images Swin-S 34.6 58.4 36.0 33.0 56.1 34.4 15.9 28.4 15.7 13.7 24.5 13.4 1.2 5.4 16.8
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