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Abstract: The Si and Mn contents in steel alloys are important characteristic indexes that influence
the plasticity and welding properties of these alloys. In this work, the quantitative analysis methods
for trace elements under complex alloy matrices by laser-induced breakdown spectroscopy (LIBS) are
studied, which provide a foundation for utilizing LIBS technology in the rapid online detection of
steel alloy properties. To improve the quantitative analysis accuracy of LIBS, deep learning algorithm
methods are introduced. Given the characteristics of LIBS spectra, we explore multi-perspective
feature extraction and backward differential methods to extract the spatio-temporal characteristics
of LIBS spectra. The Text Convolutional Neural Network (TextCNN) model, combined with multi-
perspective feature extraction, displays good stability and lower average relative errors (6.988% for
Si, 6.280% for Mn) in the test set compared to the traditional quantitative analysis method and deep
neural network (DNN) model. Finally, the backward differential method is employed to optimize
the two-dimensional LIBS spectral input matrix, and the results indicate that the average relative
errors of Si and Mn elements in the test set decrease to 5.139% and 3.939%, respectively. The method
proposed in this work establishes a theoretical basis and technical support for precise prediction and
online quality monitoring.

Keywords: laser-induced breakdown spectroscopy (LIBS); convolutional neural networks;
multi-perspective feature; backward difference; steel alloys; quantitative analysis

1. Introduction

Metallic inclusions, such as silicon (Si) and manganese (Mn), have an immediate
impact on the hardness, plasticity, and strength of steel alloys [1,2]. When Si content is
below 0.6% (wt) and Mn content is below 1.5% (wt), the hardness and strength of steel
alloys significantly improve. However, as Si and Mn contents increase, the plasticity,
toughness, and welding properties of steel alloys gradually weaken, affecting the quality of
steel alloys [3,4]. Laser-induced breakdown spectroscopy (LIBS) has become a promising
elemental online detection technique for industrial applications owing to its attributes of
real-time, rapid, multi-component simultaneous detection, and low requirement of sample
preparation [5,6]. However, due to the complex elemental compositions of steel alloys,
LIBS technology outputs complex spectral data containing peak overlaps and interference
between characteristic spectral lines [7,8]. How to effectively extract available characteristic
information from complicated high-dimensional spectral data and improve the precision of
quantitative analysis has become the focus of research [9,10].

In recent years, deep learning methods have become a focus in quantitative analysis
research for LIBS due to their powerful self-learning ability and sharp senses of discovering
the intrinsic patterns in high-dimensional data [11,12]. Convolutional neural network
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(CNN) is a typical deep learning algorithm which extracts useful information and reduces
high dimensionality. Numerous researchers have focused on the research of LIBS by
CNN [13]. Pengfei Zhang et al. [14] used a Resnet network to quantify the elemental
compositions from LIBS signals on Mars, which effectively reduced the prediction error of
measuring elements. Yun Zhao et al. [15] applied LIBS and principal component analysis
(PCA) combined with deep learning networks to classify tobacco soil samples and calculate
the composition of Pb in soils. Xuebin Xu et al. [16] used CNN to detect the concentrationa
of N, P, and K in soil samples by LIBS and the relative errors of prediction decreased to
7.5%. Pengju Xing et al. [17] applied LIBS and DP-CNN to detect Li in seawater, and the
mean squared error of prediction was close to 3.48%.

The quantitative analysis of steel alloys using LIBS is hindered by two problems: peak
overlaps and interference, as well as the high dimensionality of data. In order to overcome
these problems, this paper proposes a methodology, which employs TextCNN combined
with a multi-perspective feature extraction method to extract features from the distribution
information of the spectral data and reduce dimensionality. Following that, the backward
differential method was used to optimize the input variables for TextCNN. The proposed
method was applied to analyze the trace elements Si and Mn in steel alloys accurately.

2. Experiments
2.1. LIBS Instrumentation

The experimental setup for LIBS is depicted in Figure 1. As shown in Figure 1, the
instrument was equipped with an Nd:YAG laser (λ = 1064 nm), working at 90 mJ per pulse
in about 10 ns, at a repetition rate of 10 Hz with the corresponding laser fluence of 230 J/cm2.
The laser beam was focused on the surface of a steel alloy pellet perpendicularly via a 10 cm
focal length lens. To ensure accuracy, the sample was placed on a two-dimensional rotary
platform, which stabilizes the repeated measurements. The plasma radiation was collected
by a set of 38.1 mm focal length lenses and coupled into a mid-step grating spectrometer
(Andor Mechelle 5000, Andor Technology, London, England). The spectrometer covers a
wide range of wavelengths from 220 nm to 850 nm with a spectral resolution of 0.1 nm,
providing 23,399 channels for each spectrum. An ICCD detector (Andor, DH734i-18F-03)
was used to detect the signal.
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Figure 1. Schematic diagram of the LIBS experiment set-up.

2.2. Steel Alloy Samples

Thirteen steel alloy samples labeled 1# to 13# were provided and certified by the
German Federal Institute for Materials Testing (BAM). Prior to all the experimentation,
all the surfaces of the steel alloy samples were smoothed by sandpapers. The main trace
elements contained in the samples were Si, Mn, C, Cr, Ni, and Mo., and the elemental
contents are listed in Table 1.
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Table 1. The contents of elements in steel alloys (%).

Sample Si Mn C Cr Ni Mo

1# 0.460 0.740 0.092 12.350 12.550 —
2# 0.374 0.686 0.0103 14.724 6.124 0.0138
3# 0.463 0.722 0.0345 11.888 12.850 0.0304
4# 0.270 1.400 0.0190 18.460 10.200 0.2650
5# 0.570 0.791 0.0860 25.390 20.05 —
6# 0.405 1.380 0.0660 17.310 9.24 0.0920
7# 0.480 1.311 0.0141 17.840 10.20 —
8# 1.410 1.700 0.1430 17.960 8.90 —
9# 0.210 0.890 0.0500 14.140 5.66 1.590
10# 0.537 1.745 0.0201 16.811 10.720 2.1110
11# 0.531 1.016 0.0489 14.630 24.680 —
12# 0.344 0.897 0.0223 18.370 12.330 —
13# 0.344 0.897 0.0223 18.370 12.330 —

2.3. Data Acquisition and Preprocessing

In order to determine the optimal delay time and gate width, repetition tests were
carried out. The signal-background-ratio (SBR) values of Fe I:425.075 nm were calculated.
The relationship between the SBR values and delay times is shown in Figure 2. As a
result, the SBR initially increases and then decreases with the increase of detection delay.
Considering the effects of detection delay and gate width on the intensity of laser plasma,
the final optimal delay time and gate width for the subsequent experiments can be set
as 1.5 µs and 2 µs, respectively. To reduce the inhomogeneity of the samples, 10 spectra
were acquired from each sample and each spectrum was accumulated with 60 laser pulses.
Overall, a total of 130 spectra were collected from 13 steel alloy samples. To improve the
stability of the spectra, all measured spectral data were normalized using the maximum
value.
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Figure 2. The dependent of SBR for the element of Si on different detection delay.

3. Results and Discussion
3.1. Traditional Calibration Method

Figure 3 illustrates the calibration curves of Si and Mn by traditional quantitative
analysis method. Herein, the characteristic spectral lines of Si and Mn in steel alloys were
identified through NIST database, and Si I: 288.158 nm and Mn I:403.076 nm were selected.
As can be seen from Figure 3, the linear correlation coefficient for Si is 0.68, while the linear
correlation coefficient for Mn is lower than 0.33.
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Figure 5 illustrates the calibration curves of Si and Mn by multivariate linear regres-
sion method. Herein, the characteristic spectral lines of Si are Si I:250.690 nm, Si I:252.411 
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Figure 3. Calibration curve with a traditional quantitative method. (a) Si; (b) Mn.

Figure 4 displays a typical LIBS spectrum of a steel alloy sample. The LIBS spectrum
shows various emission lines and clearly indicates that there are serious peak overlaps
and inference between the characteristic spectral lines of the analytic elements and the
matrix element Fe. Moreover, the spectral line intensity of Mn I:403.076 nm is weak, and the
other three spectral lines of Mn (Mn I:403.307 nm, Mn I:403.449 nm, Mn I:403.573 nm) are
closely situated, exacerbating the problems of peak overlaps and interference. Therefore,
the traditional quantitative analysis method was deemed inadequate for determining the
elements Si and Mn in steel alloys with complicated matrices.
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Figure 4. A typical LIBS spectrum of the steel sample; (a) 220–850 nm; (b) 287–405 nm.

Figure 5 illustrates the calibration curves of Si and Mn by multivariate linear regression
method. Herein, the characteristic spectral lines of Si are Si I:250.690 nm, Si I:252.411 nm, Si
I: 288.158 nm, Si II:413.090 nm, and Fe I:404.581 nm. The characteristic spectral lines of Mn
are Mn I:403.076 nm, Mn I:403.307 nm, Mn I:403.449 nm, Mn I:403.573 nm, and Fe I:404.581
nm. As can be seen from Figure 5, the linear correlation coefficient for Si is 0.797 and the
linear correlation coefficient for Mn is only 0.702. The accuracy of the fitting curves is
still insufficient.
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Deep learning algorithms are potential methods which deeply mine the implied
information and filter out irrelevant data from spectral data to improve the quantitative
accuracy. The deep learning algorithms used in this paper were written by Matlab 2019a,
and the Adam optimizer was used to optimize the model parameters. The initial learning
rate was set to 0.00001, and a total of 1000 training iterations (epoch) were conducted. The
measured spectral data were divided into a training set and a test set, with the first nine
measurements of each sample assigned to the training set and the tenth measurement
assigned to the test set.

3.2. Deep Neural Networks (DNN)

DNN is a network architecture that consists of at least two hidden layers, and all
layers of the network are fully connected. In this work, we employed a four-hidden-layer
feedback neural network with a Leaky ReLU activation function and linear units combined
with leak correction for the fitting model. The structural diagram of DNN used in this
paper is presented in Figure 6. As shown in Figure 6, the DNN has 23,399 input variables
and two output variables (the contents of the two analytic elements). The hidden layers
comprise 2048, 1024, 512, and 256 neurons, respectively. To alleviate the issue of overfitting,
a dropout layer was incorporated after the last fully connected layer. The output layer
contains two output vectors, y1 represents the predicted content of Si, and y2 represents
the predicted content of Mn.
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Figure 7 shows the calibration and prediction results by the DNN model. The corre-
lation coefficient values are 0.996 for both Si and Mn, while the average relative standard
deviations for the training set are 2.181% and 1.515% for Si and Mn, respectively. Table 2
reports the prediction results of Si and Mn in the test set based on the trained DNN model,
and the average relative errors are 10.086% and 10.324% for Si and Mn, respectively. The
results of the quantitative analysis indicate that although the DNN model performed well in
the calibration set, the results in the test set suggest that the model cannot precisely predict
the concentrations of Si and Mn. Therefore, to improve the accuracy of prediction, a more
advanced deep learning algorithm should be imported to consider more characteristics of
the LIBS spectra.
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Table 2. Test set results by DNN model.

Si Mn

Actual Con-
centration/%

Predicted
Concentra-

tion/%

Relative
Error/%

Actual Con-
centration/%

Predicted
Concentra-

tion/%

Relative
Error/%

0.460 0.436 5.217 0.740 0.814 10.000
0.374 0.385 2.941 0.686 0.934 36.152
0.463 0.448 3.24 0.722 0.802 11.080
0.270 0.321 18.899 1.400 1.374 1.857
0.570 0.626 9.825 0.791 0.994 25.664
0.405 0.396 2.222 1.380 1.277 7.464
0.480 0.370 22.917 1.311 1.329 1.373
1.410 0.900 36.17 1.700 1.432 15.765
0.210 0.230 9.524 0.890 1.023 14.944
0.537 0.592 10.242 1.745 1.596 8.539
0.531 0.520 2.072 1.016 1.01 0.591
0.344 0.368 6.977 0.897 0.9 0.334
0.344 0.341 0.872 0.897 0.901 0.450

3.3. TextCNN

The severe peak overlaps and interference in LIBS spectra are evident in Figure 4. To
alleviate the impact of problems for quantitative analysis, TextCNN uses convolutional
kernels as intermediaries to achieve partial connection of upper- and lower-layer neurons,
actualizing the characteristic digging and filtering via sliding windows for high-precision
quantitative prediction of elemental contents in steel alloys. The structural diagram of
TextCNN used in this study is illustrated in Figure 8. To meet the input layer requirements
of TextCNN, a multi-perspective feature extraction method was used to construct a two-
dimensional LIBS spectral data matrix with 256 convolutional kernels of sizes of 5 × 1 and
step sizes of 3. Each convolutional kernel can be regarded as a filter to extract the features
of the original one-dimensional LIBS spectral data from different perspectives, generating
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a column vector of size of 2601 × 1. Arrange these 256 column vectors in sequential
horizontal order, forming a matrix of size 2601 × 256. This matrix was transposed and
used as the input layer. Then TextCNN uses multiple convolutional kernels with different
structure sizes (2 × 2601, 3 × 2601, 4 × 2601, 5 × 2601, 6 × 2601, 7 × 2601, 8 × 2601,
9 × 2601, and 256 each) to extract local features of the LIBS spectral data and quantify
elemental contents effectively. The activation function is a Leaky ReLU function with linear
units combined with leak correction, and the pooling layer values are the maximum values
of the convolution selected as the feature values. To alleviate the issue of overfitting, a
dropout layer was incorporated after the last fully connected layer.
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Figure 8. Structural diagram of TextCNN model.

Figure 9 shows the prediction relative errors and the storage sizes of the model by
the TextCNN model with different convolutional kernels. The overall prediction relative
errors are closer to 0 with 256 convolutional kernels, and the storage size of the model
increases with the increase of convolutional kernels. This reflects that with the increase of
the dimension, more parameters and a small amount of the data make it difficult to train
the model. Considering the results of the prediction relative errors and the storage sizes of
the model, the final convolutional kernels for the TextCNN model can be set to 256.
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Figure 9. Prediction relative errors and the storage sizes of the model by TextCNN with different
convolutional kernels. (a) Si; (b) Mn; (c) database stroage space.

Figure 10 illustrates the calibration and prediction results by the TextCNN model.
The correlation coefficient values are 0.990 and 0.998 for Si and Mn, while the average
relative standard deviations for the training set are 2.505% and 1.109% for Si and Mn,
respectively. Table 3 reports the prediction results of Si and Mn in the test set based on
the trained TextCNN model, and the average relative errors for the test set are decreased
to 6.988% and 6.280% for Si and Mn, respectively. The result implies that the calibration
accuracy for steel alloys can be improved by TextCNN. Perhaps TextCNN is effective at
capturing local dependencies in data through the use of convolutional filters. These filters
slide over the input data, capturing important local features and patterns. In contrast,
traditional CNNs are mainly designed to capture spatial dependencies in data. However, it
is worth noting that some test samples still exhibit poor precision in the relative error of the
predictions, which may be attributed to the low concentrations of the measured elements
in these samples.
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Figure 10. Calibration curve with the TextCNN model for the training set. (a) Si; (b) Mn.

Table 3. Test set results by TextCNN model.

Si Mn

Actual Con-
centration/%

Predicted
Concentra-

tion/%

Relative
Error/%

Actual Con-
centration/%

Predicted
Concentra-

tion/%

Relative
Error/%

0.460 0.433 5.87 0.740 0.758 2.432
0.374 0.406 8.556 0.686 0.844 23.032
0.463 0.45 2.808 0.722 0.731 1.247
0.270 0.306 13.333 1.400 1.338 4.429
0.570 0.618 8.421 0.791 0.909 14.918
0.405 0.416 2.716 1.380 1.275 7.609
0.480 0.411 14.375 1.311 1.299 0.915
1.410 1.272 9.787 1.700 1.498 11.882
0.210 0.229 9.048 0.890 0.866 2.697
0.537 0.603 12.291 1.745 1.609 7.794
0.531 0.538 1.318 1.016 0.999 1.673
0.344 0.344 0.000 0.897 0.888 1.003
0.344 0.352 2.326 0.897 0.879 2.007

3.4. Backward-Differential TextCNN

Figure 11 presents five characteristic spectra of the 10# steel alloy sample in the spectral
range of 403–404 nm. As shown in Figure 11, the fine structures of the characteristic spectral
lines of Mn, such as form, location, and width, differ noticeably, which significantly affects
the training results of the quantitative model. To normalize the characteristic data of the
LIBS spectra and improve the learning performance of the TextCNN model, the first-order
backward difference method was used to process the one-dimensional spectral data. Two
two-dimensional LIBS spectral data matrix were constructed by multi-perspective feature
extraction method with 256 convolutional kernels of sizes of 5 × 1 and step sizes of 3. The
original two-dimensional LIBS spectral data matrix are represented as X1 and the backward
difference two-dimensional LIBS spectral data matrix are represented as X2. X1 is input to
TextCNN1 and X2 is input to TextCNN2. Finally, the data processed by the two networks
were fused and inputted to the fully connected layer. To alleviate the issue of overfitting, a
dropout layer was incorporated after the last fully connected layer. The schematic structure
of the backward-differential TextCNN model is shown in Figure 12.
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Figure 11. Five characteristic spectra of the 10# steel sample in the range of 403–404 nm. Figure 11. Five characteristic spectra of the 10# steel sample in the range of 403–404 nm.
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Figure 12. Structural diagram of the backward-differential TextCNN model.

Figure 13 shows the calibration and prediction results by the backward-differential
TextCNN model. The correlation coefficient values are 0.997 and 0.993 for Si and Mn, while
the average relative standard deviations for the training set are 2.397% and 1.664% for Si
and Mn, respectively. Table 4 reports the prediction results of Si and Mn in the test set
based on the trained backward-differential TextCNN model, and the average relative errors
for the test set are decreased to 5.139% and 3.956% for Si and Mn, respectively. Importantly,
all the relative errors of the predictions for the test samples are lower than 9.5%, indicating
that the backward-differential TextCNN model has significant potential in the quantitative
analysis of steel alloys.
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Figure 13. Calibration curve with the backward-differential TextCNN model for the training set.
(a) Si; (b) Mn.

Table 4. Test set results by backward-differential TextCNN model.

Si Mn

Actual Con-
centration/%

Predicted
Concentra-

tion/%

Relative
Error/%

Actual Con-
centration/%

Predicted
Concentra-

tion/%

Relative
Error/%

0.460 0.430 6.522 0.740 0.753 1.757
0.374 0.362 3.209 0.686 0.715 4.227
0.463 0.441 4.752 0.722 0.762 5.540
0.270 0.291 7.778 1.400 1.398 0.143
0.570 0.576 1.053 0.791 0.841 6.321
0.405 0.397 1.975 1.380 1.348 2.319
0.480 0.449 6.458 1.311 1.350 2.975
1.410 1.350 4.255 1.700 1.540 9.412
0.210 0.227 8.095 0.890 0.890 0.000
0.537 0.567 5.587 1.745 1.692 3.037
0.531 0.537 1.13 1.016 1.032 1.575
0.344 0.312 9.302 0.897 0.851 5.128
0.344 0.321 6.686 0.897 0.816 9.030

In this study, we evaluated the deviation between the predicted contents by the trained
quantitative analysis models and the actual contents of Si and Mn using the mean absolute
error (MAE) as the loss function. The loss change curves of the three neural network
models during the training progress are presented in Figure 14. As can be seen from
Figure 14, the loss values gradually decrease and stabilize with the increase of training
times for all three models. However, the backward-differential TextCNN model has lower
loss values compared to the DNN and TextCNN models, indicating that it is better at
predicting the actual contents. Table 5 shows the average predicted relative errors of Si
and Mn for the test set by the three neural network models. The results in Figure 14 and
Table 5 demonstrate that the backward-differential TextCNN model can effectively correct
the differences in fine structures of the characteristic spectral lines, deeply exploit the
multi-perspective characteristics of the spectral data, and filter out irrelevant information,
which can favorably improve the forecasting accuracy.

Table 5. The average relative errors of the three neural network models for the test set.

DNN TextCNN Backward-Differential
TextCNN

Si Mn Si Mn Si Mn
10.086 10.324 6.988 6.280 5.139 3.959
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4. Conclusions

In this paper, we proposed a novel LIBS quantitative analysis method that combines
multi-perspective feature extraction and backward-differential method with TextCNN.
The contents of Si and Mn in steel alloys were successfully determined by LIBS and the
model. The correlation coefficients for Si and Mn are both above 0.993, which implies that
the trained model can accurately predict unknown steel alloy samples. The results also
demonstrate that the backward-differential TextCNN has lower predicted average relative
errors for the test set (5.139% for Si and 3.939% for Mn) than DNN (10.086% for Si and
10.324% for Mn) and TextCNN (6.988% for Si and 6.280% for Mn). These results gained
through this experiment prove that the proposed backward-differential TextCNN method
provides a new approach for trace elemental quantitative analysis of complex samples with
severe peak overlaps and interference, improving the forecasting accuracy by extracting
the spatio-temporal characteristics of the LIBS spectra.
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