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Abstract: Accurate fault identification is essential for geological interpretation and reservoir ex-
ploitation. However, the unclear and noisy composition of seismic data makes it difficult to identify
the complete fault structure using conventional methods. Thus, we have developed an attentional
U-shaped network (EAResU-net) based on enhanced feature fusion for automated end-to-end fault
interpretation of 3D seismic data. EAResU-net uses an enhanced feature fusion mechanism to re-
duce the semantic gap between the encoder and decoder and improve the representation of fault
features in combination with residual structures. In addition, EAResU-net introduces an attention
mechanism, which effectively suppresses seismic data noise and improves model accuracy. The
experimental results on synthetic and field data demonstrate that, compared with traditional deep
learning methods for fault detection, our EAResU-net can achieve more accurate and continuous
fault recognition results.
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1. Introduction

A fault is typically a planar discontinuity in the Earth’s crust formed through brittle
deformation and a certain degree of displacement of rock formations [1]. The accurate
identification of seismic faults provides vital information for the exploitation of oil and gas
reservoirs [2], the utilization of geothermal fields [3,4], the safety and stability of geological
carbon reservoirs [5], and many other applications.

The current conventional method of fault interpretation involves jointly interpreting
faults by incorporating various seismic attributes onto the seismic waveform profile, such
as coherence [6,7], variance [8], curvature [9], and other attributes. However, the computa-
tional cost associated with these seismic attributes frequently proves to be considerably
high. Moreover, these joint seismic attribute interpretation methods are typically sensitive
to various noises present in the field data. With the increasing amount of available seismic
data, many researchers are dedicated to seeking automated and semi-automated meth-
ods for fault detection. For instance, Zhe et al. [10] devised and evaluated an automated
fault localization scheme utilizing the ant colony algorithm to detect faults in seismic data.
Merkle et al. [11] proposed a multicolony ant algorithm that utilizes multiple ant colonies
to simultaneously track faults in seismic data. Sun et al. [12] presented an automatic fault
detection method based on support vector machine (SVM) that effectively recognizes small
faults in seismic data.

In recent years, the rapid development of deep learning has led to its widespread
use in various fields, including the interpretation of seismic faults. Deep learning-based
methods for fault detection typically employ pixel classification or semantic segmenta-
tion deep learning networks. Chehraz et al. [13] used a network structure of multilayer
perceptron (MLP) to train a fault automatic recognition model. Lei et al. [14] success-
fully applied convolutional neural networks (CNNs) to fault recognition for the first time.
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Tao et al. [15] combined CNN fault recognition with image processing to improve fault
recognition accuracy. Xiong et al. [16] used actual data and the corresponding fault labels
to train CNN models and used them for intelligent recognition of faults. Wu et al. [17] im-
proved upon the U-shaped neural network (U-net) [18] and trained the U-net model using
labeled synthetic 3D seismic data samples, which was ultimately applied for intelligent
interpretation of faults in actual 3D seismic data. Liu et al. [19] introduced the residual
module in ResNet-34 [20] on the basis of the U-net proposed by Wu et al. [17] to further
improve the accuracy of automatic fault identification. Gao et al. [21] advanced a fault
automatic detection methodology grounded on a nested residual U-convolutional neural
network. The technique employs a fusion operation to integrate three distinct fault maps
featuring varied spatial resolution scales within the neural network to obtain conclusive
fault outcomes.

Although deep learning-based fault recognition methods have achieved some degree
of superiority over traditional methods, there are still some problems. Currently, seismic
fault interpretation tasks are typically considered a semantic segmentation problem. As
the most representative network for semantic segmentation, U-net has been adopted in
many works [22–28], including fault interpretation tasks [17,19,21]. Despite the excellent
performance achieved by the U-net network, there are certain limitations. To better retain
detailed information about the segmented target, the U-net network uses a skip path to
connect the encoder and decoder. Although this largely compensates for the loss of detail
between the encoder and decoder, the direct fusion of low-level features containing spatial
information in the encoder with high-level features containing semantic information in
the decoder via a skip connection creates a semantic gap. Stated differently, the spatial
information in the low-level features lacks high-resolution semantic guidance, such as
encoding relatively clear semantic boundaries, which would make it difficult for high-level
semantic features to derive useful spatial information from the low-level features. This
has been verified in [29]. In addition, since low-level features contain richer edge and
detail features and high-level features have more semantic features [30], current semantic
segmentation frameworks usually fuse the two to enhance segmentation performance.
However, the low-level features of seismic data contain not only fault-related edge and
detail features but also non-faulting factors such as noise, which leads to discontinuous
fault lines and false faults in the segmentation results.

The constraints linked to the fundamental U-net architecture and the distinctive at-
tributes of seismic data have prompted us to conceive a novel deep learning framework for
the purpose of fault detection. Precisely, instead of establishing a direct linkage between the
encoder and decoder, we designed an attention module (EFAM) incorporating enhanced
feature fusion to improve the quality of the encoded features prior to establishing the skip
connection. In the U-net architecture, the shallow encoder encodes a significant amount
of spatial information, while the deep encoder undergoes multiple convolutional and
downsampling processes, thereby encapsulating rich semantic information. To enhance
the high-level semantic information required by the shallow encoder features, we pro-
vided feature maps of all the encoders in the deep encoder branch to the EFAM. Through
skip connections, the decoder layers are able to obtain abundant spatial and semantic
information from the encoder features, greatly reducing the semantic gap between the
encoder and decoder. Furthermore, the features extracted by the encoder not only contain
rich spatial information but may also include noise and other non-faulting factors. To
address this issue, we introduced an attention mechanism before fusing the encoder and
decoder features. By computing attention weight maps for the enhanced encoder features,
we can assign higher attention weights to fault structures and lower attention weights to
non-faulting factors, effectively suppressing the influence of seismic noise. Our attention
U-net combining enhanced feature fusion (EAResU-net) is inspired by recent work on
U-net-based image segmentation and fault detection [16–18], in particular the Attention
Gate mechanism [31] and ExFuse architecture [29]. Nevertheless, we have made important



Electronics 2023, 12, 2562 3 of 17

simplifications and improvements based on these previous works, and we designed this
improved U-net architecture for end-to-end fault recognition tasks on seismic data.

2. Methods

The overall structure of the EAResU-net is shown in Figure 1. The EAResU-net pos-
sesses an encoder–decoder architecture, which comprises a contracting path (the encoder
on the left) and an expansive path (the decoder on the right). In the U-net, encoder and
decoder at the same level are directly connected through skip connections without any
modifications. In contrast, in EAResU-net, we propose utilizing attention blocks with
enhanced feature fusion to enhance encoder features, followed by connecting each encoder
to a decoder at the same level. The attention block with enhanced feature fusion at each
level is constructed from the current layer and the encoders and decoders below it after
appropriate upsampling and convolution. Another notable feature of EAResU-net is that
all encoders and decoders in the contraction and expansion paths are composed of residual
convolutional blocks, which replace the ordinary blocks in the original U-net. In contrast
to the U-net, the new components in the EAResU-net are inspired by several previous
works, such as the residual network [20], Attention Gate mechanism [31], and ExFuse
architecture [29]. Our EAResU-net leverages the advantages of these architectures and
builds a streamlined architecture.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 17 
 

 

work on U-net-based image segmentation and fault detection [16–18], in particular the 

Attention Gate mechanism [31] and ExFuse architecture [29]. Nevertheless, we have made 

important simplifications and improvements based on these previous works, and we de-

signed this improved U-net architecture for end-to-end fault recognition tasks on seismic 

data. 

2. Methods 

The overall structure of the EAResU-net is shown in Figure 1. The EAResU-net pos-

sesses an encoder–decoder architecture, which comprises a contracting path (the encoder 

on the left) and an expansive path (the decoder on the right). In the U-net, encoder and 

decoder at the same level are directly connected through skip connections without any 

modifications. In contrast, in EAResU-net, we propose utilizing attention blocks with en-

hanced feature fusion to enhance encoder features, followed by connecting each encoder 

to a decoder at the same level. The attention block with enhanced feature fusion at each 

level is constructed from the current layer and the encoders and decoders below it after 

appropriate upsampling and convolution. Another notable feature of EAResU-net is that 

all encoders and decoders in the contraction and expansion paths are composed of resid-

ual convolutional blocks, which replace the ordinary blocks in the original U-net. In con-

trast to the U-net, the new components in the EAResU-net are inspired by several previous 

works, such as the residual network [20], Attention Gate mechanism [31], and ExFuse ar-

chitecture [29]. Our EAResU-net leverages the advantages of these architectures and 

builds a streamlined architecture. 

 

Figure 1. EAResU-net structure. The input size of the network is 1 × 128 × 128 × 128. With each 

encoding unit, the number of channels in the feature map is doubled, while the size of the feature 

map is halved. 

Figure 1. EAResU-net structure. The input size of the network is 1 × 128 × 128 × 128. With each
encoding unit, the number of channels in the feature map is doubled, while the size of the feature
map is halved.

We explain how the attention block for enhanced feature fusion works by using the
process of first-layer encoder feature improvement as an example. In the traditional U-Net
architecture, the encoder skips connections to the decoder at the same layer without any
refinement, thus incorporating only the feature information in the current encoder layer.
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In EAResU-net, an attention module with enhanced feature fusion (EFAM) is constructed,
which improves the encoding process by incorporating rich feature information from the
lower-level encoder prior to being skip-connected to the decoder. The architecture of EFAM
is illustrated in Figure 2, which comprises two components: the enhanced feature module
and the attention module. In the following, we use xi to represent the feature map and xh

i
and xl

i to represent the high-level and low-level features, where i = (1, 2, 3, 4) is the number
of layers of the encoder.
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Figure 2. Structure of EFAM. EFAM incorporates a multitude of high–low resolution semantic
information to facilitate the process of feature fusion. Subsequently, the merged features are utilized
alongside the upsampled features of the decoder to produce attention weights.

The purpose of the enhanced feature module is to embed semantic information from
deep features into low-level features containing only spatial information, in order to
guide the feature fusion between the encoder and decoder. To construct the enhanced
feature map S1 of the first layer encoder, we upsampled the feature xh

2 of the second layer
encoder using trilinear interpolation with a ratio of 2; we upsampled the feature xh

3 of
the third layer encoder using trilinear interpolation with a ratio of 4; and we upsampled
the feature xh

4 of the fourth layer encoder using trilinear interpolation with a ratio of 8.
For the upsampled features, we performed a convolution operation with a kernel size
of (3 × 3 × 3) and concatenate the three feature maps together. The number of feature
channels is then compressed by a 1 × 1 × 1 convolution to the same number as the current
encoder feature xl

1. Finally, we dot product the compressed features with xl
1 to create the

enhanced feature matrix S1. The rationale behind this design is that using upsampling
combined with convolutional operations can retrieve high-level semantic information from
the higher-level encoder, while dot product means that high-level semantic features are
mapped to low-level spatial features in order to guide feature fusion. The process of
constructing the enhanced feature module can be expressed as:

Si = xl
i
⊙

ωT
f σ
(

ωT
θ F cat

(
xh

i+1, xh
i+2, . . . , xh

L

))
(1)

where σ is the upsampling function, ωθ is a 3 × 3 × 3 convolution operation, ω f is a
1 × 1 × 1 linear transformation, the symbol

⊙
represents the dot product, and F cat(·)

represents the feature concatenation.
We also built an attention module that enables the model to focus on fault-related

information on the feature maps rather than noise. The module obtains linear projections
ωT

s S and ωT
h xh from low-level features S that fuse semantic information and high-level

features xh at low resolution in the decoder network by 1 × 1 × 1 convolution, respectively.
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Since fault recognition is a binary classification task, we did not use multidimensional
attention coefficients suggested by [31]. Instead, we upsampled the low-resolution features
and then combined the two linear projections directly into a single channel by convolution.
We expected the attention map to effectively suppress the non-fault region features in S and
retain the features in the fault region. So, the final attention weight map α was calculated by
the sigmoid function, such that the weight should go from 0 to 1 in line with the decreases
in Euclidean distance from the fault area. The whole process is expressed as:

αi = sigmod
(

ωT
ψ ReLUT

(
ωT

s Si + σ
(

ωT
h xh

i

)))
(2)

where αi ∈ [0, 1], σ is the upsampling function, and ω_ψ, ω_s, and ωh are all 1 × 1 × 1
linear maps. This attention module finally merges the attention map α with the upsampled
features xh in the decoder network using element-by-element multiplication. This design
forces the model to learn the location and shape of the salient regions associated with the
object segmentation of interest. In contrast to the approach presented in reference [31],
our attention mechanism derives an attention graph from fused features, wherein the
semantic information embedded within the high-resolution features serves to direct the
amalgamation of high-level and low-level features.

Another important component of EAResU-net is the residual block. In this study, we
used the residual block instead of the normal convolution block in the encoder and decoder
(Figure 3), which is mathematically represented as:

xl+1 = xl + F(xl) (3)

where xl is the constant mapping part and F(xl) is the residual mapping part. The input
of the residual block is added to the output after two convolutional layers and passed to
the next stage. However, when the input and output have different numbers of feature
mappings, the input is convolved by 1 × 1 × 1 to match the number of feature mappings
with the number of feature mappings of the output (Figure 3b).
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In addition, to improve the training speed and accuracy of the model, we added
a batch normalization layer before each rectified linear unit (ReLU) activation layer in
the neural network. Batch normalization regularizes the data in mini-batch units so that
the data conform to a normal distribution with mean µ of 0 and variance σ2 of 1. Its
mathematical representation is as follows:

µ =
1
m

m

∑
i=1

xi (4)
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σ2 =
1
m

m

∑
i=1

(xi − µ)2 (5)

yi = γ
(xi − µ)√

σ2 + ε
+ β (6)

where xi is the mini-batch data, yi is the normalized value, γ and β are the scale and
displacement parameters, ε is used to ensure the stability of the normalized value, and m is
the size of the input data.

Fault identification is essentially a binary problem. However, there is a clear imbalance
between the number of seismic faults and non-faults, with the number of non-faults being
much larger. In this case, the classifier is likely to favor the non-fault category with a larger
number of samples and ignore the fault category with a smaller number of samples. This
can lead to frequent misclassification by the model of few categories of faults as non-fault
categories during the prediction process. To solve this problem, we used a smoothed dice
loss function [32,33]:

L = 1− 2∑N
i=1 piyi + 1

∑N
i=1 pi + ∑N

i=1 yi + 1
(7)

where yi is the ground truth label of the ith image pixel value, 0 ≤ pi ≤ 1 is the prediction
probability of the ith image pixel value, and N is the number of samples. The global overlap
between the predicted values of the dice loss metric neural network and the ground truth
values makes it suitable for training neural networks with imbalanced datasets.

Table 1 presents a comparative analysis of the network parameters and computational
efficiency between EAResU-net and previous works, namely U-net [12] and ResU-net [13].
The inclusion of EFAM and residual modules in EAResU-net results in a notable increase
in computational requirements compared to U-net. However, when compared to ResU-net,
EAResU-net exhibits only marginal increments in parameter count and execution time. This
indicates that the integration of our EFAM module requires minimal additional allocation
of computational resources, and its performance has been empirically demonstrated to be
superior to previous works.

Table 1. Comparison of parameter quantity and execution efficiency of different networks.

Models Parameters FLOPs
(1283)

Infer Time
(1283/GPU)

Infer Time
(1283/CPU)

U-net 1.5 M 127.42 G 0.20 2.42
ResU-net 3.7 M 290.11 G 0.31 2.85
EAU-net 2.9 M 214.24 G 0.27 2.64

EAResU-net 4.5 M 291.66 G 0.33 2.92

3. Experiment
3.1. Experiment Preparation

In the field of 3D fault identification, training neural network models requires a
large amount of seismic data and their corresponding fault labels. However, manually
labeling faults in real seismic data is a time-consuming and highly subjective task, and
the 3D and spatial characteristics of faults increase the difficulty of manual interpretation.
This may lead to labeling errors, which may affect the learning and training of neural
networks. We, therefore, used synthetic seismic data with fault labels to train our neural
network. The synthetic seismic datasets are derived from open-source datasets [17], which
are automatically generated by randomly adding folds, faults, and noise to the volumes.
The simplified procedure for synthetic seismic data is as follows:

(1) Generate a horizontal reflection model where the reflection coefficients are random
in the [−1,1] interval.
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(2) Add a stratigraphic fold operation to the horizontal reflection model and carry out
a vertical distortion of the strata. The function defining the folding operation is as follows:

f1(x, y, z) = a0 +
2.0z
zmax

k=N

∑
k=1

bke
(x−ck)

2+(y−dk)
2

2σ2
k (8)

It combines multiple two-dimensional Gaussian functions and a linear scale function
of 2.0z/zmax. The combination of two-dimensional Gaussian functions creates lateral
variations in the geological folding structures, while the linear scale function suppresses
vertical variations in the geological folding. In the equation, a0, bk, ck, dk, and σk represent
different folding parameters. By randomly determining these parameters, models with
varying folding structures can be generated.

(3) Add a random number of faults with random dip and spatial location to the model.
It is expressed as:

r1(x, y, z) = r(x, y, z + f1 + f2)e−
1
2 zT RTST Rz (9)

In the equation, r(x, y, z + f1 + f2) represents a horizontally reflected model with
different geological folding, where R is a one-dimensional vector composed of µ f (fault dip
vector), ν f (fault strike vector), and ω f (fault normal vector), and S represents a diagonal
matrix composed of elements from vector R.

(4) Fold Ricker subwaves with the reflection model to obtain a 3D seismic record.
(5) Add random levels of noise to the seismic record.
We employed this methodology to generate a training dataset of 200 pairs of

128 × 128 × 128 volumetric data, and a validation dataset of 20 pairs of the same size.
Figure 4 presents the three-dimensional visualization results of the synthetic seismic data
and fault labels. To increase the diversity of the model training, we performed random
horizontal and vertical flipping of the training data.
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The experimental code was implemented by Pytorch 1.11.0 and trained by Apex
acceleration. The optimizer used AdamW [34] with an initial learning rate of 0.001 and
a batch size of 4. As the number of iterations increases, the learning rate decays to avoid
network oscillations and prevent overfitting. The model was initialized using the kaiming
method [35]. Each experiment was trained for 200 epochs and run once per period on the
validation set to record quantitative metrics. All computations were performed on a server
equipped with RTX A5000 (24G GPU memory).

3.2. Evaluation Metrics

In order to assess the accuracy of the model, we employed various commonly utilized
evaluation metrics, namely Intersection over Union (IOU), Dice Similarity Coefficient (DSC),
recall (Rec), precision, and F1-score.
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The IOU represents the similarity between the predicted and ground truth regions,
which is expressed as:

IOU =
TP

FP + TP + FN
(10)

Among them, true positive (TP) indicates that the actual positive sample is also
predicted to be positive. False positive (FP) indicates that the actual sample is negative
but predicted to be positive. False negative (FN) means that the actual sample is positive
but predicted to be negative. The model calculates IOU by sigmod activation function
normalizing the output to probability yi ∈ [0, 1] and considering yi > 0.5 as a positive
sample and yi < 0.5 as a negative sample.

DSC is an ensemble similarity measure function that is usually used to calculate the
similarity of two samples and is expressed similarly to IOU:

Dice =
2TP

FP + 2TP + FN
(11)

The recall rate, R, indicates the proportion of correctly predicted positive samples to
all positive samples. The recall rate is expressed as:

R =
TP

TP + FN
(12)

The precision, P, represents the proportion of samples that are predicted to be positive
and are actually positive to all samples that are predicted to be positive. The larger the
P value, the better the prediction, as defined below:

P =
TP

TP + FP
(13)

F1-score is the summed average of precision and recall, which takes into account both
precision and recall. F1-score is defined as:

F1 =
2× P× R

P + R
(14)

3.3. Experimental Results and Analysis

To validate the effectiveness of the proposed model, we trained four network models
using a synthetic 200-pair training dataset with the same hyperparameters: (1) the conven-
tional U-net used by Wu et al. [17]; (2) the ResU-net with residual structure introduced in
the U-net by Liu et al. [19]; (3) the EAU-net embedded with our EFAM in the U-net; and
(4) our proposed EAResU-net. We applied the four models to a 20-pair validation dataset
and quantitatively evaluated the fault prediction results.

The model with the maximum IOU on the validation set was saved as the final
model, and we performed quantitative analysis on the predicted fault results of the four
models. The quantitative evaluation is shown in Table 2, and we noted that our EAResU-net
outperforms the other three models in many aspects, with more significant improvement
compared to U-net. Although ResU-net performs similarly to our model in terms of
accuracy, its lower recall indicates that it misses many fault structures and produces a
significant number of false negatives (FP) in its predictions. Furthermore, the traditional
U-net model has shown a significant improvement after the introduction of EFAM. This
indicates the effectiveness of our proposed EFAM in enhancing the feature fusion and
fault attention of the U-net network. It is worth noting that compared to ResU-net and
EAResU-net, EAU-net has shown mediocre results. We speculate that this is due to the
fact that EAU-net employs ordinary convolutional layers for feature extraction, which
have relatively weak feature extraction capabilities, thus failing to capture more effective
fault features.
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Table 2. Validation set model performance comparison.

Models IOU Dice Recall Precision F1 Score

U-net 0.6569 0.7919 0.7194 0.9866 0.8316
ResU-net 0.6910 0.8163 0.7515 0.9886 0.8535
EAU-net 0.6720 0.8028 0.7337 0.9876 0.8415

EAResU-net 0.7036 0.8251 0.7704 0.9885 0.8656

In addition, a qualitative evaluation of the proposed model was conducted through the
visualization of the results of fault prediction using two validation datasets. Figures 5 and 6
illustrate the raw seismic data slices of the validation datasets along with the true labels
and predicted results of the fault segmentation.
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As shown in Figures 5 and 6, all four networks capture the features of the faults to
identify the location of the faults and predict the shape and distribution of the faults to be
consistent with the actual fault labels. Compared with EAResU-net, none of the remaining
three networks can identify the small faults at the yellow arrows in Figure 5, and for the
fault zones (marked in yellow in Figure 6), our predictions are closer to the true label.
This highlights the advantages of the method proposed by us, where EFAM enhances the
identification of minor faults and significantly improves the accuracy of fault identification.

To further validate the robustness of the proposed model to different levels of seismic
data noise, we added varying degrees of Gaussian noise, white noise, and salt-and-pepper
noise to synthetic data (Figure 4). Table 3 displays the types of added noise and their
respective noise level parameters, where Gaussian noise is measured by variance, white
noise is measured by Signal-to-Noise Ratio (SNR), and salt-and-pepper noise is measured
by the amount parameter ranging from 0 to 1. Figures 7–9 illustrate the fault results of the
four models predicting seismic data with varying levels of noise.
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Table 3. Types of noise and their respective noise level parameters.

Noise Type Low Level Middle Level High Level

Gaussian noise Variance/1.0 Variance/5.0 Variance/10.0
White noise SRN/50 SRN/45 SRN/40

Salt-and-pepper noise Amount/0.3 Amount/0.5 Amount/0.7

In Figures 7–9, all four models can effectively identify faults in seismic data with
low-level noise [(a), (b), (c), and (d) in Figures 7–9]. However, as the noise level increases,
the prediction results of U-net are slightly affected by the noise in the seismic data with
Gaussian noise of variance 5.0 [Figure 7e] and salt-and-pepper noise with an amount of 0.5
[Figure 9e]. Additionally, in Figure 8, for white noise seismic data with an SNR of 45, U-net
[Figure 8e], ResU-net [Figure 8f], and EAU-net [Figure 8g] show discontinuous fault lines in
their predictions. In contrast, for seismic data with moderate-level noise, our EAResU-net
can accurately identify faults completely [(h) in Figures 7–9]. As the noise level increases to
a high level, the prediction outcomes of the three comparative models exhibit a significant
loss of fault information [(i), (j), and (k) in Figures 7–9]. For white noise seismic data with
an SNR of 40 (Figure 8), the predictions of EAResU-net [Figure 8l] are partially affected
by the noise, resulting in intermittent faults and false faults. However, in the remaining
two types of noisy data, the fault identification results of EAResU-net [Figures 7l and 9l]
exhibit higher accuracy and completeness compared to the fault identification results of
the other three models. Overall, our EAResU-net demonstrates significant advantages in
suppressing different levels of seismic data noise and exhibits good robustness to high-level
noise in seismic data.
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Figure 7. Fault prediction results of synthetic seismic data with Gaussian noise. (a) U-net predicted
fault probability (variance/1.0); (b) ResU-net predicted fault probability (variance/1.0); (c) EAU-net
predicted fault probability (variance/1.0); (d) EAResU-net predicted fault probability (variance/1.0);
(e) U-net predicted fault probability (variance/5.0); (f) ResU-net predicted fault probability (vari-
ance/5.0); (g) EAU-net predicted fault probability (variance/5.0); (h) EAResU-net predicted fault
probability (variance/5.0); (i) U-net predicted fault probability (variance/10.0); (j) ResU-net pre-
dicted fault probability (variance/10.0); (k) EAU-net predicted fault probability (variance/10.0); and
(l) EAResU-net predicted fault probability (variance/10.0).
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Figure 8. Fault prediction results of synthetic seismic data with white noise. (a) U-net predicted fault
probability (SRN/50); (b) ResU-net predicted fault probability (SRN/50); (c) EAU-net predicted fault
probability (SRN/50); (d) EAResU-net predicted fault probability (SRN/50); (e) U-net predicted fault
probability (SRN/45); (f) ResU-net predicted fault probability (SRN/45); (g) EAU-net predicted fault
probability (SRN/45); (h) EAResU-net predicted fault probability (SRN/45); (i) U-net predicted fault
probability (SRN/50); (j) ResU-net predicted fault probability (SRN/50); (k) EAU-net predicted fault
probability (SRN/50); and (l) EAResU-net predicted fault probability (SRN/50).
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(1) Netherlands F3: We conducted a test on the seismic data of the Netherlands F3 

block provided by the Dutch government using dGB Earth Sciences. We selected a region 

with a more complex fault system, which contains some intersecting faults. The selected 

region comprises 128 × 512 × 384 grid points. 

Figure 9. Fault prediction results of synthetic seismic data with salt-and-pepper noise. (a) U-net
predicted fault probability (amount/0.3); (b) ResU-net predicted fault probability (amount/0.3);
(c) EAU-net predicted fault probability (amount/0.3); (d) EAResU-net predicted fault probability
(amount/0.3); (e) U-net predicted fault probability (amount/0.5); (f) ResU-net predicted fault proba-
bility (amount/0.5); (g) EAU-net predicted fault probability (amount/0.5); (h) EAResU-net predicted
fault probability (amount/0.5); (i) U-net predicted fault probability (amount/0.7); (j) ResU-net pre-
dicted fault probability (amount/0.5); (k) EAU-net predicted fault probability (amount/0.5); and
(l) EAResU-net predicted fault probability (amount/0.5).

3.4. Testing Field Data

After training and validating the models, we applied them to 3D field data from
different surveys to compare the performance of these methods on publicly available data.

(1) Netherlands F3: We conducted a test on the seismic data of the Netherlands F3
block provided by the Dutch government using dGB Earth Sciences. We selected a region
with a more complex fault system, which contains some intersecting faults. The selected
region comprises 128 × 512 × 384 grid points.
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Figure 10 presents a three-dimensional display of seismic data and fault prediction
results in the F3 working area. In Figure 10, all four models can identify faults well, but our
model (d) characterizes faults more completely and continuously (circled on the left side of
Figure 10). Among them, the fault lines extracted by U-net (b) are discontinuous. Although
ResU-net (c) predicts more complete faults than those extracted by U-net, there are still a
few discontinuous fault lines. Both EAU-net (d) and EAResU-net (e) exhibit robustness to
seismic noise (circled on the right side of Figure 10), but due to the EAResU-net model’s
use of residual convolution as the basis, its fault structure is more complex and fault lines
are more complete than EAU-net (d). This verifies the effectiveness of our model and
the significant advantage of EFAM in enhancing model performance and suppressing
seismic noise.
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Figure 10. Tests on Netherlands F3. (a) Original seismic data (seismic colormap); (b) Original seismic
data (bone colormap); (c) U-net predicted fault probability; (d) ResU-net predicted fault probability;
(e) EAU-net predicted fault probability; and (f) EAResU-net predicted fault probability.

(2) New Zealand Kerry-3D: This data is the final volume of field data for the pre-stack
offset provided by Crown Minerals of New Zealand. We intercepted the fault-rich area of
it, and the size of the sampled area was 192 × 608 × 224.

Figure 11 illustrates the truncated testing data and experimental results. It is evident
that the Kerry-3D field data contain seismic faults of different scales, with a predominance
of vertical faults, which are more pronounced on reflective surfaces. Figure 11b presents the
fault prediction results obtained by U-net, which show a clear distribution of faults but poor
continuity of small and irregular faults, making them difficult to identify. In comparison,
the predicted fault results by ResU-net in (c) are more complete, with improved fault
continuity, but exhibit noisy fault features and poor identification of minor faults. The fault
prediction results by EAU-net in (d) demonstrate reduced omission of small faults and
errors due to noise compared to U-net, but the completeness of faults is inferior to ResU-net
in (c). In contrast, the fault boundaries predicted by EAResU-net in (e) are clear, and the
representation of intricate fault details and adjacent faults is complete, with minimal noise
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in fault features, enabling accurate identification of small faults (highlighted in yellow in
Figure 11).
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Figure 11. Tests on New Zealand Kerry-3D. (a) Original seismic data (seismic colormap); (b) Original
seismic data (bone colormap); (c) U-net predicted fault probability; (d) ResU-net predicted fault
probability; (e) EAU-net predicted fault probability; and (f) EAResU-net predicted fault probability.

In conclusion, the fault recognition method proposed by our EAResU-net exhibits high
accuracy in fault recognition, effectively suppresses noise, and enhances the recognition of
minor faults and fault details.

4. Conclusions

We proposed a novel fault recognition method using EAResU-net, which utilizes
attention modules with enhanced feature fusion, residual convolution, and smooth dice
loss function to improve automatic fault detection capability. Our neural network was
trained on 3D synthetic seismic data and then compared with state-of-the-art U-net and
ResU-net models. The experimental results on synthetic datasets and two field datasets
demonstrate that our EAResU-net can capture richer fault features and is highly noise-proof
for providing clear fault detection results, even in complex seismic structures.

Nevertheless, our approach still has some limitations. Firstly, we trained our CNN
model solely on synthetic seismic data without the need for any manual annotations. While
the trained model performs well on different field data, there is a significant drawback
to using synthetic data. Deep learning models require a large amount of data, and the
limited synthetic dataset cannot guarantee stable generalization of the trained model under
all geological conditions of faults. Secondly, although our model can effectively suppress
noise in seismic data, it does not exhibit strong robustness to high levels of seismic data
noise. This limitation means that the well-trained model may not be fully applicable to
the task of fault interpretation in complex field seismic data under high noise conditions.
Therefore, combining real seismic data for training the CNN model and improving the
model’s stability under high noise levels are the main directions for our future work.
Additionally, seismic fault interpretation is just one typical semantic segmentation problem
in seismic interpretation. Hence, the proposed model can easily be extended to address
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other semantic segmentation tasks in seismic interpretation, such as facies analysis and
horizon interpretation. This opens up new possibilities for researchers studying other
seismic interpretation tasks.
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