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Abstract: Since permanent magnet direct current (DC) motors are mainly used in various industrial
automation applications, the demand for electric motors is increasing rapidly. However, in the mass
production of electric motors, often, only random inspections are used to check the specifications
and performance of electric motors. For manufacturing or engineering application staff to have a
more thorough understanding of the characteristics of the motor, it is necessary to conduct a full or
quick inspection during the production process to ensure the quality of the electric motor. Based
on this, this literature review reveals several methods and algorithms often used to estimate DC
motor parameters, given the importance of knowing the parameters of the DC motor and the lack of
research on estimating the parameters of the DC motor.

Keywords: DC motor; least squares method; differential evolution; particle swarm optimization
methods; cuckoo search; metaheuristic; parameter estimation

1. Introduction

Permanent magnet direct current (DC) motors (also known as brushed DC motors)
have been widely employed in numerous industries and applications, ranging from robotics
and automation to automotive systems. The global brushed DC motor market is expected
to reach USD 8742.20 million by 2029 at a CAGR of 5.30% during the forecast period,
as shown in Figure 1 [1]. The brushed DC motor is an excellent choice for low-torque
applications because it can change pace or speed with variable speed control options,
including below- and above-rated speed [2]. Examples of brushed DC motors are car robots
used for exploration, surveying, or mapping purposes, such as MER-B and MER-1 for
exploitation on the planet Mars; robot vacuum cleaners; and toy robots. Brushed motors
are often used in industries with high torque requirements at low speeds, such as a printing
press, spinning drive, or agitator. Nevertheless, age and accompanying wear have changed
the characteristics of DC motors. As a result, adjusting the motor characteristics as the
motor matures can improve the DC motor model’s accuracy [3].
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The strategies of DC motor parameter estimation are widely discussed in many previ-
ous studies and are employed by various algorithms, such as the curve fitting method [4],
the constraint optimization methods [5], the inverse problem methodology with the conju-
gate gradient and regularization method [6], the regression method [7], the evolutionary
process for parameter estimation [8,9], and the power series expansion approach for esti-
mating electrical and mechanical time constants and frictional torque for DC motors [10].
Moreover, the least-squares-based approach is also of great interest in determining the
estimation parameters of DC motors [11–17], and the differential evolutions method to
determine DC motor parameters has been recently evaluated [18,19].

Additionally, the heuristic methods and metaheuristic algorithm had been proposed
and integrated into the DC motor parametric estimation [20,21]. Architecture-intelligent
algorithms have been valued in recent years due to their versatility and adaptability to
various problems [22]. For instance, the analysis of parametric motors has been explored
with metaheuristic algorithms [23,24], and the interest-pollination-based metaheuristic
optimization routine with step input excitation has been presented [25]. Further, the more
accurate estimation of motor parameters was assessed using different bio-inspired opti-
mization algorithms, such as particle swarm optimization methods [26,27], ant colonies,
artificial bee colonies [28], and whale and bat algorithms [29,30]. Moreover, the advantages
of combining two metaheuristic algorithms were also explored [31]. Finally, a number
of authors, including those of [32], investigated the estimator-based parallel processing
employed by this technique online. Author [33] also developed a technique for adaptive
learning that reduces system uncertainty and calculates DC motor settings to quicken the
training of neural networks live. The motor transfer function technique [34] and the mo-
ment method [35] require several experiments to identify DC motor parameters effectively.
The method in Ref. [36] requires the input voltage and angular position measurement of
a DC servo motor to simultaneously determine viscous friction and motor inertia using
an open-loop algebra method. The distribution-based offline parameter identification ap-
proach [37] converts a system of linear differential equations into linear algebraic equations.
This method uses discrete time data and identifies continuous time model parameters.
However, this method may be sensitive to the sampling rate of motor speed and current.
The method presented in [38] optimizes a PI controller for digital DC motor control and
parameter estimation. The cuckoo search algorithm [39,40] initially takes random numbers
to obtain the back EMF constant, armature inductance, and rotor inertia values. Then, the
result of the back EMF constant is substituted into the steady-state equation formula to
obtain the Armature resistance and Friction coefficient. Because it speeds up processing,
this trait is helpful in projects that simulate dynamic models. Numerous studies on the
same subject, including [41–43], explicitly employ the cuckoo search method to enhance
motor control. The approach is employed in [44] to tune the recurrent neural network
hyperparameters automatically.

This article presents the literature review and describes popular methods and algo-
rithms for estimating DC motor parameters. The rest of the work is organized as follows.
Section 2 describes DC motor dynamic response and parameter estimation, reviewing
the methods and algorithms based on the most popular categorizations mentioned above.
Section 3 is the discussion. Section 4 presents the conclusions.

2. DC Motor Dynamic Response and Parameter Estimation

The dynamic response of a DC motor is its ability to modify its speed or torque in
reaction to changes in the input signal fast and precisely. The electrical and mechanical
properties of a DC motor govern its dynamic reaction. The motor’s dynamic reaction is
influenced mainly by its electrical time constant, mechanical time constant, and inertia.
The time it takes for the electrical circuit of the motor to stabilize at 63.2% of its final
value following a step change in the input signal is known as the electrical time constant.
The resistance and inductance of the motor’s windings determine it. The time required
for the mechanical system of the motor to reach 63.2% of its final value following a step



Electronics 2023, 12, 2559 3 of 24

change in the output torque is known as the mechanical time constant. The rotor and load
inertia of the motor and any friction or damping in the system all contribute to this. The
motor’s inertia also has an impact on its dynamic responsiveness. A motor with low inertia
will react more rapidly, whereas a motor with high inertia will take longer to establish a
steady-state speed or torque.

The advantage of the dynamic response is that it allows the motor to respond to
changes in input or load quickly and with high precision. This allows the motor to change
speed or torque instantly and accurately, making it essential in applications requiring rapid
changes, high control, and adaptability to changing operating conditions. The dynamic
response also allows for more in-depth measurement and analysis of the motor’s response
to changes, which is essential in maintaining, repairing, and optimizing DC motor perfor-
mance. Maintaining system stability and avoiding oscillations or overshoots in the motor’s
output need a quick and precise dynamic reaction. Additionally, a well-tuned control
system can aid in lowering energy usage and enhancing the motor’s general effectiveness.

The dynamic relationships between the DC motor equations are briefly discussed
in this section. The dynamic reaction of the motor may be divided into three stages:
acceleration, steady state, and deceleration, as shown in Figure 2 [45]. The variables that
make up the DC motor mathematical model are described in Table 1.
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Table 1. Variables used in the DC motor’s mathematical model.

Parameter Description

ν(t) Applied voltage to the motor (V)
τ(t) Motor’s produced torque (Nm)
ω(t) Rotor angular velocity (rad/s)
Ea(t) Voltage in the Back EMF (V)

i Current consumed by the motor (A)
TL Torque at load (Nm)
R Armature resistance (Ω)
L Armature inductance (H)
Kt The mechanical constants’ equal values
Ke Back EMF
K The mechanical and electrical constants’ equal values
B Coefficient of friction ( Kgm2

s2 )
J Moment of inertia (Nm)
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The acceleration state of a DC motor refers to its ability to change its speed in response
to a change in the input signal. It specifically relates to how quickly the motor speeds
up when the input signal moves from a lower value to a higher value. A DC motor’s
dynamic response and acceleration state are closely connected, and the motor’s electrical
and mechanical time constants, inertia, and load torque all play a role. As the input signal
changes, a motor in a fast acceleration condition can react swiftly and quickly attain its new
steady-state speed.

The steady state of a DC motor refers to the point at which the motor’s speed and
torque have stabilized and are no longer changing in response to changes in the input
signal. A DC motor’s dynamic response governs how rapidly it may regain a steady state
following a change in the input signal. A motor with a slower reaction will take more time
to stabilize, whereas one with a better dynamic response can quickly attain a steady-state
speed or torque following a change in the input signal. Furthermore, a well-tuned control
system can aid in reducing oscillations and overshoot of the motor’s output during the
transition to a steady state, resulting in a smoother and more stable operation.

The deceleration state of a DC motor refers to its ability to slow down and stop in
response to a change in the input signal. It specifically refers to the rate at which the input
signal’s value shifts from higher to lower, causing the motor’s speed to drop. A DC motor’s
dynamic reaction is directly tied to its deceleration state, determined by its electrical and
mechanical time constants, inertia, and load torque. As the input signal changes, a motor
with a fast deceleration condition may react swiftly and halt quickly.

2.1. DC Motor Mathematical Model of DC Motor

DC motors are hybrid systems made up of both mechanical and electrical components.
Therefore, electrical and mechanical equations allow for observing the motor’s dynamic
behavior, as seen in Equations (1) and (2).

ν(t) = iR + L
di
dt

+ Ea(t) (1)

τ(t) = J
dω(t)

dt
+ Bω(t) + TL (2)

The two connection equations discussed in Equations (3) and (4) are connected to the
previous set of equations.

Ea(t) = Keω(t) (3)

τ(t) = Kti (4)

By substituting Equations (3) and (4) into Equations (1) and (2) and assuming that the
motor is without load (TL = 0), we obtain Equations (5) and (6), and their representation
can be observed in Figure 3 [40]. According to the results of Equations (5) and (6), Figure 4
displays the motor model’s block diagram.

ν(t) = iR + L
di
dt

+ Keω(t) (5)

Kti = J
dω(t)

dt
+ Bω(t) (6)

2.2. Least Squares Method

The least squares method was developed in 1795 by Karl Friedrich Gauss, who also
used it for astronomical calculations. He proposed that the most likely values are also
the most suitable for the unknowable but desired parameters. According to his definition,
“The value of the unknown quantities that has the greatest chance of being correct is
the one for which the accuracy-measuring numbers are multiplied by the sum of the
squares of the discrepancies between the observed and calculated values”. Since then,
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several technical issues have been solved using the least squares technique. Numerous
analyses of its qualities were conducted, numerical methods for various applications were
suggested, and the technique was changed to meet the required specifications. The same
attempt can be seen in the controlled system parameter estimation area. In recent years,
the issue of recognizing a dynamic process has drawn much attention. The numerous
methods created for collecting and evaluating input–output data vary from the most
basic deterministic procedures to beautiful numerical and statistical strategies based on
the findings of optimum estimation theory. As a result, the least squares approach has
significantly improved and grown in popularity in parameter estimation.
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Ref. [11] used the Simulink design optimization method to estimate unknown PMDC
motor parameter values using pattern search and nonlinear least squares. The PMDC motor
dynamic equation was used to create a PMDC motor Simulink model and calculate the
initial estimate of the motor parameters, which were used as initial values in the Simulink
design optimization method.

Using Equations (1)–(4), the relationship between Ke and Kt can be determined. The
back emf constant of the motor and the torque constant of the motor will be described in
Equations (7) and (8).

Ke =
Ea(t)
ω(t)

(7)

Kt =
τ(t)

i
(8)

By assuming that the electromagnetic losses are equal to zero, the connection between
these constants may be found. This shows that the mechanical power and the electrical
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power that the back emf voltage dissipates in the armature are equivalent. Equation (9)
defines the relationship between mechanical power (Pm) and electrical power (Pe):

Pm = τ(t)ω(t) (9)

From Equations (7) and (8) above, we obtain Equation (10). The result implies Ke = Kt.

Ea(t)
ω(t)

=
τ(t)

i
(10)

The motor parameter values that result from the use of the nonlinear least square
algorithm are considered accurate results because the output response from the Simulink
modal is almost symmetrical with the actual measured response of the motor, which makes
the results obtained using the nonlinear least squares algorithm more accurate, as described
in Table 2.

Table 2. The parameters that were computed using NLS and PS methods.

Parameter Value Nonlinear Least Squares (NLS) Pattern Search (PS)

R 1.107 1.0591 0.27302
L 0.120016 0.1 0.0028285
K 0.02497621 0.03728 0.018262
B 0.0007815 0.0011448 0.00078149
J 0.000121 0.0009 0.00012102

Ref. [12] describes estimating dc motor parameters in steady state and deceleration. It
is explained that the value of Ke = Kt, so there are four unknown parameters in the steady-
state interval Armature resistance (R), the mechanical constants equal values (Kt), torque
loss (T0), and Friction coefficient (B). In this article, two sets of voltage inputs, Vss1 and Vss2,
are used as measurements to improve the accuracy of parameter estimation. Any unknown
parameters can be solved using the least squares method described in Equation (11).

iss1 ωss1
0 iss1

0 0
−ωss1 −1

iss2 ωss2
0 iss2

0 0
−ωss2 −1




R0
Kt
B
T0

 =


Vss1

0
Vss2

0

 (11)

In the deceleration interval, the current equals zero, and the motor slowly stops. At
this time, the motor inertia calculation formula can be explained by the Equation (12).

J
dω(t)

dt
= −Bω − T0 (12)

This article uses the open source Python program to develop a parameter measure-
ment system for permanent magnet DC motors. Among them, the signal measurement
system built on the Python platform captures the motor drive’s voltage, current, and speed
signals and integrates the signal data. Enter MATLAB R2021a to estimate the acceleration
parameters and the least squares method and propose a method to judge the acceleration
and deceleration intervals. The results of the acceleration method are compared with the
measurement using the least squares method. The result is that using the least squares
method has more stable and complete results for each DC motor parameter described in
Table 3.
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Table 3. Parameter table obtained by using acceleration method and least squares method.

Parameter Value Acceleration Method Least Squares Method

R 2.8 None 0.7636
L 0.003 None 0.00076356
Ke 0.2311 0.2159 0.2115
Kt 0.23 0.2159 0.2115
B 0.00019 0.0001181 0.0001157
J 0.00015 0.1465 0.0014

T0 0.04 0.9442 0.9248

2.3. Metaheuristics Algorithms

Over the past few years, there has been a surge in the utilization of metaheuristic
algorithms. The primary reason for this is the ease of implementation and adaptability to
diverse problems as expounded in reference [24]. Hence, metaheuristic algorithms based
on the population are frequently employed in the academic literature. The categorization
of metaheuristic algorithms can be delineated into four principal groups based on the
inspiratory source utilized to generate novel solutions. These four categories are evolu-
tionary algorithms (EA), swarm intelligence algorithms, physics-based algorithms, and
human-based algorithms, as detailed in reference [46]. It is commonly posited within the
scholarly literature that the impetus behind the advancement of Evolutionary Algorithms
(EA) can be attributed to the influential framework provided by Darwin’s seminal theory
of evolution, which emphasizes the notion of the preservation of the “fittest” individuals in
the maintenance of species survival. This study employs genetic procedures, specifically,
crossover, mutation, and selection, in order to generate improved quality offspring solu-
tions. The swarm intelligence algorithm is rooted in the emulation of the aggregate actions
exhibited by animals or insects, more specifically, in their pursuit of locating food sources
and securing potential partners for the propagation of their species. Intelligent behavior,
characterized by decentralized decision making and informed by the examination of local
information and interaction with the search environment, can be exhibited by members
of this flock. The tracing operators of algorithms that are based on human activity have
the ability to imitate various human behaviors such as thinking, learning, speaking, and
teaching. A taxonomy of metaheuristic algorithms based on their source of inspiration
and notable examples associated with each branch of MSA is presented in Figure 5. In the
present study, a review was conducted with a focus on three specific population-based
metaheuristic algorithms, namely, differential evolution, particle swarm optimization, and
cuckoo search. The selection of these algorithms was based on their pertinence to examining
the implications of utilizing dynamic connections within the context of population-based
metaheuristic algorithms.

2.3.1. Differential Evolution (DE)

DE is a population-based direct stochastic optimization technique initially developed
by Storn and Price [70]. It is easy, powerful, and simple, qualities that make it appealing
for numerical optimization over continuous search space. Compared to evolutionary
algorithms, DE takes a more greedy and less stochastic approach to problem resolution. DE
combines straightforward arithmetic operators with the traditional crossover, mutation, and
selection operators to evolve from a randomly generated beginning population to a final
solution. In addition, the way that DE implements the mutation process differs significantly
from other evolutionary algorithms. The vector differentials between the members of the
current population are used in DE mutation operation to determine the level and direction
of perturbation that will be applied to each subject of the mutation operation.
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Scholarly article [18] enumerates several methodologies employed in optimization,
particularly the Genetic Algorithm (GA), Differential Evolutions (DE) with two strategies
(DE/rand/1/exp, DE/best/1/bin), Teaching–Learning-Based Optimization (TLBO), and
Artificial Bee Colony (ABC). This article presents an analysis of the variation in simulation
time of the motor model and memory assistance, utilizing three distinct approaches to
minimize the overall computational time. The diagrammatic representation of the DC
motor is depicted in Figure 6, along with the operative device that may or may not have
a correlation with the motor. The potential association between the item in question and
the motor system is uncertain and warrants further investigation. The specification of
the drive’s parameter requirements is contingent upon various factors. The proposed
methodology can be applied to DC motors featuring distinct excitation systems such as
parallel excitation or permanent magnet configurations.
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Figure 6. Presentation of the drive-in schematic form, which consists of a working machine and a DC
motor with independent excitation.

In this article, the motor stroke response can be simulated using Equations (1) and (2).
Equation (2) is converted into Equation (13) which is described below:

τ(t)− TL = J
dω(t)

dt
(13)

Equations (1) and (2) are combined because the induced voltage e relies on the motor
speed and the motor torque τ(t) depends on the motor current. In Equations (14) and (15),
e and τ(t) are written.

e = cmω (14)

τ(t) = cmi (15)

Since cm = kmΦ, where km is the DC motor constant and the magnetic flux Φ is
considered to be constant in the instance of the particular motor, cm is taken to be constant
(referred to as the motor constant in the continuation). The load TL given in (2) can be
broken down further, as shown in (16).

TL = Tla + Tlbω + Tlcω2 (16)

The components Tla and Tlb, respectively, stand in for Coulomb and viscous friction
when there is no load from the working machine, while Tlc stands in for any air resistance
in the fan along the motor axis. In the event that the working machine creates a load, the
variables Tla, Tlb, and Tlc indicate friction, air resistance at the fan at the motor axis, and
the combined working machine load. Equations (17) and (18) are created by putting the
following Equations (14)–(16) into (1) and (2).

Ua = iR + L
di
dt

+ cmω (17)

cmi −
(

Tla + Tlbω + Tlcω2
)
= j

dω

dt
(18)

Results show that Differential Evolution (DE)/rand/1/exp is the most powerful
method described in Table 4. The results are the same for each run within the scope of the
individual test data. TLBO is only slightly worse, but computation time is two times longer.
The results obtained using DE/best/1/bin and ABC are also acceptable. Only the results
obtained using GA are too bad. Based on that, DE/rand/1/exp can be the best method for
the problem discussed. The weakness of this article is that it does not consider the dynamic
properties of torsion, mass with torsional stiffness, and damping effects.
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Table 4. Mean values of calculated parameters.

Parameter
Method

Use Value
(Simulation) GA DE/Rand/

1/Exp
DE/Best/

1/Bin TLBO ABC

R 42.5 37.34 42.5 43.58 42.5 42.48
L 8 × 10−2 5.692 × 10−2 8 × 10−2 8.116 × 10−2 8 × 10−2 8.002 × 10−2

cm 0.4781 0.6782 0.4781 0.4773 0.4781 0.4781
J 2 × 10−5 8.302 × 10−5 2 × 10−5 1.978 × 10−5 2 × 10−5 2.004 × 10−5

Tla 1 × 10−2 1.358 × 10−2 1 × 10−2 1.981 × 10−2 0.998 × 10−2 0.736 × 10−2

Tlb 3.27 × 10−5 2.033 × 10−5 3.270 × 10−5 3.026 × 10−5 3.260 × 10−5 2.577 × 10−5

Tlc 8.55 × 10−8 4.778 × 10−8 8.55 × 10−8 10.98 × 10−8 8.850 × 10−8 11.34 × 10−8

2.3.2. Particle Swarm Optimization (PSO)

The behavior of a swarm of living objects, such as birds and other flies, is mimicked by
the bio-inspired metaheuristic search approach known as particle swarm optimization [71].
The standard particle swarm optimization is known to attract suboptimal solutions that are
only sometimes the best solution [71,72]. As a result, the search process quickly converges.
The particles continue searching within a confined and smaller area of the search space
after they are caught at such local optimal solutions. All particles seek locally in certain
areas, making it difficult or impossible to escape from such local optimum search ranges.
Once the particles have prematurely converged, they may continue to do so until they reach
a solution that is very close to the others. As a result, the personal and overall best may be
limited to that tiny area of the search field. As a result, the algorithm will not be able to
execute the exploration process, which will improve the exploitation process. A typical PSO
randomly starts a swarm of particles in the solution search space with a normal distribution
and specified upper and lower limit ranges. Each particle has a velocity vector that directs
its subsequent travel while being measured against a predetermined goal function to obtain
the optimal answer [71,73]. Each particle’s velocity is adjusted following its personal best
solution (pBest) and overall best solution (gBest). A particle finds the best solution is pBest,
while the entire swarm finds the best solution is gBest [72,73].

A particle may quickly become stuck in a local optimum in the typical PSO, which
might converge to a decent solution but has the issue of premature convergence. This is
especially true in a significant problem search space with numerous local optimal solutions.
This limits the particles’ ability to discover new regions of the search space. The introduc-
tion and manipulation inertia weight factor, the inclusion of diversity in the swarm, and the
hybridization of an algorithm with another metaheuristic algorithm, such as genetic algo-
rithms, are just a few of the solutions that have been suggested in the literature [74]. These
techniques enable the particles to avoid being trapped in a local optimum and improve the
global searching process.

Ref. [26] compared the modified PSO method to the original PSO algorithm. PSO adap-
tations include Chaos-Initialized PSO (CI PSO), Adaptive Inertia Weight Factor PSO (AIWF
PSO), and constricted with linearly decreasing inertia weight PSO (CIW PSO). Computer
modeling and system parameter estimation were performed using MATLAB/Simulink soft-
ware. This article presents a DC motor system with the two-mass model (2MM) described
in the Figure 6 and will be simplified using Equations (19)–(21).

J1
.

ω1 = Tm − Ts − b(ω1 − ω2) (19)

J2
.

ω2 = −Ts + b(ω2 − ω1)− TL (20)

Ts = Ks(ω1 − ω2) (21)
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In Figure 7, the motor is linked to the load inertia through the implementation of a
flexible shaft. The variable J1 signifies the inertia of the motor, while J2 denotes the inertia of
the load. Flexible couplings are frequently employed in order to facilitate the connection of
loads, thus permitting a particular degree of shaft misalignment. This particular mechanism
is observable in various systems such as wind turbines and robot arms that employ flexible
joints, assuming that the flexible coupling exhibits greater stiffness relative to the flexible
center shaft. In this scenario, a simplified model of the system may be employed, in which
solely two masses are interlinked by a pliant shaft, with the consideration of their inherent
damped effect. Equation (22) explains the transfer function of the system, which takes
motor torque as input and produces the inertial angular velocity of the motor as an output.

G1(s) =
ω1(s)

Tm
=

J2s2 + Ks + bs
(J1 J2s3) + (J1 + J2)bs2 + (J1 + J2)Kss

(22)
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The Equation (23) represents the task of identifying the system model parameters for
the 2MM as an optimization problem utilizing a minimal cost function.

minJ =
1
N

n

∑
i=0

[ModelOutput(i)− MeasuredOutput(i)]2 (23)

The result is that the Constricted with Linearly Decreasing PSO (CIW PSO) outper-
forms all algorithms with its ability to get out of the local optimal, converge to values very
close to the real ones, and obtain the best cost function, as described in Table 5.

Table 5. Percentage error for the estimate parameter by algorithm.

Parameter Value STD PSO Error CIW PSO Error AIWF PSO Error CI PSO Error

J1 0.00274 0.0034 25.18% 0.00271 0.89% 0.0029 8.73% 0.00275 0.56%
J2 0.00256 0.0018 27.05% 0.00258 0.957% 0.00239 9.33% 0.00254 0.61%
Ks 43.4560 41.129 5.35% 43.49 0.093% 43.233 0.45% 41.7134 4.01%
b 0.0550 0.1 150.0% 0.04036 0.924% 0.03852 9.66% 0.04755 18.88%

In reference to Ref. [27], a novel approach for determining the parameters of inde-
pendently excited DC motors is presented utilizing the Chaotic Initialized Particle Swarm
Optimization (CIPSO) algorithm. The process of parameter estimation is transformed into
an optimization problem through the utilization of an objective function. The strategy
that has been presented holds significant importance in the precise estimation of motor
parameters compared to the standard particle swarm optimization technique. This is
evidenced by the low mean squared error observed between the actual speeds and the
estimated speeds. The DC motor is represented by means of a transfer function in the
context of academic writing. In this study, the optimal estimation of five important param-
eters of a DC motor, namely, the moment of inertia, viscous friction, electromotive force
constant, resistance, and inductance, was performed through the application of CIPSO. The
generation of the initial population swarms was accomplished through the implementation
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of a stochastically generated marquee map. The estimated parameters are subjected to a
comparison with the true values alongside the parameters obtained through the standard
particle swarm optimization technique. The CIPSO method offers the distinct advantages
of providing relatively precise parameter estimates with an insignificant mean squared
error. In this article, the findings presented in Table 6 indicate the superior performance of
the CIPSO algorithm, compared to the SPSO algorithm, in relation to both mean square
error (MSE) values and the accuracy of the estimations for the motor parameters. The
MSE value attained by CIPSO, which is much lower than the MSE achieved by SPSO, is
1.399 × 10−16. The CIPSO-estimated parameters and the real motor parameters are quite
near to each other.

Table 6. Actual and estimated parameters with MSE.

Parameter Actual CIPSO SPSO

J 0.01 0.0102 0.0110
B 0.1 0.1 0.104
K 0.01 0.0101 0.014
R 1 1.007 1.0901
L 0.5 0.503 0.508

MSE 1.399 × 10−16 2.080 × 10−12

2.3.3. Cuckoo Search Optimization (CSO)

The CSO algorithm exhibits a comparatively complex nature, unlike the remaining
two algorithms. In contrast to the aforementioned algorithms, similarities to the Genetic
Algorithm (GA) are evident in this approach, as with the previous one. Notably, however,
convergence is demonstrated in a reduced number of iterations. The CSO method consti-
tutes a bioinspired algorithm that draws inspiration from the peculiar reproductive strategy
of cuckoo birds, which involves laying eggs in the nests of other bird species for subsequent
care and rearing. In contrast to the remaining two algorithms, the CSO method comprises
specific parameters. The determination of certain parameters is a complex subject of inquiry
in academia. The body of scholarly works have recommended a proportion of 25% [75].

Ref. [39] introduced a modified cuckoo search algorithm as an effective parametric
estimation tool for optimizing motor performance. The charge function is derived from the
discrepancy between the actual and desired current and velocity measurements, which arise
upon applying a step input voltage to the motor. The present study entailed a comparison
of the modified metaheuristic cuckoo search algorithm with the Steiglitz–McBride method
and the standard cuckoo search technique.

By utilizing Equations (1)–(4), it is possible to formulate a differential equations
system predicated upon the motor’s current and speed. In this manner, a load-free motor
configuration (TL = 0) is considered, and substitutions are made by utilizing (3) and (4) on
(1) and (2), correspondingly. Equations (24) and (25) represent the consequent outcome of
this procedure.

dI(t)
dt

=
v(t)− Ri(t)− Keω(t)

L
(24)

dω(t)
dt

=
Km I(t)− Bω(t)

J
(25)

Equation (24) represents the current equation, whilst Equation (25) pertains to the
velocity equation. The two variables under consideration, namely, velocity and current, are
deemed to be quite feasible in terms of measurement. Nonetheless, the values of the six
undetermined variables are contingent upon the type of motor utilized. Conversely, it may
be posited that electrical constants exhibit magnitudes that are typically commensurate with
those of mechanical constants [2]. Consequently, the issue may be simplified to acquiring
five key parameters.
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This article exclusively employs the steady-state equation for determining the parame-
ters. A steady state refers to a condition in which the variables characterizing the system
remain constant over time. In regard to regulation, the state is defined as stabilized when
the magnitude of the output remains within 2% of the ultimate value of the response to
the step input. Thus, in order to derive distinct correlations, an analysis of the system’s
response to the step input should be conducted. By solely considering the steady state,
Equations (7) and (8) can be utilized to derive the subsequent association.

R =
Vss − Kωss

Iss
(26)

B =
KIss

ωss
(27)

In the present context, the parameter denoted by K serves as a measure of the magni-
tude of both the electrical and mechanical constants. Iss denotes the steady-state current,
while Vss represents the voltage exerted in steady-state conditions, also known as the step
magnitude. Additionally, ωss signifies the velocity attained during steady-state conditions.
It is contended that Equations (26) and (27) are applicable exclusively to the motor reaction
to step inputs in a state of equilibrium.

Numerous scholarly investigations have demonstrated that the Integral Absolute Error
(IAE) along the trajectory is a fitness function of notable efficacy. The motor is explicated
through a set of differential equations. Hence, it is crucial to consider the inaccuracies
present in both the current and velocity variables. Prior studies have demonstrated the
suitability of employing the Euclidean distance as a form of fitness function when dealing
with two vectors. Specifically, the original proposed fitness function, denoted as (28),
involves the use of estimated values for Iss and ωss.

f itness =
1√

∑(I − Is)
2 + ∑(ω − ωs)

2
(28)

The outcomes demonstrate a noteworthy enhancement over the conventional cuckoo
search algorithm and exhibit superior performance compared to the Steiglitz–McBride
technique. The efficacy of the modified cuckoo search algorithm in comparison with
the standard cuckoo search algorithm has been demonstrated through results tabulated
in Table 7. Notably, the modified cuckoo search algorithm adheres to the steady-state
relationship, which is frequently invalidated by the application of random values estimated
by the standard cuckoo search algorithm. The tabulated data for the performance of the
two algorithms is presented in Table 7. The root means square error (RMSE) for velocity
and current is computed for each methodology. The algorithm developed by Steiglitz and
McBride demonstrates an RMSE value of 2.1542 for velocity and an RMSE value of 0.0296.
The modified cuckoo search method exhibits an RMSE of 0.8562 for velocity and an RMSE
of 0.0242

Table 7. Comparing nominal parameters, parameters acquired using the original cuckoo method,
and parameters obtained using the modified cuckoo algorithm.

Parameter Nominal Value
Steiglitz–McBride Modify CSO

Value Error Value Error

R 3.1363 3.0031 4.44% 3.0112 3.99%
K 0.048774 0.0477 2.25% 0.049203 0.88%
L 0.01307 0.013556 3.72% 0.01144 12.41%
J 9 × 10−6 9.0011 × 10−6 0.01% 8.55 × 10−6 4.99%
B 1.69 × 10−4 1.7458 × 10−4 16.35% 1.705 × 10−4 0.02%
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In contrast, it offers marginally superior outcomes than the Steiglitz–McBride algo-
rithm. The modified cuckoo search’s shortcoming, despite the fact that this approach is an
enhanced heuristic and metaheuristic method, is that it is only possible to use the modified
cuckoo search with DC motors.

Ref. [40] employed a test that illustrates the use of dynamic response relationships as
search constraints in a metaheuristic algorithm employed as a parametric estimator, and it
was conducted with three algorithms (Gray Wolf Optimizer, Jaya Algorithm, and cuckoo
search algorithm). This article compares the three original algorithms with three modified
algorithms. Not only are they compared with the original algorithms, but the calculations
in this article also use two motors for comparison.

The steady state is employed as a search constraint in article [40], which is similar to
article [39] in that it estimates the DC motor parameters solely in the transient state. As a
result of this connection, the search algorithm’s random parameters are used less frequently,
and it requires fewer iterations to provide usable results.

The system is considered to be in a steady state when its output has stabilized and its
reaction varies over time by less than 2%. The current and speed remain consistent in this
regard. As a result, both the velocity derivative and the current derivative are zero. The
similarity in magnitude between the electrical and mechanical constants is a well-known
phenomenon. K is therefore utilized exactly in both cases.

When the system’s output varies with respect to time, this is known as a transient.
Even though it is known that the current has a direct proportionate impact on the velocity
derivative, the relationship in this phase is not readily visible. This relationship causes the
maximum current value to cause the current derivative’s maximum value, as explained in
Equation (29).

Kmax(i) = Jmax

(
dω

dt

)
+ Bω

(
tmax(i)

)
(29)

Since B is already defined as a function of K, removing J only leaves it specified as a
function of K, as can be shown from Equation (29); the parameter J can be a function of
both B and K.

J =
bω
(

tmax(i)

)
− Kmax(i)

max
(

dω
dt

) (30)

In this article, the fitness/cost function is the Euclidean distance between the sum of
the errors in flow and the sum of the errors in speed, explained in Equation (31).

f itness =
√

∑(I − Is)
2 + ∑(ω − ωs)

2 (31)

The absolute percentage error for each test concerning the nominal parameters was
calculated to assess the algorithm performance’s correctness. Tables 8 and 9 for Motor 1
and Motor 2 describe the findings. The numerical and tabular results demonstrate im-
provements when comparing the modified algorithms to the originals. The focus of the
findings that follow will be the changed algorithms. The observed findings show that the
updated method converges more quickly and adjusts the cost curves in the initial rounds.
Given that the adjustment speed had been preset, the search ended when the cost function
reached a value of less than 0.1. The drawback of this article is that it was only tested in
an accelerated state and a steady state, even though measuring a DC motor according to
changes in speed has three stages: acceleration, steady state, and deceleration.

The beginning values are those that each algorithm uses to determine the outcomes
and the improvement. An exact improvement cannot be measured because the method
starts with random numbers. Nonetheless, the findings demonstrate a clear improvement
in each algorithm, particularly in the first iterations, where the application of dynamic
response relations causes the error to be decreased in fewer iterations. As a result, all
algorithms show decreased error and quicker convergence. The pattern persists across
different motors, although the GWOm performs better with Motor 1 than with Motor 2.
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Table 8. Motor 1 test’s absolute percentage inaccuracy.

Test Algorithm R% K% L% J% B%

Test 1

GWOo 1.557 0.355 6.721 2.317 0.182
GWOm 1.473 0.173 0.591 0.397 0.173
Jayao 15.081 3.801 55.18 12.917 0.34
Jayam 0.012 0.001 0.21 0.225 0.001
CSOo 0.252 0.029 0.068 0.29 0.029
CSOm 0.008 0.001 0.041 0.027 0.001

Test 2

GWOo 0.262 0.161 4.03 0.198 0.077
GWOm 0.653 0.076 4.476 0.3 0.076
Jayao 5.623 0.396 55.18 20.54 0.899
Jayam 0.013 0.001 0.194 0.225 0.001
CSOo 0.198 0.023 1.084 0.226 0.023
CSOm 0.022 0.002 0.069 0.098 0.002

Test 3

GWOo 1.445 0.02 3.555 0.508 0.391
GWOm 1.355 0.159 1.391 0.383 0.159
Jayao 20.539 0.572 55.18 168.091 12.048
Jayam 0.014 0.002 0.3 0.225 0.002
CSOo 3.137 0.376 9.907 3.56 0.376
CSOm 0.004 0.001 0.212 0.215 0.001

Test 4

GWOo 13.269 2.785 53.598 66.302 0.375
GWOm 1.233 0.141 0.437 0.082 0.141
Jayao 63.585 21.087 57.78 55.245 35.513
Jayam 0.151 0.018 0.191 0.241 0.018
CSOo 0.369 0.043 5.891 3.551 0.043
CSOm 0.241 0.028 0.269 0.251 0.028

Table 9. Motor 2 test’s absolute percentage inaccuracy.

Test Algorithm R% K% L% J% B%

Test 1

GWOo 29.525 4.733 61.008 70.75 5.774
GWOm 0.244 0.054 5.024 0.755 0.054
Jayao 9.779 2.48 3.253 4.529 5.228
Jayam 0.087 0.02 0.667 0.829 0.02
CSOo 0.203 0.045 0.086 0.264 0.045
CSOm 0.025 0.005 0.024 0.023 0.005

Test 2

GWOo 5.792 1.448 19.533 6.69 1.554
GWOm 2.773 0.64 18.245 1.454 0.64
Jayao 9.55 1.637 28.856 17.807 0.466
Jayam 0.06 0.013 0.703 0.823 0.013
CSOo 0.307 0.069 0.632 0.459 0.069
CSOm 0.053 0.012 0.025 0.013 0.012

Test 3

GWOo 11.298 1.53 67.539 192.484 2.66
GWOm 0.936 0.206 8.692 0.601 0.206
Jayao 6.186 0.08 65.769 162.739 6.26
Jayam 0.121 0.027 0.637 0.836 0.027
CSOo 0.291 0.065 10.56 5.329 0.065
CSOm 0.028 0.006 0.551 0.102 0.006

Test 4

GWOo 4.496 0.966 12.593 12.692 0.737
GWOm 2.004 0.436 4.146 0.37 0.436
Jayao 35.942 14.237 161.4 28.31 6.117
Jayam 0 0 0.665 0.809 0
CSOo 4.296 0.909 13.716 11.149 0.909
CSOm 0.113 0.025 0.035 0.556 0.025
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3. Discussion

This section discusses in detail the comparison of each method and algorithm for
estimating DC motor parameters and comparing the results of each study.

3.1. Least Squares Method

The six measurements above can be divided into two parts: measurements using
simulations in MATLAB Simulink and direct measurements using real DC motors, which
are described in Table 10.

Table 10. Motor measurement with simulation or actual motor.

Parameter Simulink Actual Motor

1. Parameter Estimation of a Permanent Magnets DC Motor [11] X

2. Improvement and Implementation of Model Identification for
Permanent Magnet DC Motors [12]

X

Ref. [11] has the drawback of not having comparative data between the value manu-
facturer and parameter estimates, which are fully explained in Ref. [12]. With this value
comparison, the reader can find out how effectively this method is used to solve the prob-
lem of estimating DC motor parameters. Article [12] also explains in detail how to obtain
DC motor parameter estimates.

3.2. Differential Evolution

Article [18] examines measurements for estimating DC motor parameters using differ-
ential evolution, using MATLAB Simulink to create DC motor simulations. Both have the
same advantages by comparing parameter estimation results with several algorithms. The
advantages of differential evolution in Ref. [18] obtain the best results but have a weakness.
Namely, the calculation time is twice as long as the other algorithms. Another drawback
in Ref. [18] is that it does not consider dynamic torsional properties, mass with torsional
stiffness, or damping effects, which could be the topic of the following journal. The strength
of this article is that it considers the constant, linear, and quadratic load sections, although
it does not cover all the physical phenomena during motor starting.

Future research will likely use different evolution to estimate DC motor parameters
due to the many articles cited each year, described in Figure 8 [76]. The application of this
algorithm hybridization is also widely used, among others, in Table 11.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 25 
 

 

Ref. [11] has the drawback of not having comparative data between the value manu-

facturer and parameter estimates, which are fully explained in Ref. [12]. With this value 

comparison, the reader can find out how effectively this method is used to solve the prob-

lem of estimating DC motor parameters. Article [12] also explains in detail how to obtain 

DC motor parameter estimates. 

3.2. Differential Evolution 

Article [18] examines measurements for estimating DC motor parameters using dif-

ferential evolution, using MATLAB Simulink to create DC motor simulations. Both have 

the same advantages by comparing parameter estimation results with several algorithms. 

The advantages of differential evolution in Ref. [18] obtain the best results but have a 

weakness. Namely, the calculation time is twice as long as the other algorithms. Another 

drawback in Ref. [18] is that it does not consider dynamic torsional properties, mass with 

torsional stiffness, or damping effects, which could be the topic of the following journal. 

The strength of this article is that it considers the constant, linear, and quadratic load sec-

tions, although it does not cover all the physical phenomena during motor starting. 

Future research will likely use different evolution to estimate DC motor parameters 

due to the many articles cited each year, described in Figure 8 [76]. The application of this 

algorithm hybridization is also widely used, among others, in Table 11. 

 

Figure 8. Number of all cited articles. 

Table 11. Hybridizations of DE algorithm with other AI algorithms. 

Different Evolution with Years 

PSO (Particle swarm optimization) 2016 [77], 2018 [78], 2019 [79], 2020 [80,81], 2021 [82] 

CS (Cuckoo Search) 2016 [83], 2018 [84], 2019 [85,86], 2020 [87] 

ABC (Artificial bee colony) 2016 [88], 2017 [89], 2018 [90], 2019 [91], 2020 [92] 

GA (Genetic algorithm) 2016 [93], 2017 [94], 2018 [95] 

ACO (Ant colony optimization) 2017 [96], 2018 [97], 2019 [98] 

3.3. Particle Swarm Optimization 

The two articles [26,27] regarding measurements for estimating DC motor parame-

ters using particle swarm optimization use MATLAB Simulink to identify DC motor pa-

rameters. The two articles explain the same flow and how to obtain the estimated DC 

motor parameters, depicted in Figure 9. 

Figure 8. Number of all cited articles.



Electronics 2023, 12, 2559 17 of 24

Table 11. Hybridizations of DE algorithm with other AI algorithms.

Different Evolution with Years

PSO (Particle swarm optimization) 2016 [77], 2018 [78], 2019 [79], 2020 [80,81], 2021 [82]
CS (Cuckoo Search) 2016 [83], 2018 [84], 2019 [85,86], 2020 [87]

ABC (Artificial bee colony) 2016 [88], 2017 [89], 2018 [90], 2019 [91], 2020 [92]
GA (Genetic algorithm) 2016 [93], 2017 [94], 2018 [95]

ACO (Ant colony optimization) 2017 [96], 2018 [97], 2019 [98]

3.3. Particle Swarm Optimization

The two articles [26,27] regarding measurements for estimating DC motor parameters
using particle swarm optimization use MATLAB Simulink to identify DC motor parame-
ters. The two articles explain the same flow and how to obtain the estimated DC motor
parameters, depicted in Figure 9.
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Even though it uses the same flow, article [27] obtains slightly better results than
article [26]. This difference can be due to the two articles using different DC motors. In
article [26], the authors modified particle swarm optimization (PSO), whereas, in an article [27],
the authors used chaotic initialized particle swarm optimization (CIPSO) described as a finite
nonlinear system with a deterministic dynamic behavior that has ergodic and stochastic
properties [99].

Considering that there is little research on the estimation of DC motor parameters
using particle swarm optimization here, the authors suggest that in the future, we can
combine chaotic initialized particle swarm optimization (CIPSO) with constricted par-
ticle swarm optimization. Because chaotic initialized particle swarm optimization can
improve the global exploration process for the parameter search space by allowing the
particle to fluctuate above the search space, using inertia weight methods will improve the
exploration process.

3.4. Cuckoo Search Optimization

From a review of two articles [39,40], both use Simulink for DC motor simulation. The
two articles have their respective advantages in terms of results. The advantage of article [39] is
that there is a more detailed measurement of the DC motor parameters estimation results and it
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compares the RMSE of the current and velocity between modifications of CSO, standard CSO,
and Steiglitz–McBride. The strength of article [40] is the modification of three algorithms (Gray
Wolf Optimizer, Jaya Algorithm, and cuckoo search algorithm) to prove that the modifications
made to the cuckoo search algorithm in article [39] can be extended to various metaheuristics.
The modified algorithm achieved better results than the three standard algorithms above
to obtain estimates of DC motor parameters. The drawback of the two articles above is
that the modified algorithm can only determine the estimated DC motor parameters and
cannot determine other types of motors. Measurements are only carried out in the steady-
state position.

In the future, it is hoped that many will apply the cuckoo search optimization algorithm
considering that there are still many variants of cuckoo search optimization that have not
been used to estimate the DC motor parameters depicted in Figure 10 [100], and we can
combine cuckoo search optimization with other algorithms such as hybrid cuckoo search
optimization with a genetic algorithm.

3.5. Quantitative Comparison of Computational Costs

The computational cost of parameter estimation in DC motors is affected by several
factors, including the dimension of the parameter space to be estimated, as a more signifi-
cant number of parameters increases the search space and generally leads to an increase in
computational cost for the optimization algorithm; the evaluation time required to calculate
the fitness or objective function, which involves simulating motor behavior and can be
time consuming; and the convergence speed of the optimization algorithm, as faster con-
vergence reduces the number of iterations required and, consequently, lowers the overall
computational cost.

3.5.1. Least Squares Method

The computational cost of the least squares method depends on the optimization
algorithm used, such as Gauss–Newton or Levenberg–Marquardt. The least squares method
is often efficient for parameter estimation in smaller-sized problems. The computational
cost is relatively low compared to the metaheuristic optimization algorithms.

3.5.2. Differential Evolution (DE)

DE generally has moderate to high computational costs. It utilizes a complex search
strategy involving trial vector generation and crossover operations. DE may require
more function evaluations and iterations to converge, especially for higher-dimensional
parameter spaces. The computational cost increases with the dimension of the problem
and the number of iterations required.

3.5.3. Particle Swarm Optimization (PSO)

PSO usually has a moderate computational cost. It relies on the movement of particles
through the search space to find optimal parameter values. PSO can converge relatively
quickly, but the computational cost increases with larger swarm sizes and longer simula-
tion times to evaluate the fitness function. The number of iterations required affects the
computational cost.

3.5.4. Cuckoo Search Optimization (CSO)

CS often has a lower computational cost compared to DE and PSO. It uses a random
search strategy which can efficiently explore the parameter space. However, CS may require
more iterations to converge than PSO and DE, which can impact the overall computational
cost. The evaluation time of the fitness function remains a significant factor.
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4. Conclusions

This paper reviews several methods and algorithms used to estimate the excess
parameters of DC motors from the least squares method. This method has more applications
for estimating DC motor parameters than metaheuristic algorithms due to the ease of
calculating using the least squares method. Judging from the two articles that use this
method, article [12] has advantages compared to similar articles using the least squares
method because article [12] uses actual motor measurements and reasonably explains how
to obtain each parameter estimate.

The advantage of differential evolution is that there are many studies on this algorithm,
as seen from the fact that its use continues to increase yearly. There are also many studies
on this algorithm in combination with several other algorithms to achieve optimal results.

The advantages of particle swarm optimization are the speed in estimating compared
to other algorithms and the ease of its relation with low limitations on the environment
and the objective function. There is still enough space for research on estimating DC
motor parameters.

The advantage of using cuckoo search is its simplicity, and in the future, more variants
should be used, as described in Figure 10, to estimate DC motor parameters.
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The advantage of using complex metaheuristic methods is that they are necessary for
handling large search spaces, global optimization, non-differentiable or discrete functions,
flexibility, limited problem-specific information, and balancing exploration–exploitation
trade-offs in complex optimization problems, surpassing the limitations of simple methods.
In the future, this metaheuristic algorithm will be even more used and developed, consider-
ing that metaheuristic algorithms can be hybridized with various methods and algorithms.

The three metaheuristic algorithms above also show good results because they are
close to the parameter values of the DC motor manufacturers. Hybridizing these three
metaheuristic algorithms to estimate DC motor parameters can optimize the results and
existing iterations, considering that each algorithm has advantages and disadvantages.
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