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Abstract: Three-dimensional object detection has attracted more and more attention from industry
and academia due to its wide application in various fields such as autonomous driving and robotics.
Currently, the refinement methods used by advanced two-stage detectors cannot fully adapt to
different object scales, different point cloud densities, partial deformation and clutter, and excessive
resource consumption. We propose a point cloud-based 3D object detection method that can adapt
to different object scales and aggregate local features with less resources. The method first passes
through an adaptive deformation module based on a 2D deformable convolutional network, which
can adaptively collect instance-specific features from where the information content exists. Secondly,
through a VectorPool aggregation module, this module can better aggregate local point features
with less resource consumption. Finally, through a context fusion module, the key points can filter
out relevant context information for the refinement stage. Our proposed detection method not only
achieves better accuracy on the KITTI dataset, but also consumes less resources than the original
detectors and has faster inference speed.

Keywords: adaptive deformation module; VectorPool aggregation module; context fusion module;
3D object detection

1. Introduction

With the continuous development of application fields such as autonomous driving,
robotics and augmented reality, the demand for accurate, fast and reliable 3D object detec-
tion technology is becoming more and more urgent. Three-dimensional object detection
aims to identify and locate different types of objects from a three-dimensional scene. Com-
pared with traditional 2D object detection, 3D object detection can provide more accurate
object position information and is also more robust because it is not easily disturbed by
factors such as light and shadow. However, 3D object detection faces many technical
challenges. Due to the sparsity and irregularity of point cloud data, it is very challenging
to directly apply 2D object detection technology to process point clouds.

In order to deal with these challenges, most of the existing 3D detection methods can
be divided into three categories according to the representation of point clouds: grid-based
methods, point-based methods, and combination of grid-based and point-based methods.
Grid-based methods [1–7] usually convert irregular point clouds into regular represen-
tations, such as 3D voxels or 2D bird’s eye views, which can be efficiently processed by
3D or 2D convolutional neural networks (CNNs) to learn point features for 3D detection.
Point-based methods [8–14] usually directly extract discriminative features from raw point
clouds for 3D detection. Grid-based methods are generally more computationally effi-
cient, but they suffer from information loss, which may reduce localization accuracy for
the location of fine details. Different from this, point-based methods are usually more
computationally expensive, but with point set abstraction, a larger receptive field is easily
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obtained, which provides more comprehensive information for 3D object detection. The
combination of grid-based and point-based methods [15–17] combines the advantages of
high computational efficiency of the grid-based method with the flexible advantages of the
point-based method, which not only improves the computational efficiency of the network,
but also fully obtains rich context information.

The above three categories of 3D object detection algorithms process point clouds
from different aspects, especially the combination of grid-based and point-based methods,
the most typical of which is the PV-RCNN [15] network, in the voxel feature extraction in
the down-sampling stage, PV-RCNN mainly uses the set abstraction operation of Point-
Net++ [9] to extract voxel features at multiple scales, although it has achieved certain
results, it can not fully adapt to different size objects, different point cloud density, clutter
and other problems. For example, when extracting voxel features, sometimes the position
of the sampled keypoints is far away from the object or the center of the object, and the
features of the object cannot be extracted well, if the keypoints can be shifted closer to the
object or the center of the object by learning the features of the surrounding neighborhood,
then the surrounding neighborhood features acquired by the keypoints will be more suit-
able for objects of different sizes. When extracting keypoint features in the second stage of
PV-RCNN, the set abstraction operation of PointNet++ is used to extract keypoint features
at multiple scales, but it makes processing large-scale point clouds very resource-intensive
and time-consuming, and the maximum pooling operation in set abstraction discards local
spatial distribution information, resulting in the lack of local spatial information in the
features obtained by grid points.

In order to solve the problem that PV-RCNN cannot fully adapt to different object
scales, different point cloud densities, clutter, and excessive resource consumption, we
were first inspired by deformable convolution [18] and Deformable PV-RCNN [16], and
found that sampling points can be shifted to places with more information according to the
surrounding neighborhood information, so as to extract the features of specific instances
and adapt to objects of different sizes; secondly, inspired by the encoding of local spatial
information in PV-RCN [17], PV-RCNN++ uses independent kernel weights and channels
to aggregate features of local points, consuming less resources; and finally, inspired by
the gating mechanism, the gating mechanism can filter out more prominent features and
filter out insignificant features, thereby suppressing clutter. To this end, we propose a
point cloud-based 3D object detection method that can fully adapt to different object scales
and aggregate local features with less resources. The main contributions of this paper are
as follows:

• Replacing the set abstraction of the Voxel Set Abstraction Module in PV-RCNN with
the adaptive deformation module. Through the adaptive deformation module, the
keypoints can be aligned with the most distinctive areas, and the most prominent
features of objects of different scales can be adaptively gathered and focused, so that
the model can detect uneven point cloud density better.

• Replacing the set abstraction in the RoI-grid pooling module in PV-RCNN with the Vec-
torPool aggregation module. The VectorPool aggregation module uses independent
kernel weights and channels to encode position-sensitive local features in different
regions centered on grid points, which not only preserves the spatial structure of grid
points well, but also saves the consumption of computing resources.

• Using the context fusion module to perform feature selection on keypoints obtained
directly from PointNet++ in PV-RCNN. Representative and discriminative features
can be dynamically selected from local evidence through the context gating mecha-
nism, which adaptively highlights relevant contextual features, thus facilitating the
optimization of more accurate 3D candidate boxes.

2. Related Work

3D Object Detection with Grid-based Methods. In order to deal with irregular
point clouds, most methods usually map the point cloud to a grid of bird’s eye view or
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voxelization. MV3D [1] projects point clouds into a 2D bird’s eye view grid and places a
large number of predefined 3D anchor points for generating 3D bounding boxes; AVOD [2]
extends MV3D by introducing image features in the proposal generation stage, improve 3D
detection accuracy; VoxelNet [3] first voxelizes the entire point cloud, then uses PointNet [8]
to extract the features of each voxel, and finally generates a detection frame through RPN;
compared to VoxelNet, SECOND [4] applies sparse convolution to replace 3D convolution
operation, so as to achieve the effect of reducing the amount of calculation and improving
the training speed; PointPillars [5] divides the point cloud into columns, reduces the
number of voxels that need to be processed, and improves the detection speed; VoTr [6]
is a transformer-based 3D backbone network that uses a deformed attention mechanism
that can effectively operate on empty and non-empty voxel positions, preserves the spatial
position encoding, and can be used as an alternative to standard sparse convolutional
layers; CenterPoint [7] uses the idea of Anchor-free to predict the center point of the 3D
frame in the first stage and regress its size, direction and speed, while the second stage uses
the center point feature to return the score of the detection frame and optimize it.

3D Object Detection with Point-based Methods. In addition to grid processing of
point clouds, PointNet [8] and PointNet++ [9] directly process the point cloud for point
cloud classification and segmentation, and can also be used as the backbone network for
feature extraction; F-PointNet [10] first proposed the method of using cones to achieve 3D
target detection; firstly, the candidate area is generated by an excellent 2D target detection
algorithm, and the 3D view cone is extracted by combining the depth information of
the candidate area, then the 3D instance is segmented by PointNet [8], and finally the
coordinates are transformed by the T-Net network, so that the central axis of the viewing
frustum orthogonal to the image plane and predict the final 3D bounding box; the first
stage of PointRCNN [11] uses PointNet++ [9] to extract point cloud features, divides
the point cloud of the entire scene into foreground points and background points, and
generates a small number of 3D candidate boxes from the foreground points, while the
second stage converts the pooled points of each candidate box into canonical coordinates,
so as to better learn local spatial features to optimize 3D boxes; STD [12] uses point-
based spherical anchors boxes to generate more accurate candidate frames, which reduces
the number of generated anchor boxes and greatly reduces the amount of calculation;
VoteNet [13] proposed a Hough voting strategy to better group object features; 3D-SSD [14]
adopts a farthest point sampling method based on feature distance, and excludes a large
number of background points by combining semantic information, in order to avoid
certain redundancy caused by completely using feature distance-based sampling; therefore,
they choose to combine the Euclidean distance and the method of sampling the farthest
point based on feature distance, and remove the very time-consuming FP module and
optimization module in PointNet++, which greatly reduces the calculation loss.

3D Object Detection with combination of grid-based and point-based methods.
PV-RCNN [15] combines voxel-based feature learning and point-network-based feature
learning to generate high-quality 3D pre-selection boxes and capture more accurate con-
textual information through flexible receptive fields, thereby improving 3D detection
performance. Deformable PV-RCNN [16] improves the detection performance of long-
distance targets by collecting unevenly distributed context information. PV-RCNN++ [17]
uses sector-proposal-centered sampling and local point feature aggregation to improve the
model. The performance and inference speed not only speed up the running speed of the
model, but also improve the detection performance of the model.

3. Method

In this section, we focus on introducing the network structure of our model, which is
improved based on PV-RCNN, as shown in Figure 1.
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Figure 1. AV PV-RCNN network structure diagram.

We designed a network that can fully adapt to different object sizes and reduce
computing resource consumption. First, the set abstraction for voxel feature extraction
in PV-RCNN is replaced with an adaptive deformation module, which can aggregate the
instance features of object features of different scales on the keypoints; secondly, the set
abstraction in the aggregation operation of the keypoints features in the second stage of
PV-RCNN is replaced by the VectorPool aggregation module to display and encode the
spatial structure information of the keypoints features; finally, the context fusion module
is used to filter the keypoints features obtained directly from PointNet++ in PV-RCNN,
dynamically select representative and discriminative features from local evidence, and
adaptively highlight relevant contextual features. In this section, a brief introduction to the
original PV-RCNN model is given first, followed by a detailed description of the voxel set
abstraction module, deformable convolution, adaptive deformation module, context fusion
module, roI-grid pooling module, and VectorPool aggregation module.

3.1. PV-RCNN

PV-RCNN is the benchmark model of our work. As shown in Figure 2, it is a two-
stage 3D object detection model based on the combination of grid and points. PV-RCNN
uses 3D sparse convolution as the backbone for feature extraction and 3D candidate
boxes generation, in order to make full use of the characteristics of the entire scene, PV-
RCNN proposes two methods, namely voxel-to-keypoint feature encoding and keypoint-
to-grid point feature extraction. Voxel-to-keypoint feature encoding is mainly realized
through the Voxel Set Abstraction Module, 3D sparse convolution performs 1, 2, 4, and
8 times downsampling processing on the point cloud, and each downsampled voxel feature
represents the whole scene, the keypoints are obtained by directly performing the farthest
point sampling algorithm (FPS) on the point cloud, the keypoints use the set abstraction in
PointNet++ to extract the voxel features in the whole scene, so that the voxels obtained by
each downsampling feature are encoded into a set of keypoints. The keypoint-to-grid point
feature extraction is mainly realized through the RoI-grid pooling module. According to
the generated 3D candidate boxes, 6 × 6 × 6 grid points are selected, and the grid points
use the set abstraction in PointNet++ to extract the keypoints features around the grid
points, so that the grid points have rich features of the entire scene. Finally, PV-RCNN
predicts the final 3D boxes and confidence according to the features of the grid points.
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Figure 2. PV-RCNN network structure diagram.

3.2. Voxel Set Abstraction Module

The voxel set abstraction (VSA) module is used to encode the voxel features in the
scene in the 3D sparse convolution into a set of keypoints, that is, each keypoint uses
the set abstraction operation proposed by PointNet++ [9] to aggregate voxel features at
multiple scales. Specifically, the FurthestPoint-Sampling (FPS) algorithm is used to sample
n keypoints K = {p1, · · · , pn} from the entire point cloud P, where in the KITTI dataset
n = 2048, the keypoints can be evenly distributed in the entire point by the FurthestPoint-
Sampling (FPS) algorithm, it can represent the entire point cloud scene, the keypoints are
surrounded by voxel features obtained through 3D sparse convolution, and the keypoints
directly use the set abstraction in PointNet++ to perform multi-scale feature extraction on
the surrounding voxel features.

Specifically, F (lk) = { f (lk)1 , · · · , f (lk)Nk
} is represented as the non-empty voxel feature

vector set of the k-th layer of the 3D sparse convolution, and V lk = {v(lk)1 , · · · , v(lk)Nk
} is

represented as the three-dimensional coordinates of the non-empty voxel of the k-th layer
of the 3D sparse convolution, where Nk is the number of non-empty voxels in the k-th layer
of 3D sparse convolution, for each keypoint pi, we first search for non-empty voxels within
the radius rk of the k-th layer to obtain the voxel-level feature vector set of the keypoint
pi as:

S(lk)
i =


[

f (lk)j ; v(lk)j − pi

]T

∣∣∣∣∣∣∣∣
‖v(lk)j − pi‖2 < rk,

∀v(lk)j ∈ V (lk),
∀ f (lk)j ∈ F (lk)

 (1)

It concatenates the local relative coordinates v(lk)j − pi to represent the relative position

of the semantic voxel feature f (lk)j . The voxel features in the adjacent voxel set S(lk)
i of pi

are then transformed by Set Abstraction in PointNet++ [9] to generate the features of the
keypoint pi:

f (pvk)
i = max

{
G(M(S(lk)

i ))

}
(2)

whereM(·) represents random sampling of at most Tk voxels from the adjacent voxel set
Slk

i to save computation, and G(·) represents a simple MLP network. max{·} represents

the maximum pooling operation on all adjacent voxel features Slk
i along all channels of

the voxel.
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Finally, by concatenating the keypoint features of all layers, the final feature of the
keypoint pi is obtained:

f (pv)
i =

[
f (pv1)
i , f (pv2)

i , f (pv3)
i , f (pv4)

i

]
, f or i = 1, · · · , n (3)

The above is the whole content of the voxel set abstraction module. When using the set
abstraction of PointNet++ [9] to extract the surrounding neighborhood features, multiple
scales are used to extract the surrounding voxel features. Although good results have been
achieved, it cannot fully adapt to problems such as different object scales, different point
cloud densities, clutter, etc., resulting in some objects not being detected. For example,
sometimes the keypoints are far from the object or the center of the object, and the features
extracted by the key points cannot well-represent the shape of the object and cannot fully
adapt to objects of different sizes, which may easily cause wrong detection results and lead
to a decrease in accuracy.

3.3. Deformable Convolution

In 2D object detection, deformable convolution has shown its powerful ability. De-
formable convolution can adaptively shift the position of sampling points to a place with
richer feature information, so as to sample richer feature information and fully adapt to
objects of different sizes, as shown in Figure 3.

conv

offset field

offsets

2N

deformable convolution

input feature map output feature map

Figure 3. Illustration of 3× 3 deformable convolution.

The core of 2D convolution is the convolution kernel R, which is used to sample the
feature map x. The convolution kernel determines the size of the receptive field, such as
the 3 × 3 kernel:

R = {(−1, 1), (−1, 0), · · · , (0, 1), (1, 1)} (4)

In order to achieve each position p0 on the output feature map y, we have

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn) (5)

where pn is each position in the convolution kernel R.
In deformable convolution, the convolution kernel R uses the offset {∆pn|n = 1, · · · , N}

to obtain a new sampling position, where N = |R|. Equation (5) becomes:

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn + ∆pn) (6)
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Now, the position of the convolution kernel sampling is pn + ∆pn. Since the offset ∆pn
is usually a fraction, Equation (6) is realized by bilinear interpolation as:

x(p) = ∑
q

E(q, p) · x(q) (7)

where p represents any (fractional) position (p = p0 + pn + ∆pn in Equation (6)), q enumer-
ates all integral spatial positions in the feature map x, and E(·, ·) is the bilinear interpolation
kernel. Note that E is two-dimensional. It is split into two 1D kernels:

E(q, p) = e(qx, px) · e(qy, py) (8)

where e(a, b) = max(0, 1− |a− b|).
The offset is obtained by applying a convolutional layer, and the offset has many

different forms, as shown in Figure 4, which lists three different offset forms. The output
offset has 2N dimensions, corresponding to N two-dimensional offsets.

a b c d

Figure 4. Illustration of different offset forms. (a) represents the case without offset, (b) represents
the case with offset, and (c,d) represents two special cases with offset.

3.4. Adaptive Deformation Module

The adaptive deformation module extends the core principle of deformable convolu-
tion to 3D, and the keypoints can adaptively learn the characteristics of objects of different
scales through the adaptive deformation module. As shown in Figure 5, in 3D, the key-
points replace the sampling positions of the regular grid in two dimensions. First, the
keypoints collect the non-empty voxels in the surrounding neighborhood, and then obtain
the offset and new features by adaptively learning the features in the non-empty voxels in
the surrounding neighborhood, this new feature is the feature of the deformed keypoints,
and then add the learned offset to the original keypoint coordinates to obtain the deformed
keypoint coordinates, and then perform feature extraction according to the set abstraction
in PointNet++ in PV-RCNN to obtain the final deformed keypoint features, as shown in
Figure 5.

Voxel Set 

Abstraction 

Module

keypoints

Deformation learning
Aggregated features

keypoints

Figure 5. Structural diagram of the adaptive deformation module.
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Specifically, the sampled n keypoints [vi, fi]
n
i=1 have 3D positions vi and feature vectors

fi corresponding to each layer of Conv1, Conv2, Conv3 or Conv4, and our module computes
the updated feature f

′
i as follows:

f
′
i =

1
n

ReLU
(

∑j∈N (i) Wo f f ( fi − f j) · (vi − vj)

)
(9)

where N (i) refers to the number of non-empty voxels in the neighborhood around the
i-th keypoint, and Wo f f is a weight matrix for learning keypoint offsets. Then, we obtain
new deformed keypoint positions as v

′
i = vi + tanh(Walign[ f

′
i ]), where Walign is a weight

matrix for learning keypoint position alignment. This is similar to the alignment in Mesh
R-CNN [19] and PointDAN [20]. After obtaining the new deformation key points and
their features, we use the set abstraction in PointNet++ [9] in PV-RCNN to perform feature
extraction on the new deformation key points.

3.5. Context Fusion Module

The context fusion module uses the context gating mechanism to select relatively
representative point cloud features, and uses two independent linear layers on the key
points, one of which uses the Sigmoid function on the linear layer, and the other linear layer
does not, and then multiplying these two streams can strengthen those relatively prominent
features and suppress those inconspicuous features, which can provide more representative
features for the subsequent refinement of candidate boxes, as shown in Figure 6.

PointNet++PointNet++

nxC

Linear

Linear

Gating

Sigmoid

Keypoint 1

Keypoint n

Context-Gated Point FeaturesContext-Gated Point Features

Voxel Set 

Abstraction 

Module

n keypoints

Figure 6. Structural diagram of context fusion module.

Specifically, the key point feature fi is given, the gating weights are obtained as
g = σ(Wgate fi + bgate), and the context gating features are obtained as f g

i = g �W f c fi,
where Wgate, bgate, W f c are the weight parameter learned from the data.

3.6. RoI-Grid Pooling Module

RoI-grid pooling module uses the 3D candidate boxes generated by 3D sparse convo-
lution to select a certain number of grid points. Each grid point uses the set abstraction in
Pointnet++ [9] to obtain the keypoint features of the surrounding neighborhood, and the
keypoint features contain very rich point cloud scene information, so each grid point has
very rich information, as shown in Figure 7.

Specifically, a 6× 6× 6 grid point is uniformly sampled in each 3D candidate box,
denoted as G = {g1, · · · , g216}. Through the set abstraction in PointNet++, the keypoint
features F̃ = { f̃ (p)

1 , · · · , f̃ (p)
n } are aggregated into the grid points. More precisely, we first

determine the adjacent keypoints of grid point gi within radius r̃ as:

Ψ̃ =


[

f̃ (p)
j ; pj − gi

]T
∣∣∣∣∣∣∣

∥∥∥∥pj − gi

∥∥∥∥2

< r̃

∀pj ∈ K, ∀ f̃ (p)
j ∈ F̃

 (10)
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where pj − gi denotes the local relative position of the feature f̃ (p)
j starting from keypoint

pj. Then, we use the set abstraction in PointNet++ [9] to aggregate the adjacent key point
feature set Ψ̃ to generate the features of the grid point gi:

f̃ (g)
j = max{G(M(Ψ̃))} (11)

whereM(·) represents random sampling of at most Tk voxels from the keypoint neighbor-
hood set Ψ̃ to save computation, and G(·) represents a simple MLP. max{·} represents the
maximum pooling operation on all adjacent keypoint features Ψ̃ along all channels of the
keypoint features.

Grid Point

Key Point

Raw Point

Grid Point

Key Point

Raw Point

Figure 7. Structural diagram of RoI-grid pooling module.

After each grid point obtains rich features from surrounding keypoints, all grid point
features in the same candidate box can obtain a 3D prediction box representing the entire
scene through a two-layer MLP with 256 dimensions.

In this module, the set abstraction operation in PointNet++ is used to capture richer
context information with a flexible receptive field, and even the receptive field exceeds the
boundary of the 3D candidate boxes to capture the surrounding keypoint features outside
the 3D candidate boxes. However, the set abstraction operation is very time-consuming and
resource-consuming in large-scale point clouds, because it applies several shared parameter
MLP layers on each local point, and the maximum pooling operation in set abstraction
abandons the local points. Spatial distribution information greatly impairs the ability of
grid points to gather local features.

3.7. VectorPool Aggregation Module

The VectorPool aggregation module is very suitable for local feature aggregation of
large-scale point cloud scenes. Firstly, by collecting the keypoints in the cube neighborhood
centered on the grid point, and then dividing the cube neighborhood into multiple sub-
voxels, each sub-voxel feature is extracted, and then each sub-voxel feature is assigned
independent kernel weights and channels to generate local features sensitive to local
position information. Finally, all channel features are concatenated into a single vector,
which not only preserves the local information of the cubic neighborhood of the grid points,
but also avoids the use of MLP with shared parameters, reducing the consumption of
computing resources, as shown in Figure 8.

)(v

2
h

)(v

3
h

)(v

3
h

)(v

4
h

i
C

2W

3W

4W

0CC
i
´

0CC
i
´ 0C

1U 2U 3U 4U

Local Vector

Representation

Figure 8. Schematic diagram of the VectorPool aggregation module.
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Specifically, I = ({[hi, ai]|hi ∈ RCin , ai ∈ R3}M
i ) is the set of keypoints after Voxel

Set Abstraction, M is the number of keypoints, Cin is the number of feature channels of
keypoints, Q = {qk|qk ∈ R3}M

k=1 is the set of grid points generated by using 3D candidate
boxes, and N is the number of grid points. Given a grid point qk, first determine the set of
keypoints in its cubic neighborhood, which can be expressed as:

yk = {[hj, aj]|max(aj − qk) < 2× δ} (12)

where δ is half the length of the cube space, max(aj − qk) ∈ R obtains the maximum axis
alignment value of the 3D distance. We double the half-length of the cubic space of grid
points to include more keypoints, which is beneficial for the local feature aggregation of
this grid point.

In order to generate position-sensitive features in a local 3D neighborhood centered
on qk, we split its adjacent 3D space into nx × ny × nz small local sub-voxels. Inspired by
PointNet++, we use an inverse distance weighting strategy to interpolate the features of
the t-th sub-voxel by considering its three nearest neighbors to yk, where t ∈ {1, . . . , nx ×
ny × nz} represents the index of each sub-voxel, and we assign its corresponding sub-voxel.
The center is denoted as vt ∈ R3. We can then generate the features of the t-th subvoxel as:

h(v)t =
∑i∈Gt(wi · hi)

∑i∈Gt wi
, wi = (‖ ai − vt ‖)−1 (13)

where [hi, ai] ∈ yk, Gt refers to the set of indices of vt’s three nearest neighbors (i.e., |Gt = 3|)
in the neighbor set yk. The result h(v)t is the local feature encoding for a specific -th local
sub-voxel in the local cube.

Features in different local sub-voxels may represent very different local features.
Therefore, instead of encoding local features using a shared parameter MLP as in Point-
Net++, we use separate local kernel weights to encode different local sub-voxels to capture
position-sensitive features:

Ut = Concat({ai − vt}i∈Gt , h(v)t )×Wt (14)

where {ai − vt}i∈Gt ∈ R(3×3=9) represents the relative position of the three nearest neigh-
bors of vt, Concat(·) is the concatenation operation that fuses the relative position and
features, Wt ∈ R(9+Cin)×Cmid is the learnable kernel weight value of the t-th local sub-voxel-
specific feature encoded by the feature channel Cmid, and the different positions encode
position-sensitive local features that have different learnable kernel weights.

Finally, we directly sort the spatial order of the local sub-voxel features Ut along
each 3D axis, and concatenate their features in order to generate the final local vector
expressed as:

U = MLP(Concat(U1, U2, . . . , Unx×ny×nz)) (15)

where U ∈ RCout . Intra-sequence stitching encodes structure-preserved local features by
simply assigning features at different locations to corresponding feature channels, naturally
preserving the spatial structure of local features in the adjacent space centered at qk, and
finally for this local vector, representation performs multiple MLPs processing, and encodes
the local features into the Cout feature channel for subsequent processing.

Compared with set abstraction, the VectorPool aggregation module performs position-
sensitive local feature encoding on different regions centered on grid points through
independent kernel weights and channels, which not only preserves the spatial structure of
grid points well, but also saves on computation resource consumption.
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4. Experimental Settings
4.1. Dataset Description

To verify the performance of the AV PV-RCNN network structure proposed in this
study, we conduct all experiments on the KITTI [21] dataset. The KITTI dataset is currently
one of the most popular 3D detection datasets for autonomous driving. The KITTI dataset
consists of 7481 samples for training and validation, and 7518 samples for testing, containing
more than 200,000 3D target annotations. The dataset divides 3D objects into 8 categories,
such as cars, pedestrians, and cyclists. The label information includes category, 2D detection
frame coordinates, 3D center point coordinates, 3D size, occlusion, truncation, and heading
angle. According to different degrees of occlusion and truncation in each scene, we classify
them into three categories: easy, medium and difficult. The 7481 training samples are
further divided into 3712 samples as the training set and 3769 samples as the validation
set. All models in this paper are trained on a training set of 3712 samples, then tested and
visualized on a validation set of 3769 samples.

4.2. Evaluating Metrics

We use average precision (AP) to measure the performance of different methods. In
the evaluation process, we follow the KITTI official evaluation protocol, that is, cars with an
IoU threshold of 0.7, and pedestrians and bicycles with an IoU threshold of 0.5. There are
three difficulty levels under each object category, which are easy, medium and difficult, with
decreasing AP values, and all average precision (AP) results are calculated with 40 recall
positions. In addition, we also used the recall rate, inference speed (FPS), and memory
(MB) to measure the performance of the model.

4.3. Other Setting

All experiments in this paper are based on the OpenPCDet framework. We trained
PointPillar [5], SECOND [4], PointRCNN [11], PartA2-Net [22], PV-RCNN [15], Deformable
PV-RCNN [16], PV-RCNN++ [17], and AV PV-RCNN, eight network structure models, and
all models are trained from scratch, the initial learning rate of PV-RCNN and AV PV-RCNN
(ours) is set to 0.01, using ADAM optimizer, batch_size = 6, training 80 epochs. We use
Ubuntu 20.04 as our operating system, Python 3.7 as our programming language, PyTorch
1.7.1 as our deep learning framework, and an NVIDIA RTX3090 with CUDA version 11.0
for training. For the KITTI dataset, the x-axis detection range is within [0, 70.4] m, the y-axis
detection range is within [−40, 40] m, and the z-axis detection range is within [−3, 1] m,
and then according to each, the voxel size of the axis (0.05 m, 0.05 m, 0.1 m) is voxelized.

5. Results
5.1. Algorithm Comparison and Analysis

To verify the detection performance of our AV PV-RCNN network model, in this
section, we compare our method with popular two-stage object detection algorithms, such
as PartA2-Net [22], PV-RCNN [15],PV-RCNN++ [17], Deformable PV-RCNN [16], single-
stage target detection algorithm PointPillar [5], SECOND [4], and PointRCNN [11]. The
experimental results are shown in Table 1. From the data in this table, it can be seen
that compared with PV-PCNN, our model has increased by 5.23%, 3.57%, and 3.48% on
the three difficulty levels of the bicycle category, and have increased by 3.76%, 4.59%,
and 4.22% on the three difficulty levels of pedestrians. Our model improves PV-RCNN
performance on almost all classes at all three difficulty levels, especially on bicycles and
pedestrians. Compared to all the remaining models, our model achieves relatively good
results on all classes except cars and bicycles, which are difficult levels. The above results
fully demonstrate that our network model can fully adapt to objects of different sizes, not
only showing better detection accuracy on larger objects such as cars, but also showing
greater accuracy improvements on smaller objects such as bicycles and pedestrians.
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Table 1. Performance comparison on the KITTI val split set. The results are evaluated by the mean
average precision with 40 recall positions.

Model Car AP (IoU = 0.7) Cyclist AP (IoU = 0.5) Pedestrian AP (IoU = 0.5)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillar [5] 87.75 78.39 75.18 81.57 62.93 58.98 57.30 51.41 46.87
SECOND [4] 90.55 81.61 78.61 82.96 66.74 62.78 55.94 51.14 46.16

PointRCNN [11] 91.81 80.70 78.22 92.50 71.89 67.48 62.10 55.55 48.83
PartA2-Net [22] 92.15 82.91 81.99 90.34 70.13 66.92 66.88 59.67 54.62
PV-RCNN [15] 92.10 84.36 82.48 89.10 70.38 66.01 62.71 54.49 49.87

PV-RCNN++ [17] 91.52 84.51 82.29 93.00 75.52 70.93 63.58 57.56 52.18
Deformable PV-RCNN [16] 91.93 84.83 82.57 90.75 73.77 70.14 66.21 58.76 53.79

Ours 92.25 84.63 82.30 94.43 73.95 69.49 66.47 59.08 54.09

In order to further evaluate the performance of our model, we also analyzed indicators
such as recall rate, memory, and inference speed (FPS). For the recall rate, as shown in
Table 2, our model improves on PV-RCNN in almost all categories at three difficulty
levels, and improves the middle and difficulty levels of the car class by 3.05% and 1.28%,
respectively, and increased by 1.73% on the simple level of bicycles, and increased by 4.12%,
4.08%, and 3.39% on the three levels of difficulty for pedestrians. The recall of our model is
significantly improved in almost all categories of the three difficulty levels.

Table 2. Comparative analysis of our model recall on the KITTI val split set.

Model Car Recall (IoU = 0.7) Cyclist Recall (IoU = 0.5) Pedestrian Recall (IoU = 0.5)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PV-RCNN [15] 90.16 76.64 74.79 93.33 67.58 60.26 68.26 59.36 51.92
Ours 90.27 79.69 76.07 95.07 67.45 59.77 72.38 63.34 55.31

For memory, it requires computing resources. We analyzed the computing resource
usage of our model and PV-RCNN, as shown in Table 3. We checked the usage of video
memory under batch_size = 1, and we took the usage of computing resources when the
number of iterations was 100, 200, 300, and 400, respectively, the average resource usage of
PV-RCNN is 8162.25 MB, and the average resource usage of our model is 7232 MB, saving
about 11.4% of computing resource consumption, so it can be shown that our model can
reduce the consumption of computing resources.

Table 3. Comparison of compute resource usage.

Iterations PV-RCNN/Memory (MB) Ours/Memory (MB)

100 8085 7081
200 8085 7083
300 8085 7083
400 8085 7083

For the inference speed (FPS), the inference speed is a measure of the speed of the model
training data. The larger the FPS, the faster the data processing speed of the model. Both our
model and PV-RCNN are trained on an RTX3090. The inference speed (FPS) of our model and
PV-RCNN is compared, as shown in Table 4, our model processes one more sample of data per
second than PV-RCNN, and the inference speed is 33% higher than that of PV-RCNN.

Table 4. Comparison of model inference speed.

PV-RCNN/FPS Ours/FPS

3 4
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5.2. Ablation Study

In order to verify the effectiveness of the adaptive deformation module, VectorPool
aggregation module and context fusion module in improving the accuracy of the object
detection algorithm, we conducted two sets of ablation experiments, as shown in Table 5
and Table 6, respectively. In Table 5, we mainly focus on the adaptive deformation module
and the VectorPool aggregation module, while the second row shows that after adding the
adaptive deformation module, the three difficulty levels of the bicycle class have increased
by 1.65%, 3.39% and 4.13%, respectively, and the three levels of difficulty for pedestri-
ans have increased by 3.50%, 4.27%, and 3.92%, respectively; the third row shows that
after adding the VectorPool aggregation module, the three difficulty levels for pedestrians
have increased by 2.22%, 3.16% and 3.25%, respectively, the fourth line shows that after
adding the adaptive deformation module and the VectorPool aggregation module, the
three difficulty levels for bicycles have been increased by 5.33%, 3.57%, and 3.48%, respec-
tively, and the three difficulty levels for pedestrians have been increased 3.76%, 4.59%,
4.22%, respectively. The experimental data fully prove the effectiveness of the adaptive
deformation module and the VectorPool aggregation module, especially on bicycles and
pedestrians. When the adaptive deformation module is added, the average increase in the
three difficulty levels of the bicycle class is 3.05%, and the average increase in the three
difficulty levels of the pedestrian class is 3.89%. After adding the adaptive deformation
module and VectorPool aggregation module, the average increase in three difficulty levels
for bicycles is 4.09%, and the average increase in the three difficulty levels of the pedestrian
class is 4.19%. Therefore, our adaptive deformation module can adaptively gather and
focus on the most salient features of objects of different scales, so that the model can detect
uneven point cloud density better, and the VectorPool aggregation module can spatially
encode local features. It also plays an important role in improving the performance of the
model.

Table 5. Effect of adaptive deformation module and VectorPool aggregation module on the KITTI val
split set with AP calculated by 40 recall positions.

Adaptive Deformation VectorPool Aggregation Car AP (IoU = 0.7) Cyclist AP (IoU = 0.5) Pedestrian AP (IoU = 0.5)
Easy Mid Hard Easy Mid Hard Easy Mid Hard

× × 92.10 84.36 82.48 89.10 70.38 66.01 62.71 54.49 49.87√
× 91.93 84.83 82.57 90.75 73.77 70.14 66.21 58.76 53.79

×
√

91.58 82.82 82.20 88.86 70.66 66.42 64.93 57.65 53.12√ √
92.25 84.63 82.30 94.43 73.95 69.49 66.47 59.08 54.09

Table 6. Effect of Context fusion module on the moderate level of KITTI val split set with AP
calculated by 40 recall positions.

Context Fusion Car Cyclist Pedestrian

× 82.63 71.09 58.46√
84.63 73.95 59.08

In order to verify whether the context fusion module has improved the performance of
the model, we conducted an ablation experiment, as shown in Table 6. After adding the con-
text fusion module, our model improved by 2.00%, 2.86%, and 0.62% on the moderate level
of all categories of cars, bicycles, and pedestrians, respectively, which effectively improved
the performance of the model, and verified that the context-gating mechanism can dynami-
cally select representative and discriminative features from local evidence, highlighting
object features, for refinement stage to filter out relevant contextual information.

In order to test the actual detection effect of our model, we use our model and PV-
RCNN to compare the detection on the KITTI validation set. As shown in Figure 9, we
randomly sampled two samples for detection, and the left is the detection result of PV-
RCNN, and the right is the detection result of our model. The blue box indicates the ground
true boxes, and the green box indicates the predicted boxes. It can be clearly seen from
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Figure 9 that our model can not only detect almost all ground true objects, while suppressing
the clutter generated by PV-RCNN.

Figure 9. The comparison of the detection effect between our model and PV-RCNN.

6. Conclusions

In this paper, we find that the refinement methods used by current two-stage detectors
cannot adequately adapt to different object scales, different point cloud densities, partial
deformations and clutter, and have excessive resource consumption, so we propose a 3D
object detection method that can adapt to different object scales and aggregate local features
with less resources. Specifically, we use three modules to improve the performance of
the model and reduce the consumption of computing resources, the adaptive deformable
module, the VectorPool aggregation module, and the context fusion module. First of all,
the adaptive deformation module can align the key points with the most distinctive areas,
and adaptively gather and focus on their most prominent features for objects of different
scales, so that the model can better detect uneven point cloud densities. Secondly, the
VectorPool aggregation module displays encoded spatial structure information, which not
only improves model performance, but also consumes less computing resources; finally, the
context fusion module can dynamically select representative and discriminative features
from raw points, highlight object features, and filter out relevant contextual information
for the refinement stage. In order to test the effectiveness and versatility of these modules,
we conducted experiments on single-stage and two-stage object detection algorithms. The
experimental results show that the three modules proposed in this paper can effectively
solve the problems that cannot be fully adapted to different scales in current two-stage
detectors, including different point cloud densities, partial deformations and clutter, and
issues with excessive resource consumption.

Author Contributions: Conceptualization, S.G., C.W. and Y.J.; methodology, S.G. and C.W.; vali-
dation, S.G. and C.W.; formal analysis, Y.J.; resources, C.W. and Y.J.; visualization, C.W. and S.G.;
supervision, S.G. and Y.J.; project administration, C.W. and S.G.; funding acquisition, Y.J.; writing—
original draft preparation, C.W. and S.G.; writing—review and editing, S.G., C.W. and Y.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by 2023 Central Government guidance for local science and
technology development funds (basic research of free exploration) 2023JH6/100100066.

Data Availability Statement: The data in this paper can be obtained by contacting the authors.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2023, 12, 2542 15 of 15

References
1. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D object detection network for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
2. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3D proposal generation and object detection from view aggregation. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.
3. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
4. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
5. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars:Fast encoders for object detection from point clouds. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
6. Mao, J.; Xue, Y.; Niu, M.; Bai, H.; Feng, J.; Liang, X.; Xu, H.; Xu, C. Voxel transformer for 3D object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021.
7. Yin, T.; Zhou, X.; Krahenbuhl, P. Center-based 3D object detection and tracking. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.
8. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
9. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings

of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.
10. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3D object detection from rgb-d data. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
11. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3D object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
12. Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. Std: Sparse-to-dense 3D object detector for point cloud. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.
13. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3D object detection in point clouds. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.
14. Yang, Z.;Sun, Y.; Liu, S.; Jia, J. 3DSSD: Point-based 3D single stage object detector. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.
15. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3D object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.
16. Bhattacharyya, P.; Czarnecki, K. Deformable PV-RCNN:Improving 3D object detection with learned deformations. arXiv 2020

arXiv:2008.08766.
17. Shi, S.; Jiang, L.; Deng, J.; Wang, Z.; Guo, C.; Shi, J.; Wang, X.; Li, H. PV-RCNN++: Point-voxel feature set abstraction with local

vector representation for 3D object detection. Int. J. Comput. Vis. 2023, 131, 531–551. [CrossRef]
18. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.
19. Gkioxari, G.; Malik, J.; Johnson, J. Mesh r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer Vision,

Seoul, Republic of Korea, 27 October–2 November 2019.
20. Qin, C.; You, H.; Wang, L.; Kuo, C.C.J.; Fu, Y. Pointdan: A multi-scale 3D domain adaption network for point cloud representation. In

Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.
21. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the

2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012.
22. Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3D object detection from point cloud with part-aware and

part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2647–2664. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.1007/s11263-022-01710-9
http://dx.doi.org/10.1109/TPAMI.2020.2977026
http://www.ncbi.nlm.nih.gov/pubmed/32142423

	Introduction
	Related Work
	Method
	PV-RCNN
	Voxel Set Abstraction Module
	Deformable Convolution
	Adaptive Deformation Module
	Context Fusion Module
	RoI-Grid Pooling Module
	VectorPool Aggregation Module

	Experimental Settings
	Dataset Description
	Evaluating Metrics
	Other Setting

	Results
	Algorithm Comparison and Analysis
	Ablation Study

	Conclusions
	References

