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Abstract: The Grid-Connected Inverter (GCI) can be considered a gray box when circuit and controller
parameters are missing due to intellectual property rights or parameter variations caused by aging,
which poses an impediment to assessing the stability of the system. This paper presents a gray-box
stability analysis method based on impedance identification of GCI considering the synchronization
dynamics. The impedance frequency responses of GCI are measured by the frequency scanning
method on the dq-frame. Meanwhile, the influence of synchronization dynamics and background
harmonics is theoretically investigated. A vector fitting (VF) algorithm, co-designed with impedance
identification, is then applied to generate polynomial transfer functions. Based on the obtained
transfer functions, the stability of the GCI can be judged by the distance relationship between the
prohibited area boundary and the center of the gershgorin-circle through the distance formula. Finally,
the experiments of both RT-LAB and experimental prototypes are conducted to verify the feasibility
of the proposed method.

Keywords: grid-connected inverter; stability criterion; weak grid; frequency scanning; vector
fitting algorithm

1. Introduction

Grid-connected inverters (GCIs) are commonly used with renewable energy resources,
power transmission systems to transmit power into the utility grid [1,2].
The ever-increasing penetration of GCI is radically changing the dynamic operations
of traditional power systems. And thus, instability phenomena triggered by the GCI under
different grid conditions have been increasingly reported [3,4].

To tackle the stability problems introduced by the GCI, the impedance-based stability
analysis method is applied in [5,6]. In [7], an impedance analysis based on the dq coordinate
frame is presented. Further studies are reported in [8,9], which reveals that the interac-
tions between inverter and grid are characterized by the generalized Nyquist stability
criterion (GNSC), and the multiple-input and multiple-output (MIMO) impedance matrix
based on the dq-frame can be decomposed into four single-input-single-output (SISO)
transfer functions for the stability judgment. Yet, the detailed parameters of the system
are needed when implementing the transfer function-based method, which is usually a
challenging task in practice, caused by the confidentiality of control parameters [10], and
the variation for hardware parameters due to temperature fluctuation, and aging [11,12].
Therefore, the impedance identification to obtain the system dynamic response for the
stability analysis of the GCI is increasing demanded [13].

In [14,15], a vector fitting (VF) algorithm combining impedance identification based on
a frequency scanning method is proposed, and the stability of the system can be measured
by the system’s eigenvalues. Furthermore, the instability sources in the system, compo-
nent, and parameter levels of the multiple-inverter-fed power systems can be identified
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through VF and impedance frequency responses [16,17]. The VF algorithm was utilized to
fit the impedance frequency response, from which the impedance transfer function was ob-
tained. The control parameters are obtained by comparing with the actual control structure.
Furthermore, the VF algorithm can be utilized for impedance remodeling in gray box
systems [18] or reducing the model order of power cables [19]. In [18], a gray-box param-
eter identification method has been presented to identify the internal parameters of GCI.
By adjusting the internal parameters of an inverter, the terminal output impedance can be
reshaped to mitigate the oscillation issue that results from time-varying grid impedance.
In [19], Prony analysis (PA) and VF are used to fit the frequency response and obtain the
state space model of power cables, reducing the computational burden of power cable
modeling and improving modeling and analysis efficiency. However, the identification
of impedance by the aforementioned method does not consider the influence of pertur-
bation, such as background harmonics, grid frequency deviation [20], and Phase Locked
Loop (PLL) dynamics [21]. To improve the accuracy of the impedance measurement, more
considerations, including grid harmonics, to improve the identification performances via
twice-measurement can be found in [22], and the measurement method by the frequency
selection principle has been investigated in [20,23]. During the impedance measurement,
the voltage and current in the abc-frame need to be measured before being transformed
into the dq-frame. The perturbation signals used for impedance measurement are usually
designed in the dq-frame and then converted to the abc-frame. Therefore, PLL is typically
used to track the system frequency online and estimate the synchronization phase angle
for coordinate transformation. To reduce non-negligible phase errors caused by frequency
deviation of the grid voltage, the PLL control bandwidth needs to be relatively high. How-
ever, controlling a PLL with an excessively high bandwidth may introduce undesired
disturbances to impedance calculations [24,25]. And the errors of impedance identification
increase with the bandwidth of PLL [21]. If a low-bandwidth PLL is employed, the tracking
performance is poor under the circumstance of the time-varying frequency of grid voltage,
which leads to non-negligible phase errors [26]. Hence, further research thinking about the
impact of the synchronization dynamics on impedance identification should be carried out.

On the other side, the GNSC has been widely applied to the stability analysis of GCIs
at the cost of complicated computation [27]. It is revealed that the GNSC is rigorous in
mathematics, the eigenvalues of the impedance matrix of the MIMO systems need to be
calculated at each frequency, which is a tedious process. Besides, the eigenvalue loci of
MIMO systems exhibit implicit characteristics, which results in an unintuitive analysis
process [28]. To facilitate the analysis, the non-diagonal elements are often neglected, which
brings hidden problems to the stability analysis. In [27,29], there are two gershgorin circle
bands around the diagonal elements loci when considering the non-diagonal elements,
but it is still a cumbersome process on the premise of a reduced computation of the criterion.
In [30,31], a G-Sum criterion has been presented, which is concisely compared to the GNSC,
but it is highly conservative. In order to reduce the conservatism, the forbidden-region
criterion has been proposed in [32], but the trouble still exists. In [33], the stability criterion
expressions are derived by analyzing the distance between the center of gershgorin circle
and the prohibited area in different cases, in which the computational procedure is relatively
simple. However, four different cases need to be analyzed respectively, so that a cleaner
approach is expected to evolve. For the moment, the balance between reduced computation
and conservatism for the stability criterion is still an open issue.

To address the above challenges, this article presents an improved impedance cal-
culation method, which makes it possible to accurately extract the phase difference in
PLL during the frequency scanning, and the errors caused by synchronization dynamics
are corrected. Besides, the frequencies of perturbations are selected to adapt background
harmonics. Moreover, the distance relationship between the prohibited area and the
gershgorin-circle in the complex field is divided into two different cases through the dis-
tance formula. Then, the stability of GCI can be judged. The proposed stability criterion
has a much simpler computational procedure compared with the existing stability criterion.
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Finally, based on the measured impedance and proposed stability criterion, the stability of
the gray box GCI in different grid conditions can be analyzed.

The remainder of the paper proceeds as follows. Section 2 introduces the impedance
measurement of the three-phase grid-connected inverter. The improved impedance cal-
culation method and the proposed sufficient stability criterion and their corresponding
simplified analysis are presented in Section 3. Section 4 investigates the proposed method
by simulation and experiments. Finally, the conclusions are made in Section 5.

2. Impedance Measurement Three-Phase Grid-Connected Inverter

In order to simplify the analysis, an L-filtered GCI is used to discuss the proposed
method. Figure 1 is the three-phase GCI and its control structure, which is based on PI
controller in dq-frame. The Udc is DC bus voltage, Linv are filter inductors, Ug is grid voltage,
and Zg is equivalent grid impedance. I∗dq is the reference value of the grid-connected current
in the dq-frame, Uabc, Iabc is the grid-connected voltage and grid-connected current in the
point of common coupling (PCC), respectively, Idq is the grid-connected current in the
dq-frame. θ is the grid synchronization angle from PLL, PI is the proportional-integral
current controller.

PLL

Udc Linv Zg

Ug

abc/dq

abc/dq PI

PWM θ 

Idq

Idq*

Uabc

PCC

θ 

Iabc

Figure 1. Three-phase grid-connected inverter and its control structure.

The impedance analysis method shows that the GCI system is stable when the ratio of
the grid impedance and the output impedance of the GCI satisfies the GNSC. In a weak
grid, grid impedance exhibits resistance inductance, its expression in the dq-frame is shown
in Equation (1). Here, ω represents the grid synchronous angular velocity.

Zg(s) =
[

Rg + sLg −ωLg
ωLg Rg + sLg

]
(1)

The ratio between the output impedance of the GCI and the grid impedance in the
dq-frame, which can be expressed in terms of the return rate matrix. The rate matrix is
denoted as Equation (2).

L(s) =
[

Ldd(s) Ldq(s)
Lqd(s) Lqq(s)

]T

= Zg(s)Yinv(s) (2)

In Equation (2), Ldd(s), Ldq(s), Lqd(s), Lqq(s) are the elements in the return rate
matrix L(s). Yinv(s) is the output conduction of the GCI. This can be measured by injecting
voltage or current disturbances at the PCC (Point of Common Coupling). The perturbation
response obtained in the abc-frame is then transformed into the dq-frame. Subsequently,
the amplitude and phase of the disturbance response can be calculated using Fast Fourier
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Transform (FFT). The mathematical model of the inverter voltage disturbance and current
response can be expressed as[

∆Ud
∆Uq

]
= Zdq

[
Id
∆Iq

]
=

[
Zdd Zdq
Zqd Zqq

][
∆Id
∆Iq

]
(3)

In Equation (3), ∆ is the small disturbance of voltage and current at the equilibrium
operating points. Zdd, Zdq, Zqd, Zqq are four unknown quantities to be measured, which
represent the dq-axis impedance of the GCI and its cross-coupling impedance. In order
to measure the four independent unknown quantities in Equation (3), two sets of linearly
independent perturbations are injected into the system separately in the same frequency.
The impedance model of the system in the dq-frame can be obtained as the following:

Zdq =

[
Zdd Zdq
Zqd Yqq

]
=

[
Ud1 Ud2
Uq1 Uq2

][
Id1 Id2
Iq1 Iq2

]−1

(4)

In Equation (4), the subscript ‘1’, ‘2’ denotes it as two sets of linearly independent
perturbations and their responses, Ud, Uq, Id, Iq are the voltage and current in the dq-frame.

3. Theoretical Analysis
3.1. Impedance Measurement Error and Its Compensation Method

It is necessary to obtain the synchronous angle of the grid for disturbance injection
and impedance calculation during impedance measurement. It is important to note that,
the PLL for disturbance injection and impedance calculation is different from the PLL used
in the control loop of the three-phase grid-connected inverter. Disturbance signals injected
into the system and the system frequency variations affect the phase angle of the PLL,
which in turn affects the calculation of impedance measurements. The GCI system exists
in two different coordinate systems under the dq coordinate system in practice when the
PLL dynamic is considered [30]. Considering the effect of the perturbation measurement
signal injected into the GCI system on the phase angle of the PLL output during impedance
measurement, the different dq-frame is represented as Figure 2.

1
ds

qs

dp

qp

Figure 2. The dq-frames under PLL dynamics.

In Figure 2, the superscript ‘p’, ‘s’ denotes the perturbation-voltage dq-frame and
the PCC-voltage dq-frame, respectively. ∆θ1 is the phase angle difference between the
different dq-frames. The angular difference between different dq-frames has an impact
on both the perturbation injection and impedance calculation processes, and the impact
of PLL dynamics is smaller in the perturbation injection process; however, it has a greater
impact on accuracy in the impedance calculation process [21]. The trigonometric function
for conversion between different frames can be approximated as sin(∆θ1) ≈ ∆θ1 and
cos(∆θ1) ≈ 1. The Voltage components between different frames is expressed as[

Us
d0 + Us

d
Us

q0 + Us
q

]
=

[
cos(θ1 + ∆θ1) sin(θ1 + ∆θ1)
− sin(θ1 + ∆θ1) cos(θ1 + ∆θ1)

][ Up
d0 + Up

d

Up
q0 + Up

q

]
(5)
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In Equation (5), Us
d0,q0 and Up

d0,q0 are steady-state voltage components in each re-

spective frame. Us
d,q and Up

d,q are minor disturbance voltages, θ1 is phase angle in the
perturbation-voltage dq-frame. Thus, the minor disturbance voltages between different
frames is expressed as [30][

Us
d

Us
q

]
=

[
cos θ1 sin θ1
− sin θ1 cos θ1

][
Up

d

Up
q

]
− ∆θ1

[
sin θ1 − cos θ1
cos θ1 sin θ1

][ Up
d0

Up
q0

]
(6)

The small signal transfer function of traditional PLL in the GCI can be represented
as [26]

∆θ(s) = Gpll(s)Uq

Gpll(s) =
kpplls+kipll

s2+Ud0kpplls+kipll

(7)

Therefore, the relationship of perturbation measurement signals in Equation (4) be-
tween different frames is[

Up
d1 Up

d2

Up
q1 Up

q2

]
=

[
1 Us

q0Gpll

0 1−Us
d0Gpll

][
Us

d1 Us
d2

Us
q1 Us

q2

]
(8)

Similarly, the relationship between the current in the PCC-voltage dq-frame and that
in the perturbation-voltage dq-frame can be simplified as[

Ip
d1 Ip

d2

Ip
q1 Ip

q2

]
=

[
Is
d1 Is

d2
Is
q1 Is

q2

]
+

[
0 Is

q0Gpll

0 −Is
d0Gpll

][
Us

d1 Us
d2

Us
q1 Us

q2

]
(9)

According to (8) and (9), the relationship between the measured impedance Zp
dq and

the actual impedance in PCC Zs
dq is derived as

Zp
dq =

[
1 Us

q0Gpll

0 1−Us
d0Gpll

]
Zs

dq +

[
1 Us

q0Gpll

0 1−Us
d0Gpll

][
0 Is

q0Gpll

0 −Is
d0Gpll

]−1

(10)

The mismatch between the measured impedance and the actual impedance caused by
the dynamic of the PLL can be mitigated when the term Us

d0Gpll and Is
d0Gpll are sufficiently

small. From Equation (7), the terms Us
d0Gpll and Is

d0Gpll are equivalent to a low-pass filter.
When the perturbation signal frequency is higher than the PLL bandwidth, it will be filtered,
making it difficult to influence the measurement results. Yet, when the perturbation fre-
quency is lower than the bandwidth of the phase-locked loop, the effect of the perturbation
signal cannot be ignored. It is an effective way to attenuate the effect of disturbing signals
on measurement results by reducing the PLL bandwidth when the frequency deviation in
the grid has been ignored. If the bandwidth of the PLL is too low, there is a non-negligible
angle difference ∆θ1 when the system is subjected to harmonics and grid frequency devi-
ation [26]. There is, thus, the impedance measurement error caused by synchronization
dynamics, which cannot be completely ignored, even though the bandwidth of the PLL is
designed suitably.

From the small signal model for PLL [31], the angle difference ∆θ1 between the PLL
output phase angle and the input voltage phase angle can be simplified as

∆θ1 = Uqt fpll
1
s

t fpll = kppll + kipll
1
s

(11)

From (11), the angle difference ∆θ1 can be extracted from PLL, and the voltage and current
in the PCC-voltage dq-frame (for calculated actual impedance) can be acquired after the
correction based on (8) and (9). The actual impedance of the GCI can be obtained consequently.
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To calibrate the voltage and current in the perturbation-voltage dq-frame, it is crucial
to accurately extract the phase differences ∆θ1 when injecting the disturbed signal using
the frequency scanning method. In this method, a single frequency excitation signal is
injected at a time, and the resulting phase difference contains the corresponding frequency
component. A phase extraction method is presented in Figure 3, taking into account both
the filtering performance and the characteristics of the frequency scanning method. In this
method, a second-order band-pass filter is utilized to extract the phase differences during
impedance measurement. Its transfer function can be derived as follows:

GBPF(s) =
ξωns

s2 + ξωns + ω2
n

(12)

In Equation (12), ωn is the frequency of the disturbed signal in frequency scanning,
and the ξ is chosen as 1.5.

In addition, the background harmonics of the inverter caused by the dead time and
the background harmonics of the grid derived from nonlinear loads has the impact of
impedance measurement [20,34]. Therefore, the frequencies of the injected perturbation
signals must be carefully selected to minimize errors. Ideally, the frequencies of the per-
turbation signals should not overlap with the background harmonic frequencies (which
are typically integral multiples of the fundamental frequency), and the signal should be
sufficiently strong. By ensuring these conditions are met, the impedance can be accu-
rately obtained.

Ud

Uq

1/sabc/dq PIpll

Uabc




1/s BPF
1

1

Figure 3. The improvement of PLL structure for impedance measurement.

3.2. Improved Stability Criteria Based on Gershgorin Circle Theorem

This paper considers the stability of GCI connected to the grid in weak grid conditions,
but does not consider the situation when the grid is unstable (Zg(s) exists the unstable
pole) or when the new energy-generating units are unstable (Yinv(s) exists the unstable
pole). The GCI system is stable when the eigenvalue locus of the return rate matrix L(s)
is unencircled (−1, j0). In GNSC, calculating system eigenvalues is a tedious process.
The circle theorem uses the diagonal elements of the matrix to replace the eigenvalues
of the system, ignoring the errors caused by the non-diagonal elements of the matrix,
and estimates the range of the eigenvalues of the system by the diagonal and non-diagonal
elements of the matrix. For the matrix of system A =

(
aij
)
, the magnitude of the off-

diagonal elements in row i is ri(A) = ∑
i 6=j

∣∣aij
∣∣. All eigenvalues distribute in a gershgorin

circle, with centers at the diagonal elements aii and radii ri(A). Thus, relationship between
the eigenvalues of the return rate matrix L(s) and its four elements can be represented
as follows:  |λi(s)− Ldd(s)| <

∣∣∣Ldq(s)
∣∣∣∣∣λi(s)− Lqq(s)

∣∣ < ∣∣∣Lqd(s)
∣∣∣ (13)

The forbidden region of the forbidden region based criterion (FRBC) is on display in
Figure 4.

Eigenvalue trajectories of L(s) satisfy the GNSC when any frequency point of two
gershgorin circles lies to the right of the parallel line Re = −1 (all gershgorin circles are
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not intersecting with the grey areas in Figure 4). Expressions for the stability of FRBC are
as follows:  Re(Ldd(s))−

∣∣∣Ldq(s)
∣∣∣ > −1

Re(Lqq(s))−
∣∣∣Lqd(s)

∣∣∣ > −1
(14)

From the foregoing, it is clear that the discussion on the diagonal elements Ldd and
Lqq is basically the same. Thus, the proposed method is discussed using the element Ldd as
an example.

In order to establish the exclusion zone, the stability margin parameters h (0 < h < 1)
and p (0 < p < π/2) are introduced. The forbidden region of the proposed method is
displayed in Figure 5.

(−1,j0)

Re

Im

Lqq

|Lqd||Ldq|

Ldd

Figure 4. Forbidden region of FRBC.

Re(-1,j0)

Im

Ldd

|Ldq|

h
p

Im=-tan(p)⸳(Re+h)  

Im=tan(p)⸳(Re+h)  

l2

Case 1
|Ldq|

Ldd

Case 2

l1

Figure 5. Forbidden region of proposed method.

In Figure 5, the complex field is divided into two cases (case1 and case2) by two straight
lines (l1 : Im = tan(π/2− p)(Re + h) and l2 : Im = − tan(π/2− p)(Re + h)), and the grey
area is the forbidden region in the proposed method. When Ldd is located in case1, it is
represented as follows:

{Ldd||Im(Ldd) |> tan(π/2− p) · (Re(Ldd) + h)} ∩ {Ldd||Im(Ldd) |≥ − tan(p) · (Re + h)} (15)
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The distance between Ldd and the forbidden region is indicated in Figure 5 by a green
line, and its equation is as follows:

D(s) =
|tan(p) · Re(Ldd) + Im(Ldd) + tan(p) · h|√

(tan(p))2 + 1
(16)

When Ldd is located in case2, that is

{Ldd||Im(Ldd) |≤ tan(π/2− p) · (Re(Ldd) + h)} (17)

The distance between Ldd and the forbidden region is indicated in Figure 5 by a red
line, and the equation can be simplified as follows:

D(s) =
√
(Re(Ldd) + h)2 + (Im(Ldd))

2 (18)

Then, the stability judgment can be obtained by comparing D(s) and
∣∣∣Ldq

∣∣∣.
W(s) = D(s)−

∣∣∣Ldq

∣∣∣ (19)

When the stability criterion condition W(s) is less than 0, the system is unstable.
Apparently, the conservative condition is related to the stability margin parameters (h
and p).

4. Results and Discussion

Based on the topology and the control block diagram shown in Figure 1. The impedance
identification simulation model of the grid-connected inverter system is built, and the spe-
cific parameters of the model are shown in Table 1. Due to the lack of an adequate hardware
platform, the proposed impedance measurement method is verified by RT-LAB. Using the
RT-LAB real-time simulation platform from OPAL-RT Technologies, the GCI simulation
model is built according to the system block diagram in Figure 1 and the parameters in
Table 1, and the real-time simulation experimental setup is shown in Figure 6.

Oscilloscope

Host 

computer

OP5700

Figure 6. RT-LAB test platform.

The grid-connected inverter control and disturbance injection are implemented in
the OP5700 real-time digital simulator, and the data obtained in the OP5700 are swept for
impedance calculation in the Matlab software of the host computer.
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Table 1. Main parameters of grid-connected inverter.

Parameter Value Parameter Value

Switching frequency 15 kHz Inductance of inverter output inductor 3 mH
Inverter input dc voltage 700 V Grid voltage 220 V

Proportional gain of current controller 4 Integrator gain of current controller 2000
Proportional gain of inverter PLL 2.5 Integral gain of inverter PLL 50

D channel current reference 20 A Line frequency 50 Hz

The discrete impedance data obtained are fitted with VF to obtain the analytical
formula of the inverter output impedance for the stability analysis of the inverter in the
subsequent section. The VF algorithm is a rational function approximation algorithm that
can fit the discrete data obtained from impedance measurements to obtain the impedance
transfer function of the GCI [13].

Based on the GCI model be built in the OP5700 real-time digital simulator, the voltage
disturbance sources with amplitudes ranging from 5∼10% of PCC voltage are sequentially
connected in series at the PCC. In addition, the bandwidth of the PLL in the impedance
measurement needs to be high to track the frequency deviation, which is kppll = 0.5 and
kipll = 50.

In Figure 7, it shows the impedance measurement results based on different measure-
ment methods considering both the influence of the varying system frequencies, back-
ground harmonics and injected perturbations. The blue line and green dots indicate that
the high bandwidth of the traditional method significantly influences the results of Zdq,
Zqd and Zqq. Nevertheless, the measured results match the analytical model to a large
extent when the method proposed in this article is adopted, as shown by the red points.
However, the dq coupling of the model utilized in this paper is relatively small, particularly
within the low-frequency range. As a result, the perturbation voltage used for measuring
Zdq and Zqd is unable to elicit a sufficient response across the cross axis, leading to sig-
nificant discrepancies in Zdq and Zqd at low frequencies. Furthermore, the Zdq and Zqd
of the model utilized in this paper is relatively small. Thus, it does not affect the stability
judgment through the method proposed in this paper.

100 101 102 103
20

40

60

100 101 102 103
−60
−40
−20

0
20
40

100 101 102 103
−100

0

100

100 101 102 103

−100
0

100
200

100 101 102 103
−40
−20

0
20
40
60

100 101 102 103
−200

−100

0

100

Reference

100 101 102 103
10

20

30

40

100 101 102 103
−200

−100

0

Zdd

Zdd

Zqd

Zqd

Zdq

Zdq

Zqq

Zqq

Frequency  (Hz)

Traditional
Proposed

Figure 7. Impedance of GCI based on different measurement methods.
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The VF algorithm is able to fit the frequency response of the discrete impedance series
in the s-domain and derive a polynomial transfer function [15,16], and the polynomial
transfer function can be shown as follows:

f (s) =
∑m

i=0 Bisi

∑m
i=0 Aisi + Es (20)

In Equation (20), m represents the order of the polynomial transfer function, E is
nonzero when fitting the impedance model of the L-filtered GCI. During the VF fitting
process, the impedance matrix based on the dq-frame, which is multiple-input and multiple-
output (MIMO), can be broken down into four single-input and single-output (SISO)
transfer functions. Before applying the VF algorithm to fit the discrete frequency response
data, it is necessary to determine the order and initial poles of the function. Taking the
fitting process of Zdd as an example, the VF procedure can be explained in detail.

According to [35], the order of the model is an important parameter for VF, which
can be chosen based on some information extracted from the system frequency response
samples. In short, the number of initial poles in the VF algorithm can be quickly deter-
mined based on the resonance peaks found in the sample data, and one resonance peak
corresponds to a conjugate pole pair. In addition, the frequency response of real poles
is smooth. The major resonance peaks were detected using the Equation (21) when the
frequency response samples Y(si) were obtained.∣∣y11

(
sp−1

)∣∣ < ∣∣y11
(
sp
)∣∣ > ∣∣y11

(
sp+1

)∣∣ (21)

According to [35] and Equation (21), the order of the transfer function about Zdd can
be selected as 3. However, increasing the order can reduce the fitting error, and in practice,
selecting an order of 5 for the GCI results in a small enough fitting error [17].

After determining the initial poles, the frequency response data in Figure 7 were fitted
to obtain a polynomial transfer function, as shown in Equation (20), and the coefficients of
the fitted 5-order polynomial transfer functions about Zdd are shown in Table 2. Similarly,
we can use the same method to fit the data of Zdq, Zqd and Zqq, as shown in Figure 8. Then,
the return rate matrix can be obtained based on the fitting results and grid impedance.
The curves of h1 and h2 (h1, h2 is the eigenvalue curves based on the stability criterion
proposed in this article) under different SCRs are obtained in Figures 9 and 10.
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Table 2. The coefficients of the fitted 5-order polynomial transfer functions (20) about Zdd.

Parameter Value Parameter Value

A5 1 B5 −15.979
A4 3.3443× 104 B4 −1.1536× 105

A3 3.0308× 108 B3 3.6880× 109

A2 4.7661× 1011 B2 9.16734× 1012

A1 1.4220× 1014 B1 5.9198× 1015

A0 1.1474× 105 B0 1.1376× 1018

E 0.003
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Figure 9. Curves with different SCRs based the GCI analytical model: (a) SCR = 8. (b) SCR = 5.
(c) SCR = 3.5.
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Figure 10. Curves with different SCRs based the measured model: (a) SCR = 8. (b) SCR = 5.
(c) SCR = 3.5.

In Figures 9 and 10, the measurement error in Zdq and Zqd will not affect the stability
judgment. According to the stability criterion proposed in this paper, when h1 or h2 is less
than zero at any frequency, the system can be considered unstable. As shown, as the SCR
drops to 3.5, the curve of h2 has two intersection points with the zero plane. Consequently,
the GCI system is unstable. According to Figure 10, the frequency of the intersection of λ2
with the unit circle less than 215 Hz.

To enhance the depiction of the instability phenomenon witnessed during the exper-
iment, the Nyquist curves of the eigenvalue of the return rate matrix L(s) is introduced,
as shown in Figure 11.

According to Figure 11, the characteristic value λ2 of L(s) is surround the point (−1,
j0), the GCI system is unstable. And the frequency of the intersection of λ2 with the unit
circle is 173 s.

The experimental results of the GCI connected into a weak grid with different SCRs
are based on the experimental platform in Figure 12.

Before the stability experiment, the dynamic experiment in Figure 13 was used to
demonstrate the dynamic performance of the inverter system.

The experimental results under different SCRs are given in Figures 14 and 15. As
shown, when the SCR decreases from 5 (shown in Figure 14) to 3.8 (shown in Figure 15),
the system changes from a stable state to an unstable one.
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Figure 14. Experiment results of GCI with SCR = 5. (a) Output current waveforms of GCI; (b) THD
of output current.
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Figure 15. Experiment results of GCI with SCR = 3.8. (a) Output current waveforms of GCI; (b) THD
of output current.

According to Figure 14a, the output current of the GCI is stable when SCR = 5.
Yet, in Figure 15a, the output current of the GCI suffers from harmonic instability [2].
By importing data from an oscilloscope into matlab, THD analysis results of the grid-
connected current are obtained, as shown in Figures 14b and 15b. According to Figure 15b,
the frequency of harmonic instability is 195 Hz, and the coupling frequency is 95 Hz. In [2],
the frequency of harmonic instability is almost consistent with the result of adding or
subtracting the fundamental frequency at the frequency of the intersection of λ2 with the
unit circle. Therefore, the frequency of harmonic instability is 173 ± 50 Hz in the theoretical
analysis. Clearly, discrepancies can be observed between the theoretical analysis results and
the experimental findings. However, based on the aforementioned analysis, the proposed
method remains feasible even when considering the errors between the actual circuit and
the simulation model.

5. Conclusions

This paper has analyzed the impact of synchronization dynamics and background
harmonics on impedance measurement. An improved impedance calculation method
is proposed, incorporating a frequency selection principle for injected voltages during
frequency scanning. This enables accurate identification of perturbations injected into the
measurement system. The proposed method ensures a sufficient bandwidth for the PLL to
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track grid frequency deviations and mitigates the influence of synchronization dynamics
caused by perturbations. Consequently, the impedance can be accurately determined using
this method.

To assess stability based on the measured impedance, a stability criterion based on the
Gershgorin circle theorem is introduced. This criterion reduces the computational burden
compared to existing methods. Simulation and experimental results of the GCI system
validate the effectiveness of the proposed method.
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