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Abstract: Pine wild disease poses a serious threat to the ecological environment of national forests.
Combining the object detection algorithm with Unmanned Aerial Vehicles (UAV) to detect pine wild
diseased trees (PWDT) is a significant step in preventing the spread of pine wild disease. To address
the issue of shallow feature layers lacking the ability to fully extract features from small-sized diseased
trees in existing detection algorithms, as well as the problem of a small number of small-sized diseased
trees in a single image, a Shallow Pooled Weighted Feature Enhancement Network (SPW-FEN) based
on Small Target Expansion (STE) has been proposed for detecting PWDT. First, a Pooled Weighted
Channel Attention (PWCA) module is presented and introduced into the shallow feature layer with
rich small target information to enhance the network’s expressive ability regarding the characteristics
of two-layer shallow feature maps. Additionally, an STE data enhancement method is introduced for
small-sized targets, which effectively increases the sample size of small-sized diseased trees in a single
image. The experimental results on the PWDT dataset indicate that the proposed algorithm achieved
an average precision and recall of 79.1% and 86.9%, respectively. This is 3.6 and 3.8 percentage points
higher, respectively, than the recognition recall and average precision of the existing state-of-the-art
method Faster-RCNN, and 6.4 and 5.5 percentage points higher than those of the newly proposed
YOLOv6 method.

Keywords: pine wilt disease; shallow feature map; channel attention; data enhancement

1. Introduction

Pine wild disease (PWD), known as the pine killer, poses a significant threat to pine
forests globally [1]. This disease is caused by the pine wood nematode, which infiltrates
and reproduces within the pine tree, ultimately resulting in the tree’s demise [2].

At present, effective prevention and control measures involve manually cutting down
infected pine trees affected by pine wilt disease, followed by centralized burning of the
felled diseased trees. Additionally, a special medicine is sprayed on the stumps of the
diseased trees and sealed to prevent secondary transmission. An important prerequisite for
the above-mentioned control measures is the identification and localization of infected pine
trees, which is achieved through the detection of diseased trees. Traditional monitoring
of pine tree blights mainly relies on manual detection. Staff observe the appearance
and surface morphological characteristics of trees, judging based on the color change
characteristics of infected pine trees, such as yellowish-brown and reddish-brown [3]. This
method has the disadvantages of poor timeliness and large recognition errors, making it
difficult to effectively complete the task of epidemic monitoring.

Compared with manual detection, aerial remote sensing image monitoring has the
advantages of wide coverage, low labor intensity, and high efficiency. However, imple-
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menting satellite remote sensing image monitoring has high costs, low resolution, poor
timeliness, and is easily disturbed by natural environmental factors.

With the development of UAV technology, high-resolution UAV imagery has brought
great convenience to monitoring tasks in various industries [4–6]. A feasible method for
early detection of infected trees is using aerial images obtained by unmanned aerial vehicles
(UAVs). In recent years, deep learning technology has rapidly developed; deep learning
technologies have been used in various research fields, such as image defogging [7], face
recognition [8,9], video object segmentation [10], etc. Due to its powerful feature extraction
capabilities, researchers have begun to apply the combination of UAV remote sensing
technology and deep learning technology to various fields [11].

Xu Xinluo et al. [12] used the Faster R-CNN algorithm to automatically identify pine
blight diseased trees and locate infected pine trees, achieving a recognition accuracy of
82.42%. However, this method uses a two-stage detection network, and the reasoning
speed for diseased trees is slow. Additionally, the amount of data in the experiment is
small, which is insufficient to be applied to the monitoring task of actual pine wilt diseased
trees. Li Fengdi et al. [13] used the improved YOLOv3-CIoU algorithm to detect PWDT and
improved the accuracy of the disease by citing the more accurate regression loss function
CIoU. However, the research area was only 0.275 square kilometers, and the research results
are not representative. Bingxi Qin et al. [14] used the improved YOLOv5 algorithm to detect
multispectral data of pine wood nematodes from UAVs and achieved relatively good results
with high identification accuracy. However, the acquisition efficiency of multispectral data
is low, the technical requirements for UAV flights are high, and the acquisition cost of
diseased tree images is high. As a result, it is not suitable for large-scale identification of
pine wilt diseased trees.

Although the above studies have achieved certain results in the detection of pine
wild diseased trees (PWDT), they all have the following problems: there are too few
small diseased tree samples in a single picture in the training dataset, and the complex
background is easy to interfere with the algorithm’s detection of small diseased trees in
the shallow feature map. Feature extraction leads to missed detection of a large number of
small-sized diseased trees when detecting diseased trees.

To address these issues, this paper proposes a Shallow Pooled Weighted Feature
Enhancement Network (SPW-FEN) for small PWD tree detection in UAV images. The
proposed network takes advantage of both shallow and deep features, and applies pooling
and weighting schemes to enhance the discriminative power of features. Specifically, in this
paper, we propose a Shallow Pooled Weighted Feature Enhancement Network (SPW-FEN)
based on Small Target Extension (STE) for PWDT detection. First, two layers of shallow
feature maps are used to split the output of small-sized diseased trees. At the same time, a
Pooled Weighted Channel Attention module (PWCA) is presented, which introduces the
proposed PWCA module into the shallow layer of the FPN structure to enhance the feature
response of the small diseased tree target in the shallow feature map and enhances the
algorithm’s ability to extract the features of the small-sized diseased trees.

In addition, in small-target detection, data augmentation technology can increase
the number of samples in the training set by rotating, translating, scaling, etc., thereby
improving the detection ability of the model. In the latest YOLO series algorithms, such
as YOLOv4, YOLOv5, etc., data enhancement methods are used to improve the detection
ability of the algorithm for small targets by increasing the number of small targets. However,
the expanded samples from the data enhancement method used above have problems
such as deformation, color gamut transformation, focusing on the expansion of the overall
sample, and do not show obvious expansion of the small target sample, which is not
applicable to the small-scale pine wilt diseased trees in this paper. Based on this, we
propose an STE data enhancement method. While increasing the sample size of small and
medium diseased trees in a single image, the robustness of the algorithm is improved.

The proposed network is evaluated on the pine wilt diseased trees dataset containing
UAV images of PWDT. Experimental results show that SPW-FEN outperforms several
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state-of-the-art methods in terms of detection accuracy, especially for small PWDT. In
addition, a comprehensive analysis is performed to study the effectiveness of the proposed
pooling and weighting schemes, as well as the contribution of shallow and deep features.

The remaining chapters of this paper are arranged as follows: Section 2 introduces
in detail the dataset of pine wilt diseased trees produced in this paper, the experimental
environment used in this paper, the design of experimental parameters, and a detailed
description of the proposed SPW-FEN method. In Section 3, the results of our comparative
experiments and ablation experiments are summarized and analyzed. Finally, Section 4
concludes the paper and discusses future directions.

2. Materials and Methods
2.1. UAV Pine Forest Image Acquisition

UAVs equipped with high-resolution cameras were used to take images of pine forests
in Yiling District and Yidu City of Yichang City according to fixed routes. Among them,
the UAV model was MD-25 UAV. This model is powered by four T-MOTOR motors and
TMOTOR flame high-voltage electronic governors to provide rotor power; one T-MOTOR
motor is matched with T-MOTOR high-voltage, and the electronic governor provides fixed-
wing power. Power device type: electric brushless engine, electronic speed control system;
control device type: micro servo steering gear. The overall appearance of the MD-25 UAV
is shown in Figure 1, and the main parameters of the MD-25 drone casing are shown in
Table 1 below.
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Table 1. The main parameters of the MD-25 drone.

Parameters Attribute

Body material carbon fiber, glass fiber, Kevlar, PVC, etc.
Maximum take-off weight 13.5 kg

Maximum payload 3 kg (standard load: 1.2 kg)
Wing area about 52 dm2

Wing load about 240 g/dm2 @ 12.5 kg
Standard cruising speed 19 m/s @ 12.5 kg

Maximum cruising speed 93.6 km/h
Standard battery configuration 45.6 V

Stall speed 15.5 m/s @ 12.5 kg
Minimum circling radius 120 m @ 19 m/s

Fixed-wing maximum thrust-to-weight ratio 0.6

The cameras were Zeiss 35 mm fixed-focus lens, 36 million pixels, as shown in Figure 2.
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Figure 2. High-resolution cameras onboard drones.

In terms of route setting: set the relative flight height to 350 m, the average ground
resolution to 4.89 cm, the flight height difference between adjacent photos on the same
route to ≤30 m, and the difference between the actual flight height and the design flight
height to ≤50 m; the heading overlap is 70%, the lateral overlap is 35%, and the single
flight is 70 km. The sun elevation angle at the time of photography is greater than 30–40◦.

2.2. Pine Wilt Diseased Tree Dataset

The pine forest images taken according to the UAV, on-board camera, and route in
the previous section were used as the data source of the dataset. Crop the obtained drone
image with a pixel size of 7952 × 5304 to a size of 1000 × 1000 pixels, as shown in Figure 3:



Electronics 2023, 12, 2463 5 of 18

Electronics 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

2.2. Pine Wilt Diseased Tree Dataset  
The pine forest images taken according to the UAV, on-board camera, and route in 

the previous section were used as the data source of the dataset. Crop the obtained drone 
image with a pixel size of 7952 × 5304 to a size of 1000 × 1000 pixels, as shown in Figure 3: 

 
Figure 3. Cropping of drone images. 

Then, use the LabelImg tool to label the pine wilt diseased trees in the cropped 1000 
× 1000-pixel image, in which the red non-diseased trees, yellow bare land, and red roofs 
that are prone to interference are marked as negative sample classes, as shown in Figure 
4. 

 
Figure 4. Annotated map of positive and negative samples. Mark the red disease-like trees that are 
easy to interfere with the detection, the red bare land, and the red house as a category, and name it 
notree. 

A total of 3271 positive samples of diseased pine trees and 1000 negative samples of 
easily disturbed diseased trees were marked, and then the marked image data were di-
vided into training datasets, validation datasets, and test datasets. Among them, accord-
ing to the pixel size of the diseased tree, the classification method of the COCO dataset 
defines targets with a diseased tree target pixel area smaller than 32 × 32 pixels as a small 

Figure 3. Cropping of drone images.

Then, use the LabelImg tool to label the pine wilt diseased trees in the cropped
1000 × 1000-pixel image, in which the red non-diseased trees, yellow bare land, and red
roofs that are prone to interference are marked as negative sample classes, as shown in
Figure 4.
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Figure 4. Annotated map of positive and negative samples. Mark the red disease-like trees that are
easy to interfere with the detection, the red bare land, and the red house as a category, and name
it notree.

A total of 3271 positive samples of diseased pine trees and 1000 negative samples of
easily disturbed diseased trees were marked, and then the marked image data were divided
into training datasets, validation datasets, and test datasets. Among them, according to the
pixel size of the diseased tree, the classification method of the COCO dataset defines targets
with a diseased tree target pixel area smaller than 32 × 32 pixels as a small target, targets
with an area between 32 × 32 and 96 × 96 pixels as a medium object, and objects whose
area is larger than 96 × 96 is defined as a large object [15]. See Table 2 for more information
on the dataset.
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Table 2. Classification of the PWDT dataset.

Dataset Pictures (Sicktree) Pictures (Notree) Small Targets Medium Targets Large Targets

Training Set 2648 1000 727 4239 521
Validation Set 295 0 64 456 50

Test Set 328 0 68 538 63

It can be seen from Table 2 that in our PWDT dataset, the medium-sized diseased
trees accounted for the largest proportion, and the number of small-sized diseased trees
and large-scale diseased trees was relatively small. The number of small target diseased
trees in the training set was 727, accounting for 13.2% of the total target number. The
number of small target diseased trees in the validation dataset and the test dataset was
relatively small.

Figure 5 shows in detail the proportion of small target diseased trees, medium target
diseased trees, and large target diseased trees in the training set and verification set. In the
training set, small target diseased trees accounted for 13% and medium target diseased
trees and large target diseased trees accounted for 77% and 10%, respectively, while in the
verification set, small target diseased trees accounted for 11% and medium target diseased
trees and large target diseased trees accounted for 80% and 9%, respectively. In the pine wilt
diseased tree dataset produced in this paper, the medium target diseased trees accounted
for the vast majority, and the small target diseased trees and large target diseased trees
accounted for a small proportion, resulting in uneven distribution of diseased trees within
the class.
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2.3. Method

In this section, we first describe the Shallow Pooled Weighted Feature Enhancement
Network (SPW-FEN) in Section 2.3.1, and then present the Pooled Weighted Channel
Attention (PWCA) module in Section 2.3.2. Finally, Section 2.3.3 illustrates the proposed
STE data enhancement method.

2.3.1. Shallow Pooled Weighted Feature Enhancement Network (SPW-FEN)

The proposed SPW-FEN uses a ResNet50 [16] feature extraction network to extract
features to generate feature maps C1, C2, C3, C4, and C5. At the neck of the network, the
feature pyramid structure is used to fuse the shallow feature map with high resolution and
the deep feature map with low resolution and rich semantic information. Among them,
the shallow feature map has more edge position information about the small-sized target,
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which is conducive to the detection of small-sized PWDT; the deep feature map has more
semantic information, while the small target occupies fewer pixels in the image. In the
deep feature map after multi-layer convolution, the feature information is easy to be lost.

The RetinaNet [17] algorithm uses the prediction feature map P3 that combines the
feature map C4 and the shallow feature map C3 to predict the output of small-sized targets.
The feature maps C3 and C4 have lost some details for some small-sized targets.

The proposed algorithm adds the prediction feature map P2, which combines the
shallow feature maps C3 and C2 to divide the small-sized diseased tree targets into small-
sized targets and minimum-sized targets, respectively, in the prediction feature map P3,
and the P2 layer carries out shunt prediction output. At the same time, we introduce the
PWCA module behind the shallow feature maps C2 and C3 to enhance the feature response
ability of the shallow feature layer to small-sized targets.

In addition, based on the statistics of the scale distribution of diseased tree targets in
the pine wilt diseased tree dataset, it was found that the minimum-scale diseased trees
with target scales less than 24 × 24 pixels in the PWDT dataset accounted for 4.4%, and
the number was 295; the proportion of diseased trees with a target scale greater than
256 × 256 pixels in the dataset was 0%. Therefore, the proposed network model adds the
shallow feature map P2, deletes the deep feature maps P6 and P7, and designs the anchor
frame size of each layer. According to the distribution of target scales in the dataset, set
the anchor size on the prediction feature maps P2 to P5 to 16 × 16, 36 × 36, 78 × 78, and
140 × 140, respectively. Figure 6 is the structure of the SPW-FEN network proposed in
this paper.
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Figure 6. Structure of the Shallow Pooled Weighted Feature Enhancement Network. The proposed
network uses resnet50 to extract features and then inputs the feature map into the feature fusion
module. The pooled weighted attention module is introduced before the feature fusion of the shallow
feature maps C2 and C3 to enhance the network’s ability to express the features of small-sized targets.

2.3.2. Pooled Weighted Channel Attention (PWCA) Module

A large number of research results show that the channel attention module is con-
ducive to the feature extraction of the target area by the network and can effectively mitigate
the effect of background information on the feature extraction of small-sized targets [18–21].
To enhance the feature extraction ability of the shallow feature layer for small-scale diseased
trees, in this paper, we propose a PWCA module, which is added after the 1× 1 convolution
operation of the shallow feature images C2 and C3. The PWCA module can increase the
attention weight of the network model to the diseased tree area, inhibit the characteristic
response of the background area, increase the network model’s ability to distinguish small
target feature channels and background channels and improve the network’s detection
performance of small-scale diseased trees. The structure of the PWCA module is shown in
Figure 7.
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Figure 7. Pooled Weighted Channel Attention Module (PWCA). The input feature map is pooled
using global average pooling and global maximum pooling, and then two one-dimensional weight
parameters are obtained via a one-dimensional convolution operation. The two one-dimensional
weight parameters are added using weighted fusion to obtain the attention weight value of the
pooled weighted channel. The weight value is the point multiplied by the input feature map to obtain
the final output feature map.

First, the global average pooling (GAP) and global maximum pooling (GMP) opera-
tions were performed on the feature graph F with dimensions H ×W × C output from the
backbone network to obtain two one-dimensional feature vectors of 1 × 1 × C with differ-
ent spatial context information; then, the two one-dimensional eigenvectors of 1 × 1 × C
obtained using GAP and GMP were, respectively, convolutional to generate two sets of
channel weight values, where K was adaptively determined by the mapping of channel
dimension C, as shown in Formula (1):

k = φ(C) = |
log2(C)

γ
+

b
γ
|odd (1)

where γ = 2, b = 1, and K is the odd number of the neighboring calculation.
The KA weights of the two channels are adaptively added KM. Additionally, they are

fused according to the random weighting to obtain the pooled weighted attention channel
weights X, as shown in Formula (2):

X = λKM +βKA (2)

where λ and β are two super parameters.
Additionally, the weight is then normalized to 0–1 through the sigmoid activation

function to obtain the attention weight. The X′ obtained attention weight is dot multiplied
X′ with the original feature map F to obtain the attention feature map F′, as shown in
Formula (3):

F′ = F×X′ (3)

2.3.3. Small Target Expansion (STE) Data Enhancement Method

The total number of small-sized diseased trees in our PWDT dataset and the number
of small-sized diseased trees in a single image is small, and a small number of small-sized
diseased tree data is not enough for the feature extraction network to extract their features.
Therefore, in this paper, we propose an STE data enhancement method based on small-
sized targets with double fixed scaling. First, through the fixed scale scaling method, four
pictures numbered 1, 2, 3, and 4 are randomly selected from the pine wilt diseased tree
dataset, and the length and width of the four pictures are scaled to the same ratio of 0.4, 0.5,
and 0.6 to obtain the scaled picture Img1, Img2, Img3, and Img4, as shown in Formula (4):

Imgi = resize(random(0.4, 0.5, 0.6)jpgi)(i ∈ [1, 4]) (4)
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Next, create a new rectangular box whose length and width are twice the size of the
picture in the pine wilt diseased tree dataset. Take the center of the square box as the
dividing point, and divide the rectangular box into four sub-areas, r1, r2, r3, and r4, of the
same size. Then, fill the pictures Img1, Img2, Img3, and Img4 randomly into the sub-regions
r1, r2, r3, and r4, reduce the length and width of the filled rectangular box by two, and the
resulting rectangular box is an expanded sample image. Finally, remove the scaled and
spliced pictures from the pine wilt tree dataset and repeat the above steps in the remaining
pictures; a large number of expanded sample graphs were obtained and stored in the PWDT
dataset, and the specific operation flow is shown in Figure 8.
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3. Results

In this section, we first introduce our experimental environment. Then, we introduce
the evaluation metric of our experimental results, and then compare our algorithm with
several current mainstream object detection algorithms on our dataset. Finally, an ablation
experiment is designed for the proposed modules.

3.1. Experimental Environment and Parameter Setting

The detection algorithm in this paper is based on the PyTorch framework and uses
NVIDIA GeForce RTX 3090. Using the dataset of PWDT made by ourselves to train the
network model, a total of 120 epochs were trained in this experiment, and the learning rate
was adjusted at the 80th and 110th epochs. The initial learning rate was set to 0.0001, and
the batch size was set to four. The experimental environment and experimental parameter
settings are shown in Table 3.



Electronics 2023, 12, 2463 10 of 18

Table 3. Experimental environment and experimental parameter settings.

Name Version Number/Parameter

GPU Nvidia GeForce GTX 3090 GPU
Server memory 64 G

Operating system Ubuntu 18.04
Deep learning framework Pytorch 1.8.0

Epoch 120
Initial learning rate 0.0001

Batch-size 4
Momentum setting 0.9

Regularization coefficient 0.0001

3.2. Evaluation Metric

Target detection algorithm evaluation indicators are mainly divided into two cate-
gories: classification indicators and localization indicators.

Classification indicators: These mainly measure the classification ability of the algo-
rithm for the target category. Commonly used indicators are Accuracy, Precision, Recall, and
F1-score. Among them, the accuracy rate is an indicator to measure the overall classification
of the algorithm, while the precision rate and recall rate pay more attention to the classifi-
cation of a single target category by the algorithm. F1-score is a comprehensive index of
precision rate and recall rate, which can more comprehensively evaluate the classification
ability of the algorithm. It is defined as the harmonic mean of precision rate and recall rate.
Its formula is as follows:

F1− score =
2

1
precision + 1

recall
= 2× precision× recall

precision + recall
(5)

Positioning index: It mainly measures the evaluation of the algorithm on the target
positioning ability. Commonly used indicators are the Intersection over Union (IoU),
average precision (AP), and mean average precision (map). The IoU is an indicator for
measuring the accuracy of the algorithm for target positioning; AP average accuracy
is one of the indicators for evaluating image retrieval results. It is the abbreviation of
average precision, which means that for a set of query images, all the prediction results
are averaged. AP is calculated by sorting the retrieval results and calculating the area
of recall and precision. For each query image, by comparing the similarity between the
predicted result and the ground truth label, a set of ranked lists can be generated where
each retrieved result has a relevance score. Sort these scores from high to low, and calculate
the precision at each recall. Finally, the AP can be obtained by taking the average of the
accuracy rates under all recall rates, and the formula is as follows; mAP considers the
classification and positioning capabilities of the algorithm for all target categories, and the
calculation formula of AP is as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)dR (8)

where TP represents the number of samples with actual positive labels that are correctly
classified as positive. FP indicates the number of samples with actual negative labels
that are incorrectly classified as positive. FN denotes the number of samples with actual
positive labels that are incorrectly classified as negative. P represents precision, and R
represents recall.
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In practical scenarios, object detection algorithms are evaluated based on both classifi-
cation and localization indicators to comprehensively assess their performance. However,
for specific applications, different indicators may need to be selected based on the specific
conditions and requirements.

In the case of detecting pine wilt diseased trees, the priority is to minimize missed
detections to prevent the spread of the disease. Hence, this study uses recall rate and
average precision as performance indicators, where the recall rate measures the proportion
of predicted positives to all annotated positives. It is expected that the model’s recall rate is
as high as possible while ensuring a high overall performance AP.

3.3. Comparative Experimental Results

To verify the performance of our proposed network model, we compared the verifica-
tion results of the current seven mainstream target detection algorithms and our proposed
detection algorithms on the PWDT dataset through experiments; the experimental results
can be seen in Table 4 below.

Table 4. Experimental results of different methods on the PWDT dataset.

Network Model (Year) Basic Network Recall AP

Faster-RCNN (NeurIPS2015) ResNet50 83.3 75.3
SSD (ECCV2016) VGG16 80.4 73.7
YOLOv3 (CVPR2018) DarkNet53 72.9 70.1
FoveaBox (TIP2020) ResNet50 82.4 77.2
ATSS (CVPR2020) ResNet50 80.2 78.3
YOLOF (CVPR2021) ResNet50 81.5 78.0
YOLOv6 (arXiv2022) EfficientRep 80.5 73.6
Ours ResNet50 86.9 79.1

The experimental results show that compared with the classic network Faster-RCNN [22]
and the mainstream network SSD [23], YOLOv3 [24], ATSS [25], YOLOF [26], FoveaBox [27],
and YOLOv6 [28], the proposed detection algorithm achieves the best detection results,
with a recall and AP of 86.9 and 79.1, respectively. The visual identification comparison
results of each network on the test set are shown in Figure 9.

It can be found from the experimental comparison results in the two test samples in
Figure 9 that the SPW-FEN algorithm proposed in this paper has the best recognition effect
in small-sized pine wilt diseased trees. YOLOv3, Faster-RCNN, and ATSS all have obvious
missed detections. The method proposed in this paper has greatly alleviated the missed
detection of small-sized diseased trees, and the recognition effect is the best.

3.4. Ablation Study

To further analyze the impact of the proposed channel attention module and data
enhancement module of this paper on the network performance, we used RetinaNet as
the base network, and the effectiveness of the designed method will be discussed in the
following three aspects: small-sized diseased tree shunt prediction output, anchor box
recalibration, and PWCA module. The specific experimental analysis data are shown below.

3.4.1. Small-Scale Diseased Tree Shunt Prediction Output

In order to verify the effectiveness of the small-sized disease tree shunt prediction
output proposed in this paper, a comparative experiment was designed to analyze the
results of only the P3 layer predicting output for small-scale diseased trees and using both
the P2 layer and P3 layer to predict small-scale diseased tree output. The detection effect
and the specific experimental data are shown in Table 5 below.
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Figure 9. The recognition results of different methods on small-sized diseased trees in two test sample
images. (a) shows the recognition result of YOLOv3. (b) shows the recognition result of Faster-RCNN.
(c) shows the recognition result of the anchor-free detection algorithm ATSS. Additionally, (d) shows
the recognition result of the method proposed in this paper. The red box in the figure represents the
detected diseased tree, and the yellow circle represents the missed diseased tree.

Table 5. Comparison of recognition AP and Recall of small-size disease tree shunting prediction
output module ablation experiment.

Experiment P2 P3 Recall AP

Original settings (base network)
√

82.4 77.1
Split prediction output

√ √
83.2 78.0

It can be seen from Table 5 that when only the P3 layer prediction feature map is used
to predict the small-scale diseased tree output, the recall rate is 82.1, and the precision is
only 77.1. When the P2 layer prediction feature map and the P3 layer prediction feature map
are used at the same time when the scale disease tree is used for prediction output, the recall
rate is increased by 1.2 percentage points, and the precision is increased by 0.9 percentage
points. The recall rate and precision reach between 83.2 and 78.0, respectively. It can be
seen that it is necessary to split the diseased tree for prediction output.

3.4.2. Recalibration of Anchor Boxes

According to the distribution of target scales in the dataset, set the sizes of the anchors
on the prediction feature maps P2 to P5 to 16 × 16, 36 × 36, 78 × 78, and 140 × 140,
respectively, and the three aspect ratios of the anchors to, respectively {1.0; 2.0; 0.5} and
the ratio of the area of the anchor to {20, 21/3, 22/3}. According to the size, aspect ratio,
and the area of the anchor box, nine kinds of anchors are redesigned at each pixel on
each layer of prediction feature layer. The comparison between the size of the anchor
box in the original algorithm and the size of the anchor box after recalibration is shown
in Table 6 below.
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Table 6. Comparison of detection effects of diseased trees with different anchor sizes.

Experiment P2 P3 P4 P5 P6 P7 Recall AP

0 (Base network) 32 64 128 256 512 82.4 77.1
1 8 32 64 128 256 512 83.4 77.4
2 12 32 64 128 256 512 83.6 77.8
3 16 32 64 128 256 512 83.2 78.0
4 8 36 78 140 85.2 77.5
5 12 36 78 140 85.1 78.1
6 (Ours) 16 36 78 140 85.4 78.4

From the data in Table 6, it can be seen that the adjustment of the anchor size can
effectively change the detection effect of the diseased tree. There is no P2 layer in the
original RetinaNet [17] network, and the detection accuracy and recall rate of the diseased
trees are low. When adding the P2 layer and adjusting the size of the anchor in the P2 layer
when detecting the diseased tree, the precision and recall rate are significantly improved.
When the anchor of the P2 layer is set to 16 × 16, the anchor of the P3 layer is set to 36 × 36,
the anchor of the P4 layer is set to 78 × 78, and the anchor of the P4 layer is set to 140 × 140,
the recall rate and precision, respectively, reach 85.4 and 78.4, compared with when no
adjustment is made to the size of the anchor, the recall rate and precision increased by
3 percentage points and 1.3 percentage points, respectively.

3.4.3. Pooled Weighted Channel Attenuation (PWCA) Module

To validate the effectiveness of the proposed Pooled Weighted Attention (PWCA)
module in this chapter, this section investigates the influence of global average pooling
and global maximum pooling on the detection of pine wilt disease in trees by adjusting
the weighted parameter values (λ, β). Additionally, the impact of dimensionality reduc-
tion (MLP network) on the performance of the attention mechanism is analyzed through
experiments. The specific experimental data are presented in Table 7.

Table 7. Experimental Results of Attention Module Ablation in Pine Wilt Diseased Tree Dataset.

Experiment λ β
MLP

(Dimension Compression)
Conv 1 × 1

(1D Convolution) AP

Base network 77.1
0 (ECA) 0 1

√
77.8

1 0 1
√

77.3
2 1 0

√
77.9

3 (CBAM) 1 1
√

77.4
4 1 1

√
77.6

5 0.5 0.5
√

77.5
6 0.5 1.5

√
77.3

7 (PWCA) 1.5 0.5
√

78.2

From the experimental results presented in Table 7, it can be observed that when λ = 0
and β = 1, the attention mechanism is referred to as ECA [29]. Additionally, when utilizing
one-dimensional convolution instead of the dimensionality compression operation of the
MLP network, the accuracy improves by 0.7% compared with that of the baseline. In this
case, when the dimensionality compression operation of the MLP network is employed,
the attention mechanism becomes CBAM [30]. Substituting the MLP network in the CBAM
attention mechanism with one-dimensional convolution leads to a 0.5% increase in accuracy
compared with the baseline. By adjusting the parameter values of λ and β and analyzing
the weighted parameter experimental data, it is found that when λ = 1.5 and β = 0.5,
the introduction of the attention mechanism has the highest recognition accuracy for the
diseased tree. It is evident that the pooling weighted channel attention (PWCA) achieves
the highest experimental accuracy, yielding the best detection results for diseased trees. The
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experimental results on the pine wilt diseased tree dataset indicate that the MLP network
has a detrimental effect on the channel attention mechanism. It proves to be inefficient
and unnecessary for capturing dependencies among all channels. Conversely, considering
the recognition results for pine wilt diseased trees with fewer targets in a single image,
the PWCA attention mechanism with an increased weight on global maximum pooling
performs better in terms of diseased tree recognition.

3.4.4. Comprehensive Experimental Analysis

To further analyze the impact of the proposed channel attention module and data
enhancement module of this paper on the network performance, we designed the ablation
experiment after adding each module on the basis of the RetinaNet algorithm. The results
of the ablation experiments are shown in Table 8 below.

Table 8. Ablation study of every module.

Number Anchor Setting PWCA STE Recall AP

1 82.4 77.1
2

√
85.4 78.4

3
√

84.3 78.2
4

√ √
86.0 78.8

5
√

85.5 77.7
6 (ours)

√ √ √
86.9 79.1

It can be seen from Table 8 that the recall of the proposed module increased from 82.4 to
85.4, the recall increased by 3, the AP increased from 77.1 to 78.4, and the AP increased by
1.3 after the anchor re-setting and the prediction output of the diversion in the RetinaNet
network. After adding PWCA to the shallow feature map of the RetinaNet algorithm, the
recall increased by 1.9 and the AP improved by 1.1. In the RetinaNet algorithm, the recall
and AP of the algorithm were improved by 3.1 and 0.6, respectively, after the STE data
enhancement method was adopted. At the same time, after using the PWCA module and
STE data enhancement in the RetinaNet network, the recall was improved by 4.5 and the
AP was improved by 2.0.

As shown in Figure 10a, the picture is overexposed, and light photography is brighter
than natural light. As shown in Figure 10b–d, the original mosaic enhanced picture has lost
the red and yellow-brown color characteristics of PWDT. Through experiments, it is found
that these low-quality samples are mainly generated during HSV transformation of the
image during sample enhancement [31]. To solve this problem, the STE data enhancement
proposed in this paper removes HSV transformation operation, significantly improving the
quality of the enhanced samples. The red circle represents the small-sized diseased tree
after using the STE data enhancement method, as shown in Figure 10. Under the condition
of ensuring the same quality as the original sample, the setting of the fixed scaling scale
significantly increases the number of small target samples in the enhanced sample. There
is only one small target or even no small target samples in the original image, and the
number of small target samples in the transformed sample is increased by more than four
to eleven samples, which effectively alleviates the problem of too few positive samples in
the training process.
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Figure 10. (a–d) represent the four pictures randomly generated in the Mosaic data enhancement
method that deviate from the target color characteristics of the diseased tree, and (e–h) represent
the four pictures generated by using the STE data enhancement method. Among them, the white
box represents the labeling target in the mosaic enhancement method, the green box represents
the labeling target in the expanded sample in the STE method, and the red circle represents the
small-scale diseased tree. From the comparison chart, it can be seen that the STE data enhancement
method has expanded the number of small-size diseased trees more.

4. Discussion

Through the analysis and statistics of the scale size of the diseased trees in the pine wilt
diseased tree dataset, we found that the number of small-scale diseased trees is small, which
is not enough for the network model to learn the characteristics of small-scale diseased
trees. At the same time, we found that in drone footage, the small-scale diseased tree
only occupies a small part of the pixel area in the image, and most of the pixel areas are
background pixels. This background information seriously interferes with the feature
extraction of the small-scale diseased tree.

As for the problem of background information interference, more and more researchers
have begun to use the attention mechanism to alleviate the interference problem [32,33].
Therefore, in this paper, we propose a Pooled Weighted Channel Attention module to
alleviate the background interference on small-scale diseased tree feature extraction. From
the bias of the importance of global maximum pooling and global average pooling to
feature learning after conducting research, a large number of experiments have proved
that for the detection of small-scale diseased trees, the contribution of global maximum
pooling is higher than that of global average pooling. Through the weighted fusion of
global large pooling and global average pooling, exploring weight parameters is most
suitable for small-scale diseased tree detection.

On the other hand, through the analysis of the advantages and disadvantages of the
existing data enhancement methods in small-scale diseased tree data enhancement, we
propose a data enhancement method based on small target sample expansion, so that it
does not affect the color and shape of diseased tree targets. Based on the characteristics, the
number of small-scale diseased trees is expanded. The experimental results show that the
data enhancement method proposed in this paper can significantly enhance the number of
small-scale diseased trees and the robustness of diseased tree detection.
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The current research methods have achieved good results in the detection of small-
scale diseased trees, but the detection effect on late-stage diseased trees is not good, and
further research and analysis are needed. On the other hand, due to the high cost of
acquiring diseased tree datasets, which require huge manpower and material resources,
the number of existing pine wilt diseased tree datasets is relatively small. How to learn the
characteristics of the target with a small number of labels is the focus of future research. At
present, active learning technology is developing rapidly in various fields [34,35], and active
learning mainly focuses on how to build efficient classifiers with little labeled data. Active
learning technology provides a theoretical basis for future research on the identification of
pine wilt diseased trees. Next, we will conduct research on tasks such as the classification
of diseased trees in the field of active learning.

5. Conclusions

In this paper, to solve the problem of the poor detection effect of existing target
detection algorithms on small-sized PWDT, we propose a new target detection network,
SPW-FEN, for the detection of PWDT. First, to solve the problem that the shallow feature
layer in the existing detection algorithms has insufficient ability to extract the features of
small-sized diseased trees, in this paper, a PWCA attention module is proposed and adds
the module to the shallow feature map, effectively improving the algorithm’s ability to
extract the features of small-scale diseased trees. Moreover, because of the problem that
there are too few small-sized diseased trees in a single image, we propose an STE data
enhancement method which effectively increases the number of small-sized diseased trees
in a single image. The method proposed in this paper can effectively enhance the feature
extraction ability of the network for small-sized diseased trees, reduce the missed detection
rate of small-sized diseased trees, and achieve efficient detection of small-sized diseased
trees in UAV images under complex backgrounds. The experimental results show that
the method proposed in this paper has a recognition average precision of 79.1% and a
recognition recall of 86.9% for pine wilt diseased trees. The recall and average precision are
3.6% and 3.8% higher than the current state-of-the-art method, Faster-RCNN [22]. At the
same time, they are 6.4% and 5.5% higher than those in the YOLOv6 [28] algorithm in the
latest YOLO series network.

In the future, we will focus on studying how to improve the detection performance of
late-stage diseased trees, and use semi supervised feature learning and detection methods
on the basis of a small amount of data samples to construct low-cost and high-precision
diseased tree detection models. Additionally, we will further study the effect of mixed trees
on the identification results of diseased trees, and verify the method for the possibility of
error due to the presence of trees of other species (mixed forest).
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