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Abstract: The outputs of deep hash network (DHN) are binary codes, so DHN has high retrieval
efficiency in matching phase and can be used for high-speed palmprint recognition, which is a
promising biometric modality. In this paper, the templates and network parameters are both quantized
for fast and light-weight palmprint recognition. The parameters of DHN are binarized to compress
the network weight and accelerate the speed. To avoid accuracy degradation caused by quantization,
mutual information is leveraged to optimize the ambiguity in Hamming space to obtain a tri-valued
hash code as a palmprint template. Kleene Logic’s tri-valued Hamming distance measures the
dissimilarity between palmprint templates. The ablation experiments are tested on the binarization
of the network parameter, and the normalization and trivialization of the deep hash output value.
The sufficient experiments conducted on several contact and contactless palmprint datasets confirm
the multiple advantages of our method.

Keywords: biometric recognition; palmprint recognition; binary neural network; deep hash network;
mutual information

1. Introduction

Recently, biometric recognition has become a promising and widely used personal
identification technology. As a biometric modality, palmprint has many advantages, includ-
ing rich features, high user acceptance and easy acquisition. Many palmprint recognition
methods were proposed and achieved high recognition accuracy. However, with the large-
scale applications of biometrics, the sizes of palmprint databases are rapidly increasing. It
is urgent to save the storage cost of recognition models and feature templates, and also to
accelerate matching speed. Thus, it is necessary to develop fast and light-weight techniques
for large-scale palmprint recognition and retrieval [1].

Palmprint recognition based on deep hash network (DHN) has been widely used in
many scenarios due to its low storage, low matching computational complexity and high
recognition accuracy. However, DHNs ignore model squeezing, i.e., reducing model weight.

The binary deep hash network (B-DHN) has many advantages. The traditional DHN
uses format FP32 to represent the weight value, while the weights of B-DHN are binary.
Therefore, the parameter storage size of B-DHN is only about 1/32 of that of the traditional
DHN. In addition, B-DHN has only “1” and “−1” parameters (weights), which means
that the convolution operations can be replaced with bitwise operations. To be specific,
B-DHN can replace the traditional multiplication operations with “Logic-And-Gate” and
“Logic-XOR-Gate” operations. In other words, in the propagation process of B-DHN, only
addition and bit operations are needed instead of multiplication, which is much faster than
traditional DHN [2].

In this paper, the templates and network parameters are both quantized for fast and
light-weight palmprint recognition. We propose a B-DHN with tri-valued hash codes.
Specifically, the weights of the DHN are binarized to accelerate the operations of the
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network and reduce the model weight. The network compression commonly results
in accuracy degradation. Therefore, the outputs of DHN are transformed to tri-valued
codes [3] to reduce the ambiguity of the DHN output in Hamming space, which remarkably
improves the recognition accuracy.

The contributions of this paper can be summarized as follows:

• The proposed B-DHN has two advantages. On the one hand, the speed of B-DHN is
much faster than that of traditional DHN. On the other hand, B-DHN squeezes the
network by binarizing the network to reduce the model storage. Thus, B-DHN has the
advantages in terms of speed and storage;

• To improve the recognition accuracy of B-DHN, the weights are balanced and stan-
dardized by maximizing the information entropy and minimizing the quantization
error before the network binarization, which reduces the information loss due to the
parameter binarization in forward propagation. The gradient of B-DHN cannot be
calculated; therefore, a function, which approximates the gradient to minimize the
information loss, ensures sufficient update at the beginning of training and accurate
gradient at the end of training;

• In order to reduce the accuracy degradation caused by the squeezing of the DHN, the
outputs of DHN are quantized to tri-valued hash codes as the palmprint templates.
Mutual information is used to dilute the ambiguity of the output binarization in Ham-
ming space. Kleene Logic’s tri-valued Hamming distance measures the dissimilarity
between palmprint templates; thus, the ambiguous intervals have a small weight to
improve the recognition accuracy.

The rest of this paper is organized as follows: Section 2 introduces some related
works. Section 3 describes the proposed methodology, which includes the B-DHN and
the tri-valued hash codes. Section 4 shows the experimental results and discussions. The
conclusions and future works are given in Section 5.

The overall structure is shown in Figure 1. BI-CBP denotes binary convolution opera-
tion + BN + PReLU, and MI denotes the mutual information transforming of the network
outputs to tri-valued hash codes.
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2. Related Works
2.1. Palmprint Recognition

Palmprint recognition typically includes four steps, namely, image acquisition, im-
age preprocessing, feature extraction and matching. Palmprint recognition methods are
reviewed as follows.

2.1.1. Local Texture Coding Methods

Filters are commonly used to extract texture features, such as the magnitude and
phase of the filter response, and then the features are encoded by some specific rules. The
single-direction approaches preserve only single-direction texture. Zhang et al. [4] proposed
Palmprint Code (PalmCode), which used 45◦ Gabor filter to process the image and binarized
the response value. Kong et al. [5] filtered the images by six Gabor filters along different
directions (0◦, 30◦, 60◦, 90◦, 120◦, 150◦), and coded the winner (dominant) direction index
of the filter corresponding to the minimum response of each pixel. Wei et al. [6] used the
modified finite Radon transform filter to extract palmprint features and a “winner-take-all
rule” to code each pixel. In matching phase, a pixel-to-region template matching method
was used to further improve accuracy.

In order to fully utilize the palmprint texture, multi-directional approaches were
proposed. Since fusion can improve the accuracy effectively [7,8], Fei et al. [9] used
multi-directional Gabor filters for feature extraction, and encoded the direction index
corresponding to the top-2 response values. Guo et al. [10] encoded the responses of the
multi-directional Gabor filters and fused the matching scores at score level. If the absolute
value of the response is closer to 0, the response is regarded as worse. The method removed
the 8% worst response entries with a mask matrix and ignored them in the matching
phase. Xu et al. [11] encoded the most relevant response and the weighted responses of two
adjacent directions. They also used a Gaussian filter to process the image, which reduced
the noise effect and further improved the performance.

Some studies on the downsampling were proposed for coding methods. Yang et al. [12] al-
lowed all pixels in each block to have equal voting rights to extract stable features. Leng et al. [13]
selected the best impact pixel from the 16 candidates in each block. Yang et al. [14] conducted
the downsampling in uniformly-spaced windows, which avoided the small distance and
strong correlation between the adjacent preserved pixels.

2.1.2. Deep Learning-Based Methods

Deep learning-based palmprint recognition methods typically use a specific method,
such as convolutional neural network (CNN), for feature extraction and classification.
Svoboda et al. [15] trained AlexNet to expand the separability between the genuine and
impostor distributions, but the training required supervision. Wen et al. [16] proposed a
new loss function to increase the distance between classes. Inspired by this, Zhong and
Zhu [17] proposed a concentrated large marginal cosine loss, which improved intra-class
tightness. Matkowski et al. [18] proposed a CNN framework for palmprint recognition
in an uncontrolled environment; they used two sub-networks for segmenting the region
of interest (ROI) and extracting the features, respectively. Chai et al. [19] performed
gender soft biometric network for pre-training, and then trained the network for palmprint
classification. Xu et al. [20] used soft biometrics in multi-task pre-training for palmprint
recognition. Du et al. [21] proposed a CNN-based regularized adversarial domain cross-
domain recognition model. Liu et al. [22] developed a soft-shift triplet loss function for
learning to distinguish palmprint features using a fully convolutional network.

2.2. Deep Hash Network

DHNs combine the advantages of hashing algorithms and CNNs. On the one hand,
DHNs have the same robust feature extraction ability as CNN. On the other hand, DHNs
combine CNNs with hash encoding, so DHNs reduce the storage space and speed up
the matching/retrieval speed. The procedure of DHNs can be summarized as: a CNN is
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trained for extracting low-dimensional feature, and then the features are transformed into
binary codes.

Chen et al. [23] proposed a discriminative spectrum hash to compact palmprint repre-
sentation. Cheng et al. [24] combined supervised hashing and deep convolutional features
for palmprint recognition. Zhong et al. [25] extracted palmprint and dorsal hand vein
features using DHN and feature map matching for hand-based multi-biometric recognition.
Zhong et al. [26] used a DHN for palmvein recognition with an equal error rate (EER) close
to 0% on the near infrared (NIR) spectral dataset. Li et al. [27] used softmax classification
loss and improved ternary loss to learn the hash code and maintain consistency with
high-dimensional features. Liu et al. [28] used a deep self-supervised hash to generate
pseudo labels, and used a DHN to generate hash codes. Wu et al. [29] used a DHN to
generate hash codes and feature selection to obtain more compact deep hash codes.

This paper proposes double quantification of template and network for palmprint
recognition. A DHN is compressed to a B-DHN to speed up the network speed and reduce
the network weight. At the same time, the outputs of network have low storage cost and
fast matching/retrieval speed.

3. Methodology

This section describes the proposed B-DHN for tri-valued codes. Firstly, the B-DHN is
specified, which includes balanced normalized quantization for parameter binarization and
approximation function for gradient calculation. Next, the quantization for the tri-valued
hash codes is described, where the ambiguous interval of the deep hash value is labeled by
a state. The DHN configuration in this paper is shown in Table 1.

Table 1. Network parameter configuration.

Layer Configuration

Conv1 Filter 16 × 3 × 3, st.4, pad 0, BN, PReLU
Max_pool Filter 2 × 2, st.1, pad 0

Conv2 Filter 32 × 5 × 5, st.2, pad 2, BN, PReLU
Max_pool Filter 2 × 2, st.1, pad 0

Conv3 Filter 64 × 3 × 3, st.1, pad 1, PReLU
Conv4 Filter 64 × 3 × 3, st.1, pad 1, PReLU
Conv5 Filter 128 × 3 × 3, st.1, pad 1, PReLU

Max_pool Filter 2 × 2, st.1, pad 0
Full6 Length 2048
Full7 Length 2048
Full8 Length 128

3.1. Binary Deep Hash Networks
3.1.1. Binary Convolution and Approximation Function

1. Binary convolution

To reduce the information loss in a B-DHN, the network parameters are balanced and
normalized before binarization as:

Wstd =
W ′

σ(W ′)
(1)

where σ(.) is the standard deviation, and W ′ is:

W ′ = W −
−
W (2)

where W is the initial weight value, and
−
W is the mean value of W.

Final, binary convolution can be formulated as:

Zb = Bco(sign(A), sign(Wstd)) (3)
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where A denotes the input activation vector computed by the previous network layer,
and Bco (.) denotes binary convolution operation, which replaces the traditional multipli-
cation operation with “Logic-XOR-Gate” operation. Contrary to traditional convolution
operations, the binary convolution conducts bitwise operations.

2. Approximation function

Since the gradient of binary network cannot be calculated directly, approximation
function is used to replace binarization function. Approximation function of the parameter
x is:

g(x) = ktanh(tx) (4)

t = T110
i
N×log T2

T1 (5)

k = max
(

1
t

, 1
)

(6)

where i is the current epoch index, and N is the maximum epoch number, T1 = 10−1 and
T2 = 101.

3.1.2. Loss Function of B-DHN

The loss function is divided into two parts. The first part is distance loss, which
keeps the feature vectors of the same class close together and the feature vectors of the
different classes far away. The second part is quantization loss; a regular term is added to
the real-valued network output in the last layer.

1. Distance loss function

In order to decrease the intra-class distance and enlarge the inter-class distance, the
intra-class distance is formulated as:

S
(

fi, f j
)
=

1
2

l
ij

HD
(

fi, f j
)

(7)

where fi and f j denote two binary codes (templates) of the input images of the identical
class. HD(.) denotes the Hamming distance. The inter-class distance is:

−
S
(

fi, f j
)
=

1
2
(
1− lij

)
max

(
T − HD

(
fi, f j

)
, 0
)

(8)

If fi and f j belong to the identical class, lij = 1; otherwise lij = 0. T denotes the distance
threshold. In the experiment, T is set to 90 because each output is coded as 128 bits.

By combining the above two formulae, the distance loss function is:

Rs
(

fi, f j,lij
)
=

M

∑
i=1

M

∑
j=1

[
S
(

fi, f j
)
+
−
S
(

fi, f j
)]

(9)

where M is the number of palmprint images in the training set.

2. Quantization loss function

To reduce quantization error, each entry in the output should be close to “+1” or “−1”,
so the quantization function is:

RQ = ∑M
i=1

1
2
(‖1− | fi|‖2) (10)

where | fi| denotes the absolute value of fi, and ‖.‖2 denotes the L2−Norm of the vector.
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Ultimately the loss function is:

Loss = αRs + RQ (11)

where α is the combination factor.

3.2. Tri-Valued Hash Codes

It is worth noting that the feature extraction of DHNs uses binarized output, which
is fine for classification and can still achieve relatively high accuracy even if binarized
outputs ignore the ambiguous interval in Hamming space. In this paper, the tri-valued
quantification of hash codes fully considers ambiguous interval, so the accuracy is better
than that of DHNs. To reduce quantization error, the network outputs are balanced
before quantization.

Xstd =
X′

σ(X′)
(12)

X′ = X−
−
X (13)

where
−
X is the mean of network output.

Two thresholds need to be determined for coding network output by finding the
largest mutual information. Mutual information is:

I(A, B) =
x

P(A, B)log
P(A, B)

P(A)P(B)
(14)

where A and B are the distributions of two sets of network outputs, respectively, and the
threshold selection is formulated as:

Et1,t2 = I
(

A′, B′
)

(15)

A′ = {x|A(x)}, x /∈ (β, δ) and B′ = {x|B(x)}, x /∈ (β, δ), β, δε(−4, 4) (16)

t1, t2 = argmax(Et1,t2) (17)

where β < δ and both are integers. t1 and t2 denote two thresholds. After obtaining the
two thresholds, x, a bit of the output, is transformed to a tri−valued digit as:

Tcode(x) =


−1, x ≤ t1

0, t1 ≤ x ≤ t2
1, x ≥ t2

(18)

The tri-valued Hamming distance table of Kleene logic [30,31] is shown in Table 2,
where “0” labels the ambiguous state. The Kleene logic table is simplified because only two
calculators, ¬ and↔, are used for distance calculation. For two tri-valued digits, a and
b ∈ {−1, 0, 1}, the tri-valued Hamming distance is:

THD(a, b) = γ(¬(a↔ b + 1)) (19)

where γ is the weight factor, which is generally set to 0.5, i.e., the weight is 0.5 for
ambiguous state.
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Table 2. Kleene Logic Table.

A↔ B ¬A

B −1 0 1

A
−1 1 0 −1 0
0 0 0 0 0
1 −1 0 1 −1

4. Experimental Results and Discussions

This section introduces the palmprint databases and describes the experiments. It also
presents the ablation experiments on the balanced and normalized network parameters,
the normalized network output, and the tri-valued quantization.

4.1. Dataset and Experimental Environment Setup

In this paper, four palmprint databases, including one contact database and three
non-contact databases, are used for performance evaluation and comparison. The original
images are pre-processed to ROI with the size of 128× 128 [32]. The details of the databases
are described in Table 3. The multi-spectral database contains four spectrum sub-datasets,
namely, Blue, Red, Green and NIR.

Table 3. Details of the palmprint database.

Databases PolyU IITD Multispectral Tongji-Print

Collection Touch Touchless Touchless Touchless
Number of class 378 460 500 600

Number of samples per class 20 5 12 20
Total number of samples 7560 2300 24,000 12,000

• PolyU database [33]. A total of 7752 images belong to 386 palms, each palm con-
taining around 20 images. The images are all acquired with a contact device.
There are, in total, 30,042,876 matchings, including 74,068 genuine matchings and
29,968,808 imposter matchings;

• Multispectral database [34]. The images are acquired with contact devices from
different spectral environments. Each spectral database contains 6000 palm images.
There are, in total, 1,799,700 matchings, including 33,000 genuine matchings and
1,796,400 imposter matchings;

• IITD database [35]. There are 2601 hand images captured with contactless device
from 230 individuals (460 palms). Each palm has around five images. Contactless
acquisition usually contains stronger noise;

• Tongji-print database [36]. It consists of 12,000 images of 300 individuals (600 palms)
acquired with a contactless device in two sessions. In each session, 10 images of each
palm are acquired. There are, in total, 1,799,700 matchings, including 2700 genuine
matchings and 17,970,000 imposter matchings.

The image samples of these databases are shown in Figure 2. The four databases are
acquired in different ways; thus, the experiments on these databases can better reflect the
advantages of the our method. To ensure the stability of the experiments, the categories
with incomplete sample number are removed.

The system configuration is: AMD Ryzen 5 3600 6-Core Processor 3.60 GHz, NVIDIA
GPU GTX3060ti, 16 GB RAM and Windows 10 OS. All experiments are conducted on
PyTorch.
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4.2. Ablation Experiments

1. Balanced and normalized network parameters

Balanced and normalized network parameters can maximize the information entropy
of binary weights and binary activations by adjusting the distribution of network weights.
Since an explicit balance operation is used before the binarization, the binary weights of
each layer in the network have maximum information entropy. Binary activations affected
by binary weights also have maximum information entropy.

2. Balanced network output

Before balanced network output, the distribution of network output is concentrated
around “0”, i.e., many values are in the ambiguous interval, which is not conducive to
the quantization operation. The balanced network outputs have maximum information
entropy to reduce the ambiguity of the network output.

3. Tri-valued quantization

Traditional binarization ignores the ambiguity in Hamming space, and direct bina-
rization with a threshold or a function can lead to misclassification. Specifically, logical
“true” feature values are misclassified as logical “false”, and vice versa. This uncertainty
is directly reflected in the distance matching process, where the intra-class distance is too
large and the inter-class distance is too small [37].

Table 4 shows the ablation experimental results on the PolyU database. The balanced
and normalized network parameters greatly improve the accuracy. Balanced network
output and tri-valued quantization are both helpful to accuracy improvement.

Table 4. Ablation experiments on PolyU.

Balanced and Normalized
Network Parameters

Balanced Network
Output

Tri-Valued
Quantization EER (%)

- - - 3.0431√
- - 0.0913

-
√ √

1.8691√
-

√
0.0763√ √

- 0.0850√ √ √
0.0673
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4.3. Comparison Experiments

The comparison experimental results are shown in Table 5. The proposed method is
compared with many SOTA methods, including local texture coding methods, such as Palm-
Code [4], ordinal code (OrdinalCode) [38], fusion code (FusionCode) [39], competitive code
(CompCode) [5], robust line orientation code (RLOC) [6], half-orientation code (HOC) [40],
double-orientation code (DOC) [9], discriminative competitive code (DCC) [11], discrimina-
tive and robust competitive code (DRCC) [11] and binary orientation co-occurrence vector
(BOCV) [10]; deep learning-based methods, such as palmprint network (PalmNet) [41]; and
deep hash-based methods, such as deep hash codes (DHC) [29] and deep tri-valued code
(DTC) [3].

Table 5. EER (%) of various methods on various databases.

PolyU IITD Tongji

PalmCode 0.3500 5.4500 0.1100
OrdinalCode 0.2300 5.5000 0.1600
FusionCode 0.2400 6.2000 0.0731
CompCode 0.1200 5.5000 0.1100

RLOC 0.1300 5.0000 0.0253
HOC 0.1600 6.5500 0.0954
DOC 0.1800 6.2000 0.0431
DCC 0.1500 5.4900 0.0506

DRCC 0.1800 5.4200 0.0308
BOCV 0.0856 4.5600 0.0056
DHPN 0.0456 3.7310 0.0694

PalmNet 0.1110 4.2040 0.0332
DHC 0.0513 3.1180 0.0001
DTC 0.0302 2.9270 0.0000
Ours 0.0673 3.7960 0.0075

The lower the EER is, the stronger the discrimination. Table 6 shows the EERs of
different methods on multispectral databases. Figures 3 and 4 show the receiver operating
characteristic (ROC) curves. The proposed method can obtain the optimal results that
are close to the best results, but our method has more advantages, including low storage
cost of template and model, and low computational complexity of template generation
and matching.

Table 6. EER (%) of various methods on multispectral database.

Blue Green Red NIR

PalmCode 0.2800 0.2500 0.2300 0.2000
OrdinalCode 0.1600 0.1500 0.0720 0.1100
FusionCode 0.3100 0.1900 0.1200 0.1700
CompCode 0.0911 0.1100 0.0357 0.0579

RLOC 0.0799 0.0855 0.0443 0.0629
HOC 0.1800 0.1600 0.1000 0.0839
DOC 0.1300 0.1200 0.0584 0.0501
DCC 0.1100 0.0979 0.0450 0.0575

DRCC 0.1100 0.0927 0.0659 0.0563
BOCV 0.0358 0.0593 0.0241 0.0261
DHPN 0.0213 0.0352 0.0369 0.0020

PalmNet 0.0178 0.0087 0.0366 0.0871
DHC 0.0000 0.0000 0.0000 0.0000
DTC 0.0000 0.0000 0.0000 0.0000
Ours 0.0018 0.0003 0.0087 0.0159
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Table 7 compares the storage cost of template. The storage cost of the proposed method
is the lowest, so the proposed method is highly efficient in matching/retrieval phase.

Table 7. Storage cost (bit).

Method Storage Method Storage

PalmCode 2048 HOC 2048
OrdinalCode 3072 DOC 2048
FusionCode 2048 DRCC 2048
CompCode 3072 BOCV 6144

RLOC 6144 Ours 128

For the deep learning-based methods, the proposed method still has high accuracy.
For deep hash-based methods, the accuracy of the proposed method is slightly worse than
those of DHC and DTC. The same phenomenon can be found in Figures 3 and 4. However,
the proposed method is compressed, its computational complexity and model storage are
much smaller, as shown in Table 8. Parameter volume (Params) is used to measure model
storage, and computational complexity is measured by multiply-ACCumulate operation
(MACC) and floating-point operations (FLOPs). The weight and activation (W/A) are also
shown. The model storage of the proposed method is only 6.67 MB, about 1/32 of those of
DTC and DHC. At the same time, the proposed method conducts convolution operation in
bitwise mode instead of float mode, which is far more computationally efficient than DTC
and DHC.

Table 8. Computational complexity and model storage.

Method Bit-Width
(W/A)

Operation
Type

Params
(MB) FLOPs (M) * MACC (M)

DHPN (Feature
Extraction + PCA) 32/32 Float 527.76 30,816.89 13,621.10

DHN 32/32 Float 213.49 176.58 88.29
DTC (Network +
Quantification) 32/32 Float 213.49 176.59 88.29

Ours 1/1 Bitwise 6.67 - 88.29
* Our method does not have floating operations.

On the NIR dataset, the accuracy of the proposed method degrades due to the harsh
acquisition environment, and we will further improve the algorithm on this dataset in
the future.

5. Conclusions and Future Works

In this paper, a B-DHN for tri-valued hash codes is proposed for the double quantifica-
tion of template and network in fast and light-weight palmprint recognition. Balanced and
normalized network parameters are used to reduce the information loss after weighting
and activation binarization. Approximation function can better represent the quantization
function, ensuring the network to run smoothly. The model size of our method is only 1/32
of that of a DHN, which remarkably reduces the network storage cost. At the same time,
bitwise operations instead of float operations remarkably reduce the network computa-
tional complexity. The tri-valued quantization for hash codes improves the accuracy by
reducing the ambiguity interval. In future work, we will try to overcome the sensitivity of
the network to illumination, especially NIR.
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