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Abstract: Automatic recognition and classification of electronic integrated circuits based on optical
character recognition combined with the analysis of the shape of their housings are essential to
machine vision methods supporting the production of electronic parts, especially small-volume ones
in the through-hole technology, characteristic of printed circuit boards. Since such methods utilize
binary images, applying appropriate image preprocessing and thresholding methods significantly
influences the obtained results, particularly in uncontrolled illumination conditions. Therefore, the
examination of various adaptive image binarization algorithms for this purpose is conducted in
this paper, together with the experimental verification of the proposed method based on the pixel
voting approach.
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1. Introduction

In recent years, the landscape of computer vision has undergone a tremendous trans-
formation, enabling machines to decode and analyze visual data with unprecedented
accuracy and efficiency. This technological leap has broad implications across various
sectors, including industrial automation, surveillance, and medical imaging, where ef-
fective image preprocessing methods play a critical role in multiple areas such as face
recognition [1] or object classification. Yet, there are some applications where reliance on
AI-powered tools may not be the most suitable approach.

Considering the continuous development of new electronic elements and integrated
circuits, e.g., memory units [2], one of these challenges is the automatic recognition of
integrated circuit (IC) decals. Contemporary AI models for object recognition, such as the
state-of-the-art optical character recognition (OCR) methods, require substantial amounts
of labeled data for training. Unfortunately, the available datasets for IC decals are relatively
small, posing a significant limitation to the development of accurate AI models. Further-
more, the variation in size, shape, and color of IC decals introduces additional complexity,
potentially undermining the precision of AI models. Given that the information in IC decals
is crucial for the functionality of the recognition system, it must demonstrate an exceedingly
high level of accuracy, posing a bar that AI models may struggle to meet consistently.

To overcome these challenges, a novel handcrafted approach is proposed in this paper
that leverages image preprocessing filters to augment the contrast and clarity of images
before their analysis by OCR engines, such as Tesseract or other available solutions [3].
This method eliminates the need for extensive datasets or costly AI models due to the more
efficient use of a smaller, more manageable dataset to achieve reliable results. Various filters
have been evaluated, and their efficacy in enhancing the accuracy and speed of OCR pro-
grams has been investigated. Additionally, the impact of the image binarization algorithm
on the recognition accuracy under different illumination conditions has been investigated
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considering the case of a uniform illumination and the presence of shadows. The proposed
approach offers a pragmatic and robust solution for reading the IC decals, demonstrating
the potential of handcrafted methods for some applications in an AI-dominated field.

2. Related Work
2.1. The Overview of AI-Based Solutions

A dynamic development of artificial intelligence methods, particularly utilizing deep
learning methods, may be observed in many areas of science and industry. Recently, an in-
teresting combination of transfer learning and federated learning has been proposed [4],
utilizing the voting scheme to fine-tune the global model with the help of pseudo-labeled
samples, similar to a conditional weighting transfer Wasserstein auto-encoder [5] applied
for fault diagnosis of machines. Some AI-based solutions are also utilized in semicon-
ductor manufacturing, e.g., for data-driven precise positioning control of wafer stages in
photolitography [6].

In this paper, we focus on the automatic optical recognition of integrated circuits (IC),
which is a critical task in the electronics industry. The decals visible on the IC packages
carry vital information, such as manufacturer, date of production, and part number, which
are essential for inventory management and quality control [7]. However, the small size
and intricate nature of these decals make it challenging for optical character recognition
programs to accurately detect and interpret them. Nevertheless, state-of-the-art OCR
solutions are an excellent example of solutions where the use of AI methods has led to
a significant improvement in their accuracy for the most typical applications, such as
document recognition systems. They may be generally divided into six major groups:

• Convolutional Neural Networks (CNNs)—have shown excellent performance in OCR
tasks, even with challenging texts, due to their ability to learn spatial hierarchies of
patterns; however, they require substantial labeled data for training and may struggle
with images containing noise or distortions;

• Recurrent Neural Networks (RNNs) and their variants (e.g., LSTM, GRU)—can model
the sequential nature of text data, making them suitable for OCR tasks [8]; how-
ever, they may face difficulties in learning long-term dependencies, which could be
problematic for complex, hard-to-read texts;

• Transfer Learning—fine-tuning pretrained models such as BERT [9] and GPT [10]
has demonstrated promising results in OCR tasks; they leverage vast amounts of
pretraining data, mitigating the need for extensive task-specific data. However, they
require expertise for effective fine-tuning and might underperform on extremely noisy
or low-resolution images [11];

• Adversarial Training—can improve the model’s robustness to noise and other distor-
tions [12]; however, this method is computationally demanding and needs careful
tuning to prevent overfitting;

• Multi-Modal Models—incorporate context or metadata demonstrating improved OCR
performance [13]; however, they require additional data sources and may be complex
to implement;

• Synthetic Data Generation—GANs and other synthetic data generation techniques
can augment limited training data, which is particularly useful for OCR tasks with
difficult-to-read text [14]; however, ensuring the real-world applicability of synthetic
data remains a challenge.

Although these state-of-the-art methods have shown promising results in many OCR
tasks, they are not directly applicable to our task due to a crucial limitation—the unavailabil-
ity of large, labeled datasets. Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), despite their effectiveness, require large amounts of labeled data for
training, that are unavailable for our specific task of reading integrated circuit decals [15,16].
The same limitation applies to transfer learning methods [9,10], as fine-tuning these models
effectively still requires a considerable amount of task-specific data. Adversarial training
and multi-modal models, though they can enhance model robustness and leverage ad-
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ditional context, respectively, also require substantial data and can be computationally
expensive [12,13]. Lastly, while synthetic data generation methods such as GANs provide
a way to augment limited data, ensuring the real-world applicability of synthetic data
and their diversity is a non-trivial challenge [14]. Therefore, our task requires a different
approach that can work effectively with smaller datasets.

2.2. Performance Evaluation of Current Industry Standard OCR Engines

To determine the effectiveness of various OCR engines in recognizing characters on IC
packages, a series of tests were conducted using open-source OCR engines, namely Tesser-
act, GOCR, CuneiForm, Kraken, and A9T9. The performance of these engines was assessed
using the Levenshtein distance, a string metric that quantifies the difference between two
sequences [17]. Specifically, in the context of OCR, it measures the minimum number of
single-character edits (insertions, deletions, or substitutions) required to transform the OCR
output into the correct string.

The results of these tests conducted for images used in further experiments revealed
that the Tesseract OCR engine outperformed the other engines with the average Levenshtein
distance equal to 27.63, assuming no image preprocessing. Tesseract’s superior performance
can be attributed to its robust design and comprehensive language support, making it
a versatile OCR tool suitable for various tasks. As shown in the paper [18], some of its minor
issues related to the segmentation procedure of some types of images may be successfully
solved using an appropriate image preprocessing.

On the other hand, GOCR and Kraken led to slightly higher average Levenshtein
distances. The GOCR’s performance was likely hampered by its simplicity as it was not
designed to handle complex layouts or intricate designs. Similarly, the Kraken package,
although powerful, was primarily tailored for processing high-quality scans of printed text,
making it less suitable for recognizing small, complicated decals on IC packages.

CuneiForm and A9T9 engines provided the highest average Levenshtein distances.
CuneiForm was designed for high-quality book scanning and therefore struggled with the
unique challenges posed by IC package images. A9T9, while known for its user-friendly
interface and customizability, was not optimized for complex recognition tasks such as ours.

Overall, it was observed that all the OCR engines faced difficulties in accurately
recognizing characters on IC packages. The complex designs and small decals on these
packages pose unique challenges that these engines struggle to overcome in their current
state of development. This highlights the importance of preprocessing steps in enhancing
image quality and improving OCR performance. Considering the highest performance
of the Tesseract OCR, it was selected as the OCR engine used in further testing. The
comparison of the obtained results is presented in Table 1.

Table 1. The results of the performance tests conducted for the OCR engines.

OCR Engine Average Levenshtein Distance

Tesseract 27.63
GOCR 29.33

CuneiForm 38.24
Kraken 31.12
A9T9 36.40

3. Image Preprocessing and Binarization Methods
3.1. Basic Image Filtering

Image filtering is essential to enable optical character recognition software to work
reliably for decals on integrated circuit (IC) packages. The decals on IC packages are often
small, intricate, and vary in color and contrast, making them challenging for OCR software
to accurately detect and interpret [18]. Image filtering techniques can enhance the contrast
and clarity of the images by removing noise, sharpening edges, and adjusting brightness
and contrast. They involve various techniques, including image scaling, straightening,
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histogram equalization, binarization, and morphological operations, which enhance the
readability of these decals [19].

One of the most relevant operations for OCR is image scaling, either upscaling or
downscaling. The upscaling usually utilizes bicubic interpolation to improve the clarity of
low-resolution images. Downscaling, on the other hand, reduces the computational cost
while preserving the most essential details [20,21].

Since the best results of the OCR algorithms are typically achieved for straightened
images, the straightening operation based on aligning the image along the horizontal
axis improves the OCR accuracy by preventing character skewing or distortion. Typi-
cal techniques employed in this preprocessing step include edge detection and Hough
transform [22].

Another preprocessing operation that may influence the OCR results is histogram
equalization which redistributes pixel intensity levels, enhancing contrast and visibility. The
most common approaches are the applications of cumulative distribution function (CDF)
and adaptive histogram equalization (AHE). Instead of the basic AHE, its modification,
known as contrast-limited adaptive histogram equalization (CLAHE) [23], is often used to
prevent noise amplification.

These preprocessing steps can improve the accuracy of OCR software by providing
clearer and more easily identifiable character shapes for recognition. Without image
filtering, OCR software may struggle to accurately recognize characters from the images,
leading to errors in interpreting critical information such as manufacturer, part number, and
date of production. Therefore, image filtering is an essential step in the automatic optical
recognition of integrated circuits, ensuring the reliability and accuracy of OCR software.

3.2. Image Binarization Methods

Image thresholding, or binarization, is a critical step in many computer vision and
machine vision applications, including optical character recognition. The goal of bina-
rization is to separate the foreground (decals on integrated circuits, in our case) from the
background by converting grayscale images into binary images with only two color values:
black and white [24]. The most popular methods include:

• Otsu binarization—determines the threshold value by maximizing the between-class
variance of the foreground and background pixels [25] as

TOtsu = arg max
t

(
ω0(t) ·ω1(t) · (µ0(t)− µ1(t))

2
)

, (1)

where ω0(t) and ω1(t) are the probability functions for two clusters representing
the background and foreground pixels, whereas µ0(t) and µ1(t) denote the mean
intensities in these both classes;

• Bernsen thresholding—calculates the threshold value for each pixel based on the local
contrast of the neighborhood as the midgrey value [26]:

TBernsen = (Imax + Imin)/2 (2)

for pixels where the contrast of their neighborhood is above 15 (default value), where
Imax and Imin values are determined in the local window; for low-contrast regions, the
value is set to 0 or 1 depending on the midgrey value;

• Van Herk method—utilizes morphological dilation and erosion operations for an adap-
tive calculation of the threshold value for each pixel:

TvH = max{min(I(x−1, y), I(x, y), I(x+1, y)), min(I(x, y−1), I(x, y), I(x, y+1))} ; (3)

• Bradley thresholding—sets each pixel with brightness T percent lower than the av-
erage brightness of the surrounding pixels in the window to 0, and calculates the
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threshold value for the others as the mean of the neighborhood, weighted by a constant
factor [27]:

TBradley = m(x, y) · (1− k) , (4)

where m is the local average calculated in constant time regardless of the neighborhood
size using the predetermined integral image;

• Niblack thresholding—calculates the local threshold value for each pixel based on the
mean and standard deviation of the local neighborhood [28]

TNiblack = m(x, y) + k · s(x, y) , (5)

where m is the local average, s denotes the local standard deviation, and the constant
parameter k = −0.2;

• Sauvola method—incorporates both the mean and standard deviation of the local
neighborhood to calculate the threshold value with additional use of the dynamic
range of the standard deviation:

TSauvola = m ·
(

1− k ·
(

1− s
R

))
, (6)

where m denotes the mean local intensity, s stands for the local standard deviation, its
dynamic range is R = 128, and the constant parameter k = 0.5;

• Wolf method—calculates the threshold value for each pixel based on the mean and
standard deviation of the local neighborhood, with an additional normalization of
contrast and mean intensity:

TWol f = (1− k) ·m(x, y) + k ·M + k · s(x, y)
R
· (m(x, y)−M) , (7)

where M is the minimum gray level in the local window, R = max(s(x, y)), and the
constant parameter k = 0.5;

• Feng thresholding—a modification of Niblack’s method, incorporating a criterion of
maximizing local contrast [29]:

TFeng = (1− α1) ·m(x, y) + α2 ·
(

s(x, y)
Rs

)
· (m(x, y)−M) + α3 ·M , (8)

where the dynamic range of standard deviation Rs is calculated in an additional larger

window, α2 = k1 ·
(

s(x,y)
Rs

)2
, α3 = k2 ·

(
s(x,y)

Rs

)2
, assuming the positive constants: α1 in

the range of [0.1 0.2], k1 in the range of [0.15 0.25], and k2 in the range of [0.01 0.05] [30];
• NICK thresholding—with the acronym being the first letter of its authors’ names,

determines the threshold value for each pixel using the formula:

TNICK = m + k ·
√

B + m2 , (9)

where the parameter k = −0.1, and B denotes the local variance in the current window
with its size proposed in the paper [31] equal to 19× 19 pixels, although it may be
changed depending on the specific images.

Some additional morphological operations such as opening, closing, and boundary
cleaning modify the shapes of objects visible in the image and its structure, enhancing the
image quality before the OCR procedure [32].

3.3. Review of Recent Binarization Methods

Recently, several advanced binarization techniques have been proposed to improve
the quality of OCR results, including four such proposals used in experiments.
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The first method aims to improve image binarization using image preprocessing with
local entropy filtering [33]. Entropy filtering is a technique where the entropy, or the
degree of randomness or disorder, is computed within a local neighborhood of an im-
age. This method improves the contrast between text and background by enhancing the
high-frequency components in the image. The high-frequency components are usually
associated with the edges of characters, and their enhancement improves the performance
of subsequent binarization.

The second method proposes an adaptive image binarization based on a multi-layered
stack of regions [34]. This technique divides the image into multiple regions and applies
different binarization thresholds for each region. Due to the shifts of the regions for each
layer, it can adaptively handle variations in text and background characteristics across
different regions of the image, resulting in improved binarization, particularly for images
with uneven lighting or varying text densities.

The third method is a fast binarization technique for unevenly illuminated document
images based on background estimation [35]. This technique estimates the background
illumination profile of the image by downsampling it and then upsampling the image back
and subtracts it from the original image. This effectively removes the effect of uneven
illumination by high-pass filtering, making subsequent binarization more effective. This
very fast method is particularly useful for document images where the lighting conditions
are not uniform.

Lastly, a deep-learning-based method for binarization proposed by Sami Liedes has
been made available on GitHub at https://github.com/sliedes/binarize (accessed on 19
April 2023). This method utilizes a convolutional neural network (CNN) to learn the
mapping from the original image to the binarized image. Since the method is trained
on a large number of examples, it can handle a wide range of situations and produce
high-quality binarizations. However, it requires a substantial amount of computational
resources and training data.

Each of these thresholding methods has its unique advantages and weaknesses, and
the choice of method depends on the specific characteristics of the image being analyzed.
It is essential to carefully evaluate and compare different methods to determine the most
effective approach (or their combination) for automatic optical recognition of integrated
circuits.

4. Description of the Evaluation Dataset

During this study, we faced a notable lack of comprehensive image databases illustrat-
ing integrated circuit (IC) packages with visible decals. Therefore, this research required
the creation of a unique dataset, which was utilized to verify the methodology proposed in
the paper.

Our dataset consists of 273 images captured under almost uniform lighting conditions
to ensure their comparability and consistency of photographs. Unlike many studies that
use professionally captured images in laboratory or industrial conditions, the majority of
the captured images were taken using typical devices such as mobile phones and compact
cameras on a bright background, predominantly paper. This approach better reflects
the practical use cases and the challenges that come with them. To avoid bias towards
the specific devices used for capturing our images, we supplemented our dataset with
approximately 30% royalty-free images from the Internet.

Despite the seemingly modest size of the dataset, the computational burden involved
in our study was enormous. Each image from the dataset subjected to filter and parameter
combinations generated well over a thousand processed variants. This led to a substantial
volume of output images for subsequent analysis. Thus, even with 273 photos, hundreds
of thousands of processed versions were obtained to evaluate using the OCR engine. This
significant computational task emphasizes the complexity of finding the optimal filter set
for image preprocessing.

https://github.com/sliedes/binarize
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Despite the availability of various publicly accessible image datasets suitable for tasks
such as image quality assessment, object recognition, document image binarization, and
optical character recognition, their volume is often too small, particularly considering
images containing non-document text. A good example may be the series of well-known
DIBCO datasets [36] used for document image binarization purposes. Efficient training
of deep convolutional neural networks would require a significantly higher number of
training samples, available primarily for high-resolution document images. Hence, the
proposed practical approach was the use of a pretrained OCR engine, Tesseract as a tool,
supplemented by suitable image preprocessing using conventional methods and described
in Section 3, avoiding the need for neural networks.

While datasets for deep learning keep expanding in size, we achieved our goal with
a relatively small set of images for development—although still sizeable when compared
with other articles related to image binarization topic. Even recent image binarization
competitions, such as the DIBCO series mentioned above or time-quality document image
binarization competitions [37] utilize datasets containing only several images, even when
CNN-based algorithms are proposed. Some recent datasets available on the DIB webpage
https://dib.cin.ufpe.br (accessed on 22 May 2023) contain 556, 180, 188, 80, and 176 pho-
tographed documents, respectively, and only 35 and 20 real-world documents (datasets
Nabuco and LiveMemory). Such datasets are still useful as in some cases the development
of larger datasets may be conducted only artificially.

Another example is image quality assessment where relatively small datasets that do
not contain millions of images are still used due to the time-consuming process of acquisi-
tion of subjective quality scores. Such datasets, such as TID2013, containing 3000 images
generated from only 25 reference images [38]; KonIQ-10k, containing over 10k distorted
images but generated artificially from 81 reference images [39]; or even the recent PIPAL
dataset, containing 29k images generated from 250 relatively small reference image patches
of 288× 288 pixels [40], are still used in recent papers [41–43].

The fragment of the database of images utilized to determine the optimal filter set
contained two distinct sets of photographs. The first subset referred to as “illuminated”,
consists of 20 images of IC packages captured in a well-illuminated environment with
strong, uniform lighting. Such photographs were specifically optimized for OCR purposes
and are representative of laboratory or industrial production settings. The second subset of
29 images, referred to as “shady”, was taken without control over lighting or backgrounds
and closely resembles photographs captured by personal mobile devices. These images
are significantly more challenging to process and require extensive research to achieve
satisfactory results.

The choice of such a subset, containing diverse representative images, was caused by
the significant computational burden of necessary operations and the number of potential
filter and parameter combinations. The subset of 20 images, processed using all possible
filter combinations, yielded over 30,000 output images which were subsequently analyzed
using the OCR engine. The illustration of sample images used in experiments is presented
in Figure 1 whereas sample results achieved after each step of the considered method are
shown in Figure 2.

https://dib.cin.ufpe.br
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Figure 1. A selection of random images from the experimental database.

Automatic image straightening 

Downsizing using bicubic interpolation 

Upscaled image in RGB mode (left) and histogram-adjusted grayscale image (right)  

Thresholded image (using Bradley method) - before and after cleaning 

OCR bounding boxes and recognized characters 

Figure 2. The illustration of consecutive steps of the considered method.
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5. Implementation and Results
5.1. The Choice of Filters and Binarization Methods

A systematic approach was implemented in the MATLAB environment to find the best
combination of preprocessing algorithms and filters with parameters for the recognition
of the IC decals. The created script tested various filter combinations and parameters
on each image in our database. This allowed us to check various scenarios. Although
computationally demanding, this process was crucial for evaluating different combinations.
The images processed by this script were then fed into the OCR program to extract necessary
data. Then, its outputs were compared with ground truth data to validate the OCR
accuracy. The gathered and evaluated results of each filter/parameter combination were
then analyzed statistically.

As the result of the experiments, the optimal combination yielding the highest accuracy
was found. It was defined by the smallest Levenshtein distance between recognized text
and ground truth. This analysis also identified the most effective filters and parameters
for enhancing image quality for OCR recognition. These results were used to fine-tune the
filter parameters, improving the accuracy and efficiency of character recognition.

Figure 3 illustrates the flowchart of the proposed approach. This systematic method-
ology enables the evaluation of various filter combinations and parameters for IC decal
recognition. It can be applied to other image analysis applications requiring optimal filter
and parameter combinations for accurate, reliable results.

PHWKRG 1HLJKERUKRRG

zĞƐ

EŽ

(QWURS\�ILOWHULQJ
5HVDPSOLQJ
Stack of regions
Liedes (deep CNN)

11×11
21×21
    ...
81×81

Pixel voting

Figure 3. The flowchart of the proposed approach.
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The first phase of our experiment concentrated on optimizing filter parameters, partic-
ularly the window size for individual algorithms, as well as the ClipLimit and the number
of tiles for the CLAHE method. The system was also tested without the use of the CLAHE
algorithm. Surprisingly, incorporating CLAHE either had no effect or negatively impacted
the results. Hence, we excluded it from further tests. The illustration of consecutive steps
of the considered method is presented in Figure 2.

During the conducted experiments, the neighborhood size was systematically varied
for adaptive binarization algorithms, assuming the testing of 11× 11, 21× 21, 31× 31,
41× 41, 51× 51, 61× 61, 71× 71, and 81× 81 pixel window sizes. For algorithms that did
not require specifying window sizes, default settings were used. The obtained results are
presented in Table 2.

The obtained results helped in identifying the most effective methods and their respec-
tive parameters for the subsequent phases of the experiments. Hence, the best versions of
each algorithm (marked by bold fonts in Table 2) were used in further experiments. The
illustrations of the influence of the binarization method and its parameters on the obtained
binary images are presented for sample images in Figures 4 and 5.

Table 2. The average Levehnshtein distance obtained for 273 images used in experiments for various
binarization methods and various size of the local neighborhood (where applicable); bold fonts
indicate the best result for each method.

Neighborhood Size (for Adaptive Methods)

Method 11 × 11 21 × 21 31 × 31 41 × 41 51 × 51 61 × 61 71 × 71 81 × 81

Global 25.63
Otsu [25] 29.43
Bernsen [26] 23.77
Entropy filtering [33] 20.92
Stack of regions [34] 37.01
Resampling [35] 24.95
Liedes 25.27
Bradley [27] 22.70 22.64 22.44 22.13 21.94 21.98 21.50 21.67
Feng [29] 26.73 23.85 24.50 25.00 24.86 22.27 23.55 25.16
Niblack [28] 24.30 24.19 23.65 23.60 23.42 23.80 25.43 25.60
Sauvola [44] 24.15 24.15 23.59 23.74 23.33 23.08 23.22 24.69
Wolf [45] 24.36 24.28 23.59 24.18 24.36 24.01 24.23 24.20
NICK [31] 24.32 24.59 24.21 24.29 24.18 23.82 23.36 24.19
Van Herk [46] 24.31 24.32 23.93 24.37 24.11 24.26 24.14 24.21
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Figure 4. Sample binarization results obtained using Bradley thresholding.

NICK   Sauvola van Herk 

Niblack Feng Bradley 

Otsu Wolf Global thresholding 

Bradley thresholding 

31×31 pixels 

71×71 pixels 51×51 pixels 

11×11 pixels 

Figure 5. The illustration of binarization results achieved for various methods (left) and different
size of the neighborhood in adaptive Bradley method (right).

5.2. Application of the Pixel Voting

In the next phase of the experiment, the 11 best-performing algorithms from the
previous phase were selected and ranked from best to worst based on their performance. To
make the decision-making process more robust and improve the accuracy of binarization
for IC decals, a pixel voting mechanism on each pixel with each binarization method
was implemented that combines the strengths of different binarization algorithms. The
proposed idea of the pixel voting is equivalent to the selection of the median from the
vector containing the binarization results obtained using various methods. The voting
procedure is applied for each image pixel independently. For example, using seven various
binarization methods for each pixel, the vector of seven binary values (zeros or ones) is
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obtained, and then the major class (equivalent to the median of these seven values) is
selected as the result for this pixel.

However, the result obtained for the 11 algorithm voting was unsatisfactory (see
Table 3). Therefore, we eliminated the two worst-performing algorithms from the voting
process, improving the score to 22.03. Despite this improvement, the result was still not the
best possible. Thus, the reduction of the number of voting algorithms was continued until
only three algorithms remained. The obtained results are presented in Table 3, whereas
the sample images obtained using the proposed pixel voting approach are presented in
Figure 6.

Table 3. The results obtained using the proposed pixel voting for various number of binarization
methods; the best result is shown in bold font.

Number of Algorithms Average Levenshtein Distance

11 22.74
9 22.03
7 21.13
5 19.32
3 22.07

The best result was obtained for voting with five algorithms, leading to the average
Levenshtein distance equal to 19.32. Interestingly, reducing to three algorithms resulted
in a worse score of 22.07, indicating that a minimum set of these five algorithms yielded
the optimal results for this phase of the experiments. The obtained set of the individual
binarization methods contained:

• Entropy filtering;
• Bradley with window size of 71× 71 pixels;
• Feng with window size 61× 61 pixels;
• Niblack with window size of 61× 61 pixels;
• Sauvola with window size of 61× 61 pixels.

Figure 6. Sample binarization results obtained using the proposed pixel voting approach.



Electronics 2023, 12, 2449 13 of 16

5.3. Analysis of Results and Ablation Study

In the next phase of the experiments, the influence of each step of the processing on
the final performance was tested. The considered steps included:

• Image straightening;
• Image scaling;
• Binarization;
• Morphological border cleaning;
• Morphological noise removal.

The obtained results were compared to the best result achieved for the pixel voting of
five binarization methods with the fill processing pipeline, which included all steps in the
process. The results are presented in Table 4.

Table 4. The results of the ablation study.

Removed Processing Step Average Levenshtein
Distance Change

none—full processing pipeline 19.32 —
image straightening 20.14 4.2%

image scaling 24.79 28.3%
binarization 26.98 39.6%

morphological border
cleaning 19.74 2.2%

morphological noise removal 19.56 1.2%

Reviewing the obtained data, it is evident that all steps contributed to the overall
performance, even if some of them had a higher impact than others. The removal of the
binarization step or image scaling resulted in the most significant performance drops of
nearly 40% and over 28%, respectively, confirming their crucial roles.

The comprehensive analysis of the proposed processing pipeline shows a significant
improvement in the performance of the optical character recognition system compared to
using the Tesseract OCR engine without preprocessing. The baseline score, achieved using
all steps in our processing method, was equal to 19.32. This result significantly outperforms
the score achieved by the use of Tesseract OCR without preprocessing, equal to 27.63,
demonstrating a considerable improvement in the OCR accuracy, measured using the
average Levenshtein distance. Even seemingly minor steps, such as image straightening,
morphological border cleaning, and morphological noise removal, contributed to the overall
performance. Removing any of these steps led to a decrease in performance, indicating that
they play essential roles in achieving the best result. Nevertheless, the major impact on the
obtained results was related to the application of the appropriate binarization method as
demonstrated in the paper.

6. Conclusions

Even for evenly illuminated images, the task of reading IC decals remains challenging
for our current methods. This is expected since the decals are difficult to read even for the
human eye. Therefore, future research should focus on developing more advanced OCR
algorithms and image processing techniques to accurately recognize IC decals.

One of potential directions for further research is to combine the strengths of different
binarization methods into a single approach. The best results may be achieved by using sta-
tistical or voting-based approaches [47] to choose the most appropriate binarization method
for each image based on the specific characteristics of the image. The combination of five
adaptive binarization algorithms based on pixel voting proposed in the paper leads to very
promising results.

Another interesting idea is to explore the use of deep neural networks for end-to-end
recognition of shapes and IC decals. While this approach would require a large and diverse
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training dataset, which currently does not exist, it could potentially lead to significant
improvements in the accuracy and efficiency of the OCR process.

Despite the advances in AI and machine learning, it is essential to remember that these
models often rely on high-quality, preprocessed inputs that are a fundamental condition of
their proper working. Thus, supplementing these models with traditional preprocessing
techniques remains an important direction of research.

We also intend to integrate this research with our previous work on developing
a system for recognizing IC package types [7]. This would allow us to create a more
comprehensive system for IC package recognition. Finally, we aim to improve the image
filtration methods to make it possible to work with unevenly illuminated images or partially
obscured ICs. This could involve exploring new morphological operations or developing
more advanced image processing techniques that are robust to different lighting conditions
and variations in image quality.
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