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Abstract: It is very important to accurately identify the critical nodes of the power grid for its safe
and stable operation. In this paper, a method for identifying the critical nodes of the power grid based
on the improved entropy weight method (IEWM) is proposed, and the IEWM corrects issues with
the information overlap between evaluation indices and inconsistency between the entropy weight
(EW) and entropy value (EV). First, considering the power grid topology and operating conditions,
structural factor evaluation indices and state factor evaluation indices are established. On this basis,
the IEWM is used to assign weights to nodes with different voltage levels, which strengthens the
consideration of node voltage levels in the identification method of critical nodes and makes the
results more accurate and effective. Simulation experiments of IEEE 30-bus and IEEE 118-bus systems
verify the accuracy of the critical node identification method proposed in this paper.

Keywords: critical node identification; improved entropy weight method; level of voltage; evaluation
indices; structural factor; state factor

1. Introduction

With the expansion of the interregional interconnection degree of power grid and
new energy connections, the structure of the power network becomes more complex. The
uncertainty of power grid operation continues to increase, and frequent power outages
cause serious economic losses and negative social impacts [1,2]. When the power grid fails,
the critical nodes have a key role in the power grid, and may even cause the system to
collapse gradually [3–5]. Therefore, it is important to precisely identify the critical nodes in
the power grid to prevent power outages [6,7].

The evaluation results of critical nodes vary depending on the evaluation indices
selected for the critical node evaluation of the power grid. Therefore, how to select ap-
propriate and accurate evaluation indices is a major issue in evaluating critical nodes [8].
At present, the evaluation indices of power network critical nodes mainly come from the
construction of power system topology and the analysis of power network characteristics.
Therefore, many scholars have proposed a variety of methods for identifying critical nodes.
Ref. [9] uses the link-based partitioning method to find the overlapping areas in the power
grid and identifies the key nodes of the power grid using the betweenness centrality based
on neighbor nodes (BCBNN) algorithm. In [3], a critical node evaluation method based
on fixed control theory is proposed, which uses the minimum nonzero eigenvalue of the
modified Laplace matrix. Ref. [10] develops an algorithmic procedure and mathematical
method to evaluate the key and redundant nodes in the scaling network using the mini-
mum dominant set (MDS) method. Methods for evaluating the importance of nodes in
the power system in [3,9,10] are essentially based on the structural factor of the topology.
Ref. [11] proposes evaluation indices such as electric dielectric number, transmission effi-
ciency, spanning tree change rate, and so on. Based on the technique for order preference
by similarity to an ideal solution (TOPSIS) method and the criteria importance through
intercriteria correlation (CRITIC) method, a critical node identification method of power
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grid is established in [11]. In [12], the network topology is divided into three dimensions
for analysis. Then, a multidimensional and multilayer node evaluation model based on the
entropy weight method (EWM) is proposed in [12], considering the connection relationship
between power grid and the communication network. To prevent cascading failures in
power systems, Ref. [13] proposes a prediction method for key nodes and transmission
lines in power grid, which includes two links—the historical data mining link and the
prediction link. Ref. [14] uses the multi-objective optimization model to solve the problem
of key node detection in the network and designs an adaptive local search strategy. From
the perspective of network dynamics, Ref. [8] proposes a method to identify the key nodes
of complex power systems, which is used to find the nodes that play an important role in
the stability control and accurate monitoring of power grid. The construction of power
system topology and the analysis of power network characteristics are crucial factors in
assessing the importance of nodes in the power system.

In addition, the importance of power system nodes is closely related to the voltage
level of grid nodes and the interaction between indices [15–17]. In [18], a critical node
seeking method is proposed, which uses multiple voltage stability metrics. In [19], when
the reactive power of all load nodes varies together, the change in the magnitude of the load
node voltage is used to identify a set of weak nodes. The critical node identification methods
in [18,19] fully prove the importance of node voltage level in identifying critical nodes.
In [20], the structural factors and state factors of the power network are integrated and
analyzed, and the static energy function model and the node structure vulnerability factor
are built, without considering the influence of the node voltage level on the evaluation
factors, and the interaction between factors. Although [21] considers the voltage level of
the system and introduces the Tel entropy of the voltage growth ratio and the weighted
power flow impact ratio to identify the critical nodes in the power system, it lacks the
consideration of the structure of the power system.

To analyze the impact of node evaluation indices under different voltage levels, this
paper proposes the improved entropy weight method (IEWM). The traditional EWM is a
common weight allocation method, that is, the larger the difference between indices, the
more information it contains and the smaller the entropy. Therefore, in comparison to the
scaling method [22], which emphasizes overall differences, the EWM emphasizes local
differences. This means that the index weight increases with the level difference between
evaluation objects, leading to a greater impact on the evaluation results. However, there are
two problems in the EWM. Firstly, when all entropy values used in the EWM are close to 1,
even a small difference in the EV can lead to large changes in the EW. This can result in
some indices being assigned weights that are not consistent with their importance, which
can affect the accuracy of the final critical node identification result [23]. Secondly, the
EWM does not consider the interaction between indices, which can reduce the accuracy of
the analysis and lead to unreasonable results.

Therefore, this paper proposes a critical node identification method based on the
IEWM, and the IEWM corrects the problems of information overlap between the evaluation
indices and inconsistency between the EW and the EV. Firstly, considering the power grid
topology and operating conditions, the evaluation indices of the power grid structure
and state factors are established. Then, this paper proposes the IEWM, which is used to
analyze the difference in the influence of the structure factor evaluation indices and state
factor evaluation indices on the power system under different node voltage levels, and
the weights are assigned to different evaluation indices, enhancing the consideration of
node voltage level in the critical node identification method and improving the accuracy of
identifying critical nodes. Finally, through the simulation experiments of the IEEE 30-bus
system and IEEE 118-bus system, the accuracy of the recognition method in this paper
is verified.

Generally, the main work of this paper can be summarized as follows.

(1) This paper proposes an accurate and effective identification method for critical nodes
using the IEWM;
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(2) To account for the construction of power system topology and the analysis of power
network characteristics, this paper obtains several evaluation indices, including the
electrical betweenness (ki), the electrical coupling (Ddi), the node power mobility
(Pcol.i), the power supply weakness of the node (CAPi), and the node reactive power
compensation degree (Qcol.i), and uses the independence weighting method to im-
prove the EWM for reducing information overlap between these indices;

(3) In the identification method, this paper proposes a method based on the IEWM
to analyze the influence of node voltage on the evaluation index, enhancing the
consideration of node voltage level of power grid in the identification method.

The framework of this article is organized as follows. Section 2 establishes the critical
node evaluation indices. In Section 3, the IEWM is proposed and applied to the identi-
fication of power system critical nodes. Section 4 presents the simulation results of the
IEEE 30-bus system and IEEE 118-bus system. Finally, Section 5 provides the conclusion of
this paper.

2. Critical Node Evaluation Indices
2.1. Structural Factor Evaluation Indices

In the power grid, suppose that the topology model has n network nodes. The
structural data set A is composed of the structural data for all nodes in the system.

A = [a1, a2, · · · , an] (1)

For each node in the power system, there are numerous structural factor evaluation
indices, such as ki, Ddi, and so on. These structural factor evaluation indices constitute the
structural set ai of node i.

ai = [ki, Ddi]
> (2)

where: 

ki = ∑
r∈G,s∈L

√
SrSskrs(i)

krs(i) =


1
2 ∑

j∈η
|Irs(i, j)| i 6= r, s

1 i = r, s
dij = Uij/Ii
D = 1

n(n−1) ∑
i 6=j

1
dij

Ddi =
1
D

n
∑

j=1

1
dij

(3)

where G is the set of generator nodes in the system, L is the set of load nodes in the system,
Sr is the actual output power of generator node r, Ss is the actual load power absorbed
by node s, krs(i) is the electrical factor of node i, η is the set of associated nodes of node i,
Irs(i, j) is the current generated on branch ij after injecting a unit current source between
node r and node s, and dij is the electrical distance between node i and node j [24], which is
numerically equal to the voltage Uij between node i and node j after injecting a unit current
source Ii from node i.

2.2. State Factor Evaluation Indices

For each node in the power system, there are many electric quantities, such as P, Q,
and U, which reflect the state change in the node. The state data set B is composed of these
state quantities.

B = [b1, b2, · · · , bn] (4)

The status factor evaluation indices include:

(1) Node power mobility
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Considering the difference in the generator output scenarios, this paper proposes Pcol.i
as follows.

Pcol.i =
1
Sd

∑
j∈η

ηcPc.ij (5)

where Sd is the base value of the power flow calculation capacity, and Pc.ij is the power
injected into i by node j in scenario c, ηc is the status factor of the generator operation,
and the rated operation of generator is 1. η is the set of associated nodes of node i. This
index can reflect the ability of the node to transmit power. The larger Pcol.i, the greater the
influence of the node in the transmission of the power system.

(2) Node reactive power compensation degree

Qcol.i =
1
Sd

∑
j∈η

(Qcom.i + Qc.ij) (6)

where Qcol.i is the node reactive power compensation degree, Qcom.i is the compensated
power of node i in scenario c, and Qc.ij is the reactive power injected into i by node j in
scenario c. The higher the absolute value of this index, the more important the node is in
supporting the voltage stability of the system.

(3) Power supply weakness of the node

Considering the limited power supply capacity of the line, this paper constructs CAPi.

CAPi = ∑
k∈Ω

fkhk (7)

where Ω is the line set connected to node i, and fk is the variable representing the state
of the line, which is 0 or 1. When the line is connected, the value of fk is 1. hk is the line
capacity of line k. This index represents the energy transmission capacity of the node, and
the greater the value, the greater the impact of the node on the power supply capacity of
the power grid.

Overall, the state set bi of node i is constituted by the above state factor
evaluation indices.

bi = [Pcol.i, Qcol.i, CAPi]
> (8)

3. Critical Node Identification Method
3.1. The Improved Entropy Weight Method (IEWM)

In power networks, there is often information overlap between evaluation indices.
The EWM does not eliminate the error caused by information overlap between evaluation
indices when calculating EW. At the same time, the EWM has the problem of inconsis-
tent information between EW and EV when EV approaches 1. Therefore, the EWM is
an improvement.

Firstly, this paper introduces the independence weighting method to preprocess the
data of EWM to reduce the information overlap between evaluation indices.

The data matrix C of the EWM is established by the structure data set A and the state
data set B.

C =


C11 C12 · · · C1m
C21 C22 · · · C2m

...
...

...
...

Cn11 Cn12 · · · Cn1m

 (9)

where Cij is the normalized data of index j of node i. Matrix C is a data matrix containing
n1 nodes and m evaluation indices.
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Further, the complex correlation coefficient between the evaluation indices is calcu-
lated [25]:

Rj =

m
∑

j=1
(Cj − C)(C̃− C)

m
∑

j=1
(Cj − C)2 m

∑
j=1

(C̃− C)
2

(10)

where Rj is the complex correlation coefficient of index j,
∼
C represents the remaining matrix

in the matrix after removing the column j, and C is the average value of the matrix C. If
Rj is larger, the linear relationship between index j and other indices is stronger and the
overlapping information of index j is greater [26].

Further, the correction factor of index j is obtained as follows.

λj =
1/Rj

m
∑

i=1
1/Ri

(11)

To reduce the information overlap between evaluation indices, this paper introduces
the correction factor λj to the data matrix. The data matrix E of the IEWM is obtained:

E =


e11 e12 · · · e1m
e21 e22 · · · e2m
...

...
...

...
en11 en12 · · · en1m

 (12)

where
eij = Cijλj (13)

Furthermore, the EV of the evaluation index j is calculated as follows.

Hj = −(ln n1)−1
n1

∑
i=1

pijqij, j = 1, 2, · · · , m (14)

where 
pij =

eij
n1
∑

i=1
eij

qij = ln(eij/
n1
∑

i=1
eij)

(15)

With respect to the inconsistency between the EW and EV when the EV of EWM
approaches 1 [27], this paper makes the following improvements.

Lj =

{
(1− H35.35

)L0j + H35.35L3j Hj < 1
0 Hj = 1

(16)

where Lj is the weight of index j, H is the average of all entropy values not equal to

1, and H35.35 is the weight correction, which represents H raised to the power of 35.35.
H35.35 is used to reduce the inconsistency between the EW and EV when the EV of EWM
approaches 1. 

L0j =
1−Hj

m
∑

j=1
(1−Hj)

L3j =
1+H−Hj

m
∑

j=1,Hj 6=1
(1+H−Hj)

(17)
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3.2. The Voltage Weighting Factor ρ

The stability of the power system running is mainly affected by the state factor of the
power system running. However, when the voltage level of the power system is high, the
influence of the state factor of the power grid is reduced, and the structure factor of the
power system is increased [16]. Therefore, the influence analysis of node structure factor
and state factor evaluation indices under different voltage levels on the power system
should be strengthened when evaluating critical nodes of power system.

Based on the above analysis, the structure factor and state factor evaluation indices
should be assigned weights according to the node voltage level. Firstly, under different
operating conditions, including load rate change, generator running state mutation, line
fault, and so on, nodes are classified according to node voltage level based on the power
flow results, and the IEWM is further used to analyze the data. If the data of n2 nodes are
included under a certain voltage level, the matrix Ĉ of this voltage level obtained from the
structural data set A and the state data set B of n2 nodes is as follows.

Ĉ =


Ĉ11 Ĉ12 · · · Ĉ15
Ĉ21 Ĉ22 · · · Ĉ25

...
...

...
...

Ĉn21 Ĉn22 · · · Ĉn25

 (18)

where matrix Ĉ is a data matrix containing five evaluation indices, namely, ki, Ddi, Pcol.i,
Qcol.i, and CAPi. The data matrix of the IEWM is obtained according to the processing
method of Equations (9)–(13), and the weight Lj of index j of the IEWM under this voltage
level is further obtained according to Equations (14)–(17).

Further, under this voltage level, the voltage weighting factor ρ can be obtained
according to the classification of node evaluation indices in this paper:

ρ = ∑
j∈0

Lj (19)

where 0 is the set of state evaluation index Pcol.i, Qcol.i, and CAPi.
Further, the calculation of the node voltage weighting factor ρ under different voltage

levels is similar to the above calculation process. Taking the IEEE 118-bus system as an
example, the voltage weighting factor ρ under different voltage levels is shown in Table 1,
where Ui is the unit value of voltage scale.

Table 1. Weighting factor of different node voltage levels.

Ui ρ Ui ρ

(−∞, 0.95] 0.95 (0.975, 1] 0.85
(0.95, 0.975] 0.89 (1, +∞) 0.80

For the power network, the voltage weighting factor ρ can take into account the role
of the state factor and the structure factor evaluation index of the power system, rather
than simply linearly weighting the evaluation index of the system to fit the real power
system characteristics.

3.3. The Combined Weight γi

In the power network, after the voltage weighting factor ρ has been determined using
the IEWM, the combined weight γi of node i is obtained using the combined weight method:

γi = (
2

∑
j=1

αijλj)(1− ρ) + (
3

∑
k=1

βikλk)ρ (20)
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where αij is the structure value after the normalization of the structure factor evaluation
index j of node i, and the evaluation indices of structure factors include ki and Ddi. βik is the
status value of the status factor evaluation index k of node i after normalization processing,
and the status factor evaluation indices include Pcol.i, Qcol.i, and CAPi. The greater the
combined weight γi of node i, the greater the impact of the node on the continuous and
stable operation of the power network. When node i ceases operation, the system is more
likely to lose stability or even collapse.

3.4. Evaluation Process

Based on the above analysis, the evaluation process of critical nodes in this paper can
be divided into the following steps.

In Figure 1, the identification process is divided into three parts with a total of eight
steps. In part 1 (steps 1 to 3), the system to be evaluated is set up. In part 2 (steps 4 to 6),
the structure data set A and the state data set B of the system to be evaluated are obtained
mainly based on the system data, and the IEWM is used to obtain voltage weighting factor
ρ. In part 3 (steps 7 to 8), the combined weight γi of node i is calculated and processed in
descending order to obtain the critical nodes.
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3.5. Critical Node Verification Method

According to the above critical node evaluation method, the node evaluation result
of the node system is obtained, and the node evaluation results are sorted to obtain the
critical nodes of the power system. To explain the degree of influence of the identified
critical nodes on the power network, this paper uses the node voltage status index Uvi [28]
for comparison and verification analysis. The Uvi is as follows.

Uvi =
∂Pi/∂δi
n
∑

j=1,j 6=i
BijUj

(21)

where Uj is the voltage level of node j, Pi is the injected power of node i in the power
network, δi is the offset angle of node voltage, and Bij is the imaginary part of admittance
Yij between node i and node j.

The voltage status index of each node in the power network is averaged to obtain the
system voltage status index Uvvi.

Uvvi =

n
∑

i=1
Uvi

n
(22)

When the nodes of the power network are randomly attacked and quit operation, the
connectivity state and power distribution of the power network change, which is reflected
in the system voltage status index Uvvi. Generally speaking, the smaller the average value
of the system voltage status index Uvvi of the whole system, the lower the stability of the
system voltage, and the higher risk of system voltage collapse.

4. Simulation Results
4.1. IEEE 30-Bus System Simulation Experiment
4.1.1. IEEE 30-Bus System Critical Node Identification

This system is a standard IEEE 30-bus system. The system data are shown in [29], and
the system topology diagram of the IEEE 30-bus system is shown in Figure 2.
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The simulation in this paper was performed on the MATLAB platform, and the
accurate results of AC power flow calculation of the IEEE 30-bus system were achieved
with the MATPOWER toolkit. According to the evaluation process shown in Figure 1, the
ki, Ddi, Pcol.i, Qcol.i, and CAPi of each node are calculated. According to the simulation
results in this paper, the exemplary data of the individual indicator Pcol.i are shown in
Figure 3, which are the data after normalization according to Equation (9).
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Figure 3. Results of the calculation of Pcol.i.

To see the identification results of the method in this paper more directly, the ranking
results of the top 15 nodes of the ki, Ddi, Pcol.i, Qcol.i, and CAPi are listed, as shown in
Table 2.

Table 2. Identification results of critical nodes of different evaluation indices in IEEE 30-bus system.

The Sorting Ki Ddi Pcol.i Qcol.i CAPi

1 6 6 2 8 6
2 10 10 1 6 2
3 12 4 5 5 4
4 2 12 6 2 1
5 4 2 4 1 3
6 15 9 10 4 12
7 27 28 12 10 10
8 9 15 3 12 5
9 22 22 9 9 7
10 24 27 22 7 9
11 25 24 21 28 28
12 28 8 8 21 27
13 1 17 15 11 15
14 3 7 27 15 22
15 5 25 28 27 11

Further, according to Equations (10)–(20), the combined weight γi of each node of the
IEEE 30-bus system is obtained, and the result is shown in Figure 4.
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4.1.2. Comparison of Different Identification Methods

In [20], considering both state and structure characteristics, a comprehensive vulnera-
bility index is proposed to accurately locate the weak nodes in the system. Based on the
consideration of the system voltage level, Ref. [21] proposes a method for the identification
of critical nodes in power grid by comprehensively considering the static voltage stability
of nodes and the balance of branch transfer power flow distribution. Different from the
identification methods in [20,21], this paper not only comprehensively considers the state
and structural characteristics of the power system, but also uses IEWM to analyze the
influence of the node voltage level on the state and structural characteristics. In order to
verify the accuracy of the method in this paper, the evaluation results of the critical nodes
in this paper were compared with the results in [20,21], and the top ten critical nodes were
obtained, as shown in Table 3.

Table 3. Comparison of the results of different identification methods.

The Sorting
The Critical Node

[20] [21] This Paper

1 6 15 6
2 10 16 2
3 2 14 4
4 20 3 1
5 5 12 8
6 14 6 5
7 17 4 10
8 8 9 12
9 1 17 9
10 22 10 3

By comparing the recognition results of [20,21], it can be seen that the recognition
results of six nodes in this paper are the same as those in [20], and six nodes are the same
as those in [21].

According to the IEEE 30-bus system structure diagram in Figure 2, most of the critical
nodes evaluated by the method in this paper are generator nodes or intermediate nodes that
undertake important transmission tasks in the network. According to the results identified
in this paper, node 6 has the largest combined weight γi. In the IEEE 30-bus system, node 6
is the convergence of multiple lines, and is responsible for the transmission of energy from
multiple generator nodes to load nodes. If node 6 is out of operation, the distance that the
generator power must travel from nodes 5, 2, and 1 to load nodes 17, 18, and 19 is greatly
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increased. Therefore, the running state of node 6 is related to the energy transmission of
the whole network, which has an important influence on the reliability of the system.

In order to further verify the accuracy of the identification method in this paper, three
sets of simulation experiments were designed: Simulation experiments 1, 2 and 3 were
carried out attack simulation experiments on the first 10 nodes on the basis of the sorting
results in [20,21] and this paper, respectively, to record the system voltage status index.
Finally, the average value of the system voltage state index under multiple attacks in each
experiment was calculated.

Generally speaking, the smaller the system voltage status index of the system, the
worse the stability of the system and the greater the danger of system collapse. At the
beginning of the attack simulation experiment, the system voltage status index of the
IEEE 30-bus system was 0.9667. As can be seen from Figure 5, when the system was
simulated according to different sorting results, the average value of the system voltage
status index identified in this paper after the attack was 0.7597, and the average value of
the system voltage status index in [20,21] was 0.7695 and 0.7634, respectively. According to
the above simulation experiment results, the critical nodes identified by the method in this
paper experienced a greater drop in the system voltage status index after the attack, which
confirms the accuracy of the identification method in this paper.
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4.2. IEEE 118-Bus System Simulation Experiment
4.2.1. IEEE 118-Bus System Critical Node Identification

This system is a standard IEEE 118-bus system. The system data are shown in [30],
and the system topology diagram is shown in Figure 6.

The simulation of the IEEE 118-bus system was performed on the MATLAB platform,
and the accurate results of the AC power flow calculation of the IEEE 118-bus system were
achieved with the MATPOWER toolkit. According to the evaluation process shown in
Figure 1, the ki, Ddi, Pcol.i, Qcol.i, and CAPi of each node was calculated.

To see the identification results of the method in this paper more directly, the ranking
results of the top 20 nodes of each index are listed, respectively, as shown in Table 4.

The combined weight γi of the nodes was obtained in the IEEE 118-bus system
according to Equation (20), and the results are shown in Figure 7. The larger the combined
weight of a node, the more important the node is in the power system. The nodes with a
large combined weight γi can be regarded as the critical nodes of the power network and
need to be monitored during the operation of the power network.
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The simulation of the IEEE 118-bus system was performed on the MATLAB platform, 
and the accurate results of the AC power flow calculation of the IEEE 118-bus system were 
achieved with the MATPOWER toolkit. According to the evaluation process shown in Fig-
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Figure 6. Structure diagram of IEEE 118-bus system.

Table 4. Identification results of critical nodes of different evaluation indices in IEEE 118-bus system.

The Sorting Ki Ddi Pcol.i Qcol.i CAPi

1 49 49 89 25 80
2 100 69 65 31 49
3 12 77 80 24 69
4 80 65 8 80 8
5 17 68 10 49 5
6 37 80 9 8 100
7 59 75 69 59 37
8 69 38 59 100 77
9 77 66 66 38 9
10 92 70 30 68 17
11 5 30 25 69 30
12 15 37 26 65 12
13 32 54 49 30 68
14 54 47 92 77 59
15 56 17 100 29 65
16 70 100 68 5 23
17 75 42 5 37 75
18 85 96 77 12 92
19 94 82 37 17 96
20 96 81 38 81 15
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4.2.2. Comparison of Different Identification Methods

Ref. [2] proposes a weighted stochastic approach for link structure analysis (SALSA)
algorithm to search critical node in electric power systems. Considering the load loss of the
load node and the power generation of the power node, Ref. [7] introduces the electrical
betweenness algorithm to measure the node vulnerability of the power system. From the
perspective of power flow analysis, Ref. [15] proposes a node evaluation index based on
the co-citation-hypertext-induced topic selection (MBCC-HITS) algorithm model. To verify
the accuracy of the critical node identification results in the IEEE 118-bus system, this
paper compares the evaluation results with those of the weighted-SALSA algorithm [2],
the electrical betweenness algorithm [7], and the MBCC-HITS algorithm [15], as shown in
Table 5.

Table 5. Different identification results in IEEE 118-bus system.

The
Sorting

Method of
This Paper

Weighted-SALSA
Algorithm

Electrical Betweenness
Algorithm

MBCC-HITS
Algorithm

1 80 49 65 49
2 49 66 68 89
3 69 59 38 69
4 59 80 80 66
5 8 69 30 80
6 100 100 81 59
7 25 37 69 100
8 65 5 8 5
9 30 65 77 8

10 77 17 49 92
11 37 92 100 10
12 5 77 70 9
13 68 12 24 65
14 38 30 37 77
15 89 85 23 68
16 17 68 66 17
17 66 89 9 30
18 12 42 64 37
19 92 15 96 90
20 31 11 17 38

To further verify the accuracy of the identification results in this paper, 10 groups of
node random attack simulation experiments were conducted on the top 20 critical nodes
with different identification results, shown in Table 5. Then, the system voltage status index
Uvvi was recorded after each group of attacks. At the same time, for comparative analysis,
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this paper conducted a random attack on the system: in the IEEE 118-bus system, we
selected the same number of nodes for 10 groups of random attack simulation experiments
and recorded the system voltage status index Uvvi after each group of attacks. Simulation
results are shown in Figure 8.
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According to the comparison of simulation results in Figure 8, the drop in the system
voltage status index of the evaluation results of this paper, the evaluation results of the
EB-SALSA algorithm, the evaluation results of the electrical betweenness algorithm, and
the evaluation results of the MBCC-HITS algorithm are all larger than the random attack.
This proves that the identification methods in this paper, the EB-SALSA algorithm, the
electrical betweenness algorithm, and the MBCC-HITS algorithm are all effective for the
identification of critical nodes of the power system.

Meanwhile, according to Figure 6 and the data of the IEEE 118-bus system, most of the
top 20 nodes identified in this paper are the nodes that undertake important transmission
tasks in the IEEE 118-bus system or connect to important generators. Those nodes have
a greater impact on network power flow, are more sensitive to power changes, and play
a greater role in network energy transmission. The IEWM was used in this paper to
comprehensively analyze the voltage level, structure factor evaluation indices, and state
factor evaluation indices of the system to obtain the identification results of critical nodes.
In the simulation experiment, the system voltage status index dropped more severely when
attacked based on the evaluation results of this paper, which proves the accuracy of the
identification method proposed in this paper. The real-life power grid is a complex network,
and its characteristics are close to those of the IEEE 118-bus system. Therefore, the method
is also effective for the real-life power grid.

By comparing Figures 5 and 8, it can be seen that the IEEE 118-bus system has a
relatively small range of system voltage status index drop after the attack compared with
the IEEE 30-bus system, which indicates that with the increase in complexity of the power
system, the power system is more robust.

5. Conclusions

In this paper, we proposed an accurate identification method for power systems. In
Section 2, this paper established two types of evaluation indices according to the grid
topology and operating conditions, which are the structural data set A and the state data
set B. Then, in Section 3.1, this paper used the independence weighting method to optimize
the data of the EWM to reduce the information overlap between indicators. At the same
time, this paper further modified the entropy weight method, which solved the problem of
the inconsistency between the EW and EV when the EV of the entropy method approaches
1. The IEWM was used in Section 3.2 to obtain the voltage weighting factor ρ, which was
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used to analyze the difference in the influence of the structure factor evaluation indices and
state factor evaluation indices on the power system under different node voltage levels.
The combined weight γi was obtained in Section 3.3, and thus, the critical nodes were
obtained. Theoretical analysis and simulation experiments showed that:

(1) Through the simulation and comparison experiment, the identification method in this
paper was shown to have a high accuracy in the identification of critical nodes of the
power system and to be able to identify the critical nodes of the power grid effectively.
At the same time, through the simulation experiment, it was proven that with the
increase in the complexity of the power system, the power system’s ability to resist
attacks also becomes stronger.

(2) This paper proposes the IEWM, which corrects issues with overlapping evaluation
index information and inconsistency between the EW and the EV.

(3) In the critical node evaluation process, a method based on the IEWM is proposed to
analyze the influence of node voltage on the evaluation indices, which strengthens
the consideration of the node voltage level in the critical node evaluation process.
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