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Abstract: The application of cloud computing has increased tremendously in both public and private
organizations. However, attacks on cloud computing pose a serious threat to confidentiality and
data integrity. Therefore, there is a need for a proper mechanism for detecting cloud intrusions. In
this paper, we have proposed a cloud intrusion detection system (IDS) that is focused on boosting
the classification accuracy by improving feature selection and weighing the ensemble model with
the crow search algorithm (CSA). The feature selection is handled by combining both filter and
automated models to obtain improved feature sets. The ensemble classifier is made up of machine
and deep learning models such as long short-term memory (LSTM), support vector machine (SVM),
XGBoost, and a fast learning network (FLN). The proposed ensemble model’s weights are generated
with the CSA to obtain better prediction results. Experiments are executed on the NSL-KDD, Kyoto,
and CSE-CIC-IDS-2018 datasets. The simulation shows that the suggested system attained more satis-
factory results in terms of accuracy, recall, precision, and F-measure than conventional approaches.
The detection rate and false alarm rate (FAR) of different attack types was more efficient for each
dataset. The classifiers’ performances were also compared individually to the ensemble model in
terms of the false positive rate (FPR) and false negative rate (FNR) to demonstrate the ensemble
model’s robustness.

Keywords: cloud intrusion; ensemble learning; feature selection; weighted voting; crow search algorithm

1. Introduction

Cloud computing is a technology that provides internet services on demand with paid
resources based on usage [1,2]. As cloud computing does not require large investments
in infrastructure and development, government and private organizations have started to
utilize the advantages of the cloud by deploying it in their operations [3,4]. The security
of cloud computing is of prime importance, since individuals’ and entities’ information is
stored in cloud data centers, which perhaps face security threats if a network is infiltrated
by an attacker [5]. Since the network acts as the backbone of the cloud and facilitates the
provision of cloud services to clients, any threats or weaknesses in the network directly
affect the overall security and success of the cloud. Thus, safeguarding the network against
any potential threats is a significant matter. The cloud utilizes an array of cybersecurity
methods, including firewalls, Intrusion Prevention Systems (IPSs), and Intrusion Detection
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Systems (IDSs), to tackle various security problems. Some of the attacks faced by cloud
computing are denial-of-service (DoS) attacks, routing information attacks, distributed
denial-of-service (DDoS) attacks, SQL injection attacks, cross-site scripting XSS attacks,
etc. [6,7]. The foremost security challenge in cloud computing involves the detection and
thwarting of network attacks. Lately, network intrusions have escalated due to insufficient
countermeasures, and an IDS can address these security concerns. However, before deploy-
ing any IDS model in a cloud environment, it is crucial to ensure that the proposed system
is well developed and performs effectively. Consequently, this paper aims to create such an
efficient IDS.

An IDS is used to detect an intrusion in a network, monitor all packets, and decide
whether any of the incoming and outgoing packets have been affected by the intrusion [8].
In conventional intrusion detection models, statistical and knowledge-based approaches
were employed. These approaches struggled with the detection of unknown attacks and
also faced difficulties processing large amounts of network traffic data [9]. Machine learning
offers significant potential as a technique capable of developing a range of robust strategies
to reinforce the security of systems such as cloud computing, IoT, and any other network-
based system. A notable application of machine learning is in the design of an IDS. The
role of this system is to analyze network traffic, distinguish between normal and abnormal
behaviors, and appropriately categorize them [10]. ML approaches are considered to be
better than conventional models since ML models possess the capability to learn complex
traffic patterns and can precisely identify the attack [11]. Basic ML models face limitations
when intrusion is more complex and diverse [8]. Studies conducted on conventional ap-
proaches show that ensemble models provide better results than single ML-based classifiers.
Ensemble-based models are generated from numerous ML and DL models, so they offer a
higher accuracy and a reduced false alarm rate (FAR) [12]. The ensemble-based models
possess higher data processing capacities and better classification rates. Ensemble-based
cloud intrusion detection has improved accuracy with a feature set formed by combining
both the filter-based and automated feature selection models. Stacked autoencoder (SAE)-
based automated feature selection helps to minimize the dimensions of the feature set by
eliminating redundant and irrelevant features [13]. Conventional approaches have not
focused on generating a comprehensive feature set. Since the selection of a better feature
set ensures better classification results, both the filter and automated features are combined
to make a set of features in this research. Our ensemble model employs classifiers such as
SVM, LSTM, XGBoost, and FLN. The weights of the classifiers are optimized with CSA to
enhance the classification results. In short, our main contributions are as follows:

1. An ensemble model is developed with the ML and DL models with SVM, LSTM,
XGBoost, and FLN.

2. A comprehensive feature set is generated with the help of a filter and automated
feature selection.

3. The weights of the selected ML and DL models are selected with the CSA.
4. We overcome the issue of unbalanced datasets by utilizing the SMOTE algorithm

(Synthetic Minority Oversampling Technique), with the purpose of enhancing the
detection accuracy for minority-type attacks.

5. The experiment is validated using old and modern benchmark datasets (NSL-KDD,
Kyoto, and CSE-CIC-IDS-2018), that reflect a real-world environment involving the
latest attacks. The outcomes are calculated in terms of accuracy, recall, false positive
rate, false negative rate, precision, and F-measure.

We organize the rest of our work as follows: Section 2 details the related work,
Section 3 explains the proposed model, Section 4 illustrates the experimental results, and
Section 5 ends with the conclusions and future work.

2. Related Work

Ensemble techniques are built on the notion of combining several classifiers to achieve
a competitive edge. Each classifier comes with its own set of benefits and drawbacks. Some
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modules may be good at detecting certain types of attacks but not so good at detecting
others. The ensemble approach picks the best result using a voting mechanism. Various
studies have illustrated that ensemble approaches generally give better, more accurate
outcomes than a single model [14]. Kushwah and Ranga [15] presented a voting extreme
learning machine (V-ELM) for detecting DDOS attacks in cloud computing, which uses
a large number of ELMs instead of a single ELM. Majority voting combines the results
of all ELMs to obtain the final results. With multiple ELMs, the accuracy of detection
increases and false alarms decrease. Srilatha and Shyam [8] proposed a cloud intrusion
detection technique by combining kernel fuzzy c-means clustering (KFCM) and an optimal
type 2 fuzzy neural network (O2TFNN). Lion optimization was employed to select the
optimal parameters of the T2FNN. The performance of the method was simulated with
the NSL-KDD dataset based on precision, recall, and F-measure. Xu et al. [9] suggested
an intrusion detection model with a deep neural network (DNN). The improved LSTM
model used in the proposed approach consists of gated recurrent units (GRU) along with a
multilayer perceptron. The proposed LSTM-based approach achieved a higher detection
rate for KDD 99 and NSL-KDD datasets. Mighan and Kahani [11] offered a deep-learning-
based intrusion detection technique. A stacked autoencoder extracts the features, and
classification approaches such as SVM, random forest (RF), decision forests, and naive
Bayes were employed to obtain the classification results. The UNB ISCX 2012 dataset
was evaluated with the proposed approach regarding accuracy, precision, sensitivity, and
F-measure, in which it attained a better accuracy and reduced time consumption. Mayu-
ranathan et al. [12] proposed an intrusion detection system using a restricted Boltzmann
machine (RBM) model. The optimal features are selected with the random harmony search
model, and the detection rate is enhanced with the seven extra layers in the RBM. In addi-
tion, the hyper-parameters are optimized for better results. Gaussian distribution replaces
probability distribution in the proposed RBM model. Krishnaveni et al. [16] introduced
an ensemble model for network intrusion with an efficient feature selection approach, in
which the feature sets are reduced using univariate feature selection and classifiers such as
SVM, naive Bayes, logistic regression, and decision trees are used as an ensemble model,
with the class determined by a majority vote. The performance of this methodology, UEFFS,
was evaluated with the NSL-KDD, Kyoto 2006, and real-time honeypot datasets, recording
a high accuracy with a lower false alarm rate.

Thaseen et al. [17] demonstrated an ensemble of LSTM with a genetic algorithm (GA),
in which the GA selects the features effectively. The ensemble of LSTM employs a voting
approach based on the average probability combination rule. The intrusion detection
technique evaluates the proposed model with criterion datasets, namely NSL-KDD and
UNSW-NB15, in which a higher accuracy and detection rate and a minimum false alarm
rate were achieved. The authors of [18] proposed an ensemble model for intrusion detection
where the ensemble model is robust and able to produce results with less computation
overhead. Parul Singh and Virendra Ranga [19] illustrated an ensemble learning approach
in cloud computing, which used four machine learning techniques, namely boosted tree,
bagged tree, subspace discriminant, and RUS boosted. The performance of the proposed
approach was simulated with the CICIDS 2017 dataset and exhibited better results based on
the detection rate and execution time. Mehanovic et al. [20] displayed an efficient feature
selection for intrusion detection. The features were reduced with ML approaches such as
SVM, artificial neural networks (ANNs), random tree (RT), logistic regression, and naive
Bayes. The parallel genetic algorithm was implemented with an open-source MapReduce
library that helps select better features. The authors of [21] presented a network intrusion
detection mechanism where a CNN model based on contextual feature extraction improves
the accuracy of the IDS. The approach reduced the feature set before feeding it into a CNN
to reduce the computational time. Tummalapalli and Chakravarthy [22] exhibited Bayesian
fuzzy clustering and a two-level gravitational group search-based support vector neural
network (GG-SVNN). In this approach, intrusion information is gathered with a level
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1 classifier, and level 2 classifier makes the final decision on the presence or absence of
intruders. The proposed approach achieved a better accuracy and a lower false alarm rate.

Amali Angel Punitha and Indumathi [23] proposed ensemble-based attack detection.
The approach consists of centralized cloud information and accountability integrity with
an imperialist competitive key generation algorithm (CCIAI-ICKGA) proposed for key
generation. The attack detection rate is high and the computation time is less than the
current methods. Su et al. [24] employed a DL model to detect intrusion in the cloud
network, which uses the BAT model as a combination of bidirectional LSTM and an
attention mechanism. The local features of the traffic data are captured by the multiple
convolutional layers. Softmax classifies the network traffic. The experimental results
proved that the approach achieved a higher accuracy. Bhati et al. [25] implemented an
ensemble-based intrusion detection approach with XGBoost. The ensemble-based XGBoost
focused on improving the selection of features and the accuracy. The bias–variance tradeoff
is smoothened with the tree-boosting machine learning algorithm. The approach was
implemented on the KDDcup99 dataset and achieved an accuracy of 99.95%. Suman
et al. [26] presented a multi-objective optimization (MOO) to select features. The optimal
feature sets were obtained with the nondominated sorting genetic algorithm (NSGA-II).
The optimal feature sets were applied to ML classifiers such as decision tree, SVM, RF,
k-nearest neighbor (KNN), Adaboost, etc., to determine the effect of optimized features on
various ML classifiers. The approach was simulated with various datasets such as Kyoto
2006+, NSL-KDD, and KDD-99. Rajagopal et al. [27] recommended a stacking-ensemble-
based paradigm for intrusion detection systems (IDS). They stressed that this limitation
is a significant component in a stacked ensemble’s performance when compared to the
single best learner. Lopez et al. [28] introduced an NIDS utilizing a conditional variational
autoencoder (CVAE). Their proposal marked the first application of a CVAE, which offered
the ability to retrieve missing categorical features from incomplete training datasets. The
proposed solution features a unique architecture that embeds intrusion labels into the
decoder layers. When tested on the NSL-KDD dataset, the model outperformed other
well-known classifiers, achieving an accuracy rate of up to 99%.

Zhou et al. [29] presented an IDS approach that leverages feature selection and en-
semble learning methods. Initially, they proposed a correlation-based feature selection
combined with a bat algorithm (CFS-BA), aimed at identifying the ideal subset. Subse-
quently, they designed an ensemble classifier using C4.5, random forest (RF), and forest by
penalizing attributes (Forest PA), along with the AOP rule to construct the classification
model. Ultimately, they applied a voting strategy to merge the probability distributions
of foundational learners for detecting attacks. The validation was conducted using the
NSL-KDD, AWID, and CIC-IDS2017 datasets. Although the overall performance was
superior, the accuracy of the proposal for minority classes (R2L and U2R) in the NSL-KDD
dataset was not satisfactory due to inadequate addressing of the imbalanced data issue.
Balyan et al. [30] presented an effective hybrid network-based IDS (HNIDS) model, cre-
ated using a combination of the enhanced genetic algorithm, particle swarm optimization
(EGA-PSO), and the improved random forest (IRF) method. Initially, the HNIDS applied
the hybrid EGA-PSO method to bolster minor data instances, thereby creating a balanced
dataset. The PSO method assists in vector enhancement, while the GA is improved with
a multi-objective function for optimal feature selection. Subsequently, the IRF method is
employed as a classifier. The model’s efficiency was evaluated using the NSL-KDD dataset
in both binary and multi-class classification scenarios. Bakro et al. [31] suggested an IDS
that utilizes filter methods (information gain, gain ratio, and chi-square) to select relevant
features and employs the SVM model for classification. However, they did not tackle the
issue of unbalanced data. Their model underwent testing using the NSL-KDD, Kyoto, and
CSE-CIC-IDS-2018 datasets.

From the preceding relevant works and methodologies outlined in Tables 7–9, we
noted some constraints, such as the inadequate handling of unbalanced data issues and the
use of a single classifier instead of an ensemble approach, which may not yield satisfac-
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tory performance across all categories of the used dataset. Moreover, we have discerned
that designing an efficient intrusion detection system necessitates well-prepared datasets,
and issues related to imbalanced data must be adequately addressed. Additionally, the
reduction of high-dimensional datasets through feature selection methods also plays a
pivotal role in the success of the IDS model; therefore, we found that the majority of these
studies employed various techniques to select optimal features, including wrapper, fil-
ter, metaheuristic, and unsupervised models, among others. As a result, in our research,
we constructed our proposal by leveraging the strengths and addressing the potential
weaknesses of other studies to achieve superior results.

3. Methodology

The proposed cloud intrusion detection system consists of pre-processing to reduce
the class imbalance problem. The final feature set is formed with the combination of filter
and automatic feature selection approaches.

Figure 1 presents a model of the proposed technique. The ML and DL models are
trained with the feature set. Then, the weights of the ML and DL models are optimized
with the CSA approach, and the final classification results are obtained from the ensemble
model using the weighted voting concept.

Figure 1. Proposed Block Diagram.

3.1. Pre-Processing

This section details the pre-processing of the data in order to prepare them for feature
selection. The creation of a better training dataset is also required [32]. The dataset contains
a variety of symbolic, binary, numerical data, etc. Some of them may have imperfect
and inconsistent values that lead to unsatisfactory outcomes. The proposed system only
takes clean and numeric inputs; thus, the dataset must be prepared first. Therefore, we
implemented the following steps:

• Removing the noisy, incomplete outliers and irrelevant, duplicate values and deleting
features: In NSL-KDD we deleted features such as “difficulty_level”, and in the Kyoto
dataset, we omitted features such as “Source IP Address”, “Destination IP Address”,
etc. Furthermore, “Timestamp”, “Destination Address”, “Source Address”, “Source
Port”, and other features were removed in CSE-CIC-IDS 2018 [33], that means we only
retain one useful value.

• Feature encoding, also known as feature mapping, which means transforming cate-
gorical variables into numerical form. There are two methods used for this, one-hot
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encoding and ordinal encoding, in which one-hot encoding yields a higher classifier
performance than ordinal coding [34]. As a result, one-hot encoding was adopted in
this study. Protocol type, service, and flag are three symbolical characteristics in the
NSL-KDD dataset. For example, the feature of protocol type has three category values
(TCP, UDP, and ICMP). They form binary vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) after
one-hot encoding [35], and we will perform the same operation on the Kyoto dataset.
In the CSE-CIC-IDS 2018 dataset, we implement one-hot encoding on a protocol, that
is a nominal feature that has three groups (protocol 0.0: hop-by-hop IPv6 “HOPOPT”,
protocol 6.0: TCP, and protocol 17.0: UDP) [36].

• Feature scaling, also known as data normalization, which is a technique to convert the
whole scope of values from a set of features into a predetermined range. Common
methods of feature scaling are normalization and standardization. Standardization
is called also Z-score normalization, where a single standard deviation and values
centered around the mean indicate that the attribute’s mean tends to zero, and the
resulting distribution has a standard deviation of one unit. Normalization or Min-Max
scaling is the process of shifting and rescaling values so that they fall in the range [0,1],
which offers satisfying outcomes in the AE procedure [36]. In our research, we used
Min-Max scaling, shown in the following equation:

X∗j = (Xj − Xmin)/(Xmax − Xmin) (1)

where Xj is the initial value, X∗j are the data after the process, Xmin is the impacting
data sequence’s lowest value, and Xmax is said sequence’s highest value [37].

• Depending on the attack type, the label/class field must be gathered. The class
column is split into two groups for detection: normal and abnormality. Regarding
attack classification, the class column is separated into types as follows: 4 types (DOS,
Probe, R2L, and U2R) in NSL-KDD [38], 2 types (known and unknown attacks) in
the Kyoto dataset, and 14 types (DDOS attacks-LOIC-HTTP, DDOS attack-HOIC,
DDOS attack-LOIC-UDP, FTP-Brute Force, SSH-Brute force, Brute Force-XSS, Brute
Force-Web, DOS attacks-SlowHTTPTest, DOS attacks-Hulk, DOS attacks-GoldenEye,
DOS attacks-Slowloris, Infilteration, Bot, and SQL Injection) in the CSE-CIC-IDS 2018
dataset.

• Feature correlation. This is a useful technique for feature engineering, and is a statisti-
cal method that defines the relevance between one or more variables in order to detect
the related important features and only keep these features [39].

After that, the pre-processed data are split into two sets: a training dataset and a test
dataset. In order to address the class imbalance challenge which affects the performance
of the classifiers for a minority of attacks [40], we employ the Synthetic Minority Over-
Sampling Technique (SMOTE) by expanding the training dataset’s mitotic instances [41].
In the following step, we extract the features from the training dataset that will be used to
train the proposed model. The test dataset, which generates various classifications, is then
used to test the trained proposal.

3.2. Feature Selection

In the proposed method, after pre-processing, feature selection is handled. Feature
selection (FS) is considered a pre-processing approach that aids in the selection of suitable
features. Feature selection methods minimize data dimensionality by removing redundant
and irrelevant attributes [13]. When irrelevant features are added to the classification
process, not only is the accuracy of the process reduced, but it also takes up more space
and time to execute. As a result, feature selection is critical since it allows for a deeper
understanding of data by holding only the relevant appropriate features, therefore im-
proving the classifier’s accuracy, speed, and predictive capacity [42]. One feature selection
approach is the filter technique, which shortlists the essential attributes first, irrespective of
any classification method. Variable ranking approaches are used in filter methods to score
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the variables. The most important variables are selected from a list of variables, leading to
the elimination of less relevant attributes [43]. Therefore, the final feature vector is obtained
from the filter and automated feature selection.

3.2.1. Filter Methods

Filter-based feature selection methods such as information gain (IG), gain ratio, chi-
squared, and symmetric uncertainty are used to select the features, and are given as follows:

Information Gain

Information gain (IG) is a well-known filter-based feature selection approach. IG can
reduce the noise caused due to irrelevant features. The execution time and computational
complexity of IG are low. Features with a high IG are relevant. IG calculates the entropy
change after utilizing the attribute, and thus it illustrates the importance of a specific
feature. The impurity of a feature is measured in entropy. The higher the entropy, the
more information the feature has; therefore, the entropy determines the best feature, which
means that it will help predict the class label [26]. The entropy of a sample S is calculated
according to the following:

Entropy(S) = −
n

∑
i

Pi log2 Pi (2)

where n and P refer to the number of classification values and the number of samples in
class i, respectively. The information gain is given as:

IG(S, A) = Entropy(S)−∑ Values(A)

(
|Sn|
|S|

)
EntropySn (3)

where A is the attribute, Values(A) is the attribute’s potential value, |Sn| is the number of
samples for the value n, and |S| is the total number of samples. EntropySn is the entropy
for a sample that has a value of n. According to [42], the IG of feature A is given as [44]:

IG(A) = In f o(M)− In f oA(M) (4)

where the entropy of the absolute dataset is In f o(M) and the entropy of attribute A is
In f oA(M).

Gain Ratio

Gain ratio (GR)-based feature selection improves the IG method. The GR is high when
the data are evenly spread and it takes a small value when data come from only one branch
of the attribute [13]. The GR is determined with the help of split information [16].

Split in f oA(M) = −∑
|Mn|
|M| ∗ log2

Mn

M
(5)

where |M| is the number of probable values x can select and |Mn| is the number of actual
values of feature x. The gain ratio is obtained as:

Gain ratio(A) = IG(A)/Split In f o(A) (6)

Chi-Squared

The chi-square method is one of the feature selection approaches that is used to find
the relationship between two variables. The independence between two events can be
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found using this approach, and it may help to determine a feature’s independence from its
class [16]. The chi-squared is given as:

γ2 = ∑
iz
(Oiz − Eiz)

2/Eiz (7)

where i and z represent two variables, O and E are the observed and expected value,
respectively, and γ2 indicates the Chi-squared value.

Symmetric Uncertainty

This form of feature selection is employed to evaluate the ranking of the outcome. The
symmetric uncertainty is given as [16]:

SU(i, j) = 2 ∗ IG
(
i
/

j
)/

H(i) + H(j) (8)

where H(i) and H(j) represent the entropy of features i and j, respectively.

3.2.2. Automated Feature Selection with Stacked Autoencoder

An autoencoder is a common unsupervised DL approach that belongs to the family
of artificial neural networks with three layers: input, hidden, and output layers [11]. The
objective of the autoencoder is to obtain a similar reconstructed output and input, thereby
attaining feature selection and a dimensionality reduction of the input. Autoencoders are
able to learn efficient and compressed representations for the collection of data. In an AE,
the data are reconstructed after computations based on the concept of learning the best
features and matching the output to the input as closely as feasible [45]. Stacked AEs are
one of the AE types designed for automated feature selection [46]. In an SAE, the output
of the first AE is the input of the second one. This is repeated based on the depth of the
architecture. The original information is encoded by the encoder to acquire high-level
features in the middle layer, and the decoder reconstructs the input information. The
hidden layer for the original training data x is given as follows [47]:

h(i) = f
(

WT
1 x(i) + b1

)
(9)

The activation function is represented by f = tanh(◦). The output obtained with the
decoding function is calculated as:

z(i) = WT
2 h(i) + b2 ≈ x(i) (10)

where WT
1 and WT

2 are the weight matrices and b1 and b2 are the different bias vectors. In
order to train the AE, the expression is minimized as follows:

L(X, Z) = 1
/

2 ∑n
i=1

∥∥∥x(i) − z(i)
∥∥∥2

(11)

where x(i) and z(i) denote the ith element of x and z, respectively, and n signifies the input
set denoted by x(i) where i = 1 . . . n.

Prior information is ignored in the AE, while an SAE learns a more satisfactory
representation of the input data than a single AE. The hidden neurons in the proposed
SAE for the two encoder layers are 50 and 30, respectively, as shown in Figure 2. An SAE
functions essentially as a multi-layer AE. In this setup, the output from one layer provides
the input for the subsequent layer. Typically, an SAE undergoes layer-by-layer training, a
procedure commonly known as pretraining. Following this stage, the pre-trained network
weights are amalgamated to establish the ultimate network weights. When using an SAE
for feature selection, we begin by training the SAE on the input data, after which we utilize
the encoded representations produced by the SAE as the new feature set. This new feature
set possesses a smaller dimensionality and includes the most crucial attributes of the input
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data. Consequently, this can enhance the efficiency and performance of the classification
model. The filter and automated features of SAE are combined to form the feature vector.

Figure 2. Stacked autoencoder.

3.3. Classification Using the Ensemble Learning Approach

After the feature selection process, we propose an ensemble learning approach that
includes several base classifiers, namely LSTM, SVM, XGBoost, and FLN. Each of these
classifiers is trained using optimally selected features to solve the same problem, and their
outputs are then combined to enhance the overall results. Two commonly used methods
for combining predictions from different models are majority voting and weighted voting.
Majority voting is ideal when all models in the ensemble have equal reliability. Conversely,
if certain models consistently outperform others, weighted voting becomes the superior
choice. In our ensemble learning approach, we have chosen to employ weighted voting
due to the different performance levels of our base classifiers. Before detailing our chosen
weighted voting method in Section 3.4, we provide a brief explanation of each model
utilized in our proposed ensemble below.

3.3.1. LSTM

Long short-term memory is a form of recurrent neural network (RNN) that belongs
to the family of supervised DL [48]. Compared to other RNNs, LSTM offers more ad-
vantages [33]. LSTM was developed to tackle the vanishing gradient problem that is
encountered in RNNs through a concept known as gates. These gates perform an important
role in prediction because they learn to keep relevant data while discarding irrelevant
inputs [17]. LSTM consists of input, hidden, and output layers. One cell state layer and
three gate layers make up the hidden layer: an update cell state, a forget gate layer, an
input gate layer, and an output gate layer [49]. The mathematical model of the cell state
layer and the three gate layers is given as [50]:

Input gate : it = σ
(

W(i)Xt + U(i)St−1

)
Forget gate : ft = σ

(
W( f )Xt + U( f )St−1

)
Output gate : ot = σ

(
W(o)Xt + U(o)St−1

)
The memory cell′s new state : S̃t = tanh

(
W(c)Xt + U(c)St−1

)
The memory cell′s f inal state : St = ft ◦ St−1 + it ◦ S̃t
The memory unit′s f inal output : Ot = So f t max(ot ◦ tanh(St))

(12)

where Wi, W f , Wo, Wc, Ui, U f , Uo, and Uc are weight matrices, Xt is the input vector, “◦”
represents the Hadamard product, and “σ” denotes Sigmoid. In the final output layer, we
utilize Softmax for the classification [9].

3.3.2. SVM

Support vector machine is a supervised ML technique utilized for classification and
regression. The search for a max-margin separation hyperplane in the n-dimension space
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of features is the used approach in SVMs; therefore, we can obtain satisfying outcomes
regardless of the size of the dataset [51]. Using support vectors, the hyperplane acts as
a decision limit [20]. Both linear and nonlinear issues are addressed using this method.
Kernel functions are applied in nonlinear situations; kernel techniques are commonly
utilized in SVMs and other machine learning models [13]. SVMs were the most effective
among ML algorithms in past years, until the appearance of DL [33]. SVMs are also
employed in multi-class problems. The hyperplane is given as [52]:

H(x) = wT(x) + b (13)

where x, w, and b denote the input, weight, and bias values, respectively. The objective of
SVM is calculated as follows [53]:

Minimize :
1
2
‖w‖+ C

(
∑i µi

)
(14)

Subject to : zi

(
wTxi + wo

)
≥ 1 (15)

where µi is the training error, zi is the class label, xi is the feature vector, i is the sample
number, and C is the cost parameter.

3.3.3. XGBoost

Extreme gradient boosting utilizes a tree ensemble model, which means XGBoost is
a version of a multiple decision tree, because one tree may not be sufficient to provide
satisfactory outcomes [54]. Decision trees belong to the class of supervised ML methods
that are employed in regression and classification. To overcome the over-fitting issue, the
DT algorithm automatically chooses the optimal attributes and removes irrelevant data to
create a decision tree [45]. XGBoost can reduce the processing time and also possesses a
higher accuracy. The accuracy is enhanced because XGBoost uses a second-order Taylor
expansion [33]. The calculation is parallelized and the speed is increased as the feature is
sorted and blocked by XGBoost. The output is predicted by XGBoost for a dataset that has
k features. The N additive function to predict the output is given as follows [25]:

ŷi = φ(xi) = ∑N
n=1 fn(xi), fn ∈ F (16)

where f represents the tree structure and D is the ensemble model of the tree. The objective
is minimized according to the following:

L(t) = ∑n
i=1

(
gi ft(xi) +

1
2

hi f 2
t (xi)

)
+ Ω( ft) (17)

3.3.4. FLN

Fast-learning networks are considered a double parallel forward neural network (FNN)
in which a direct connection is added along with the input and output layers. There are
three layers to the FLN: input, hidden, and output layers. The nonlinear relationship from
the hidden to the output layer is merged in an FLN, as is the linear relationship from the
input to the output layer. FLNs are considered a development of extreme learning machine
(ELM) algorithms, where ELM algorithms were proposed to avoid the drawbacks of ANNs
which is one of the supervised ML models. FLNs demonstrate excellent performance while
consuming less time [45]. The FLN model is given as follows [37]:

Ti = aXi + ∑ g
(
WjXi + bj

)
β j , i = 1, 2, . . . q (18)

In an FLN model, the weights are randomly created along with the hidden layer
thresholds. The hidden layer output matrix H is calculated. The output weight matrix is
finally formed, where we use SoftMax in the output layer with respect to the classification.
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3.4. Crow Search Algorithm (CSA) and Weighted Voting

The objective of ensemble-based classification is to create a model with a high pre-
diction capacity system. Each of the individual classifiers varies regarding the number
of layers, pooling, filter size, etc. The predictions of individual DL and ML models are
combined with the voting technique. In an ensemble model, majority voting and weighted
voting are generally used. In majority voting, each classifier in the ensemble casts one vote.
The class label that receives more than half of these votes, drawn from the set of predicted
class labels from different classifiers, is then selected. In the weighted voting approach, base
classifiers are assigned differing weights, reflecting their performance. Each classifier’s vote
is then multiplied by this weight. The class that accumulates the highest total weighted
vote becomes the ensemble’s final prediction. Therefore, the weighted voting assignment
of weights on the classifiers has a considerable effect on the prediction of the ensemble
model. The optimized weights are not randomly generated; the weights are obtained with
an objective function so that weights will be tuned to improve the performance of the
classifiers. Weight optimization is carried out with several optimization techniques such
as genetic algorithms, particle swarm optimization, and differential evolution algorithms.
Here, weighted voting with the CSA algorithm is proposed.

The prediction of individual models can be handled inside the ensemble. The ensemble
takes into account all the classifiers’ prediction probabilities and decides the final prediction
result based on the majority of the prediction probability results. The weight-based voting
approach is chosen to assign weights to the classifiers to select the final prediction. The
weights are decided with a meta-heuristic algorithm: the crow search algorithm (CSA). The
CSA works based on the foraging pattern of crows. The crows represent the solution in
this optimization approach. The initial position is randomly assigned, and the fitness value
is calculated for the memorized position [55]. In the CSA, based on two conditions, the
positions of the crows are determined. In the first condition, a crow is unaware that it is
being followed by another crow to the location of the hidden food. In the second condition,
the crow possesses the knowledge that another crow is following it, and to avoid theft, the
crow will move to some other position in the search space [56]. The position of the crows
in the search space is given as follows:

Pi = (Wb1, Wb2, .....Wbn) (19)

where Pi is the position of the ith crow and Wbn is the weight of the nth base classifier. The
objective function of the weighted voting with the CSA is:

f (Pi) = 1− ∑t
k=1 (Pn − an)

2

s
(20)

where pn is the predicted value of the class after the application of CSA-based weighted
voting, an is the actual value of the class, and s is the number of test samples. Based on
the objective function, the CSA updates the crow’s position. The optimal weights are thus
obtained from the CSA-based weighted voting approach for every classifier in the ensemble
model. A final prediction is carried out with the optimized weights through weighted
majority voting of the results obtained from the individual classifiers.

4. Experimental Results

In this part, we detail the datasets that we utilized, followed by the performance
metrics. The outcomes of our proposal are then discussed, and finally, the constraints are
shown. Our proposal was executed using libraries such as Scikit-learn and Tensorflow
(ML-DL framework), and we used Imblearn to address the unbalanced dataset issue. The
simulations were carried out in Python 3.9.0, with the Google Co-laboratory Pro platform
with 25 GB RAM on an Intel Core i5 processor (ASUS, Bhubaneswar, India).
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4.1. Dataset Description
4.1.1. NSL-KDD

This dataset is an upgraded version of KDD’99 that was developed by Tavallaee
et al. [57] to handle some of the innate drawbacks of the KDD’99 dataset, where duplicate
and redundant records have been removed in order to reduce the issue of data bias to
make benchmarking learning algorithms more acceptable and realistic [58]. Thus, it is most
commonly utilized in much research on intrusion detection [45]. We utilized KDDTrain+
and KDDTest+ as the training and test sets in the NSL-KDD dataset [59], which makes it
useful to perform experiments. Every record is labeled as normal or abnormal based on the
42-feature set, and the abnormal type is divided into four kinds, namely DOS, probe attacks,
remote to local (R2L) attacks, and user to root (U2R) attacks [57]. Although this dataset
is perhaps not a perfect expression of real computer networks, we feel it is still a useful
baseline for researchers to evaluate alternative methodologies [60]. Table 1 represents the
NSL-KDD.

Table 1. Composition of the NSL-KDD dataset.

KDDTrain+ KDDTest+

Normal 67,343 9711
DOS 45,927 7460
Probe 11,656 2421
R2L 995 2885
U2R 52 67
Total 125,973 22,544

4.1.2. Kyoto

The Kyoto dataset was collected between 2006 and 2015 from a honeypot system [61],
email servers, web crawlers, darknet sensors, and other servers installed at Kyoto University.
In our research, we used the most recent dataset that contains traffic statistics through to
2015. The dataset has 24 features, 14 of which were gathered from KDD-99, and the other
10 are modern features that allow us to more properly investigate what occurred in our
networks. Each record is classified according to a label, where 1 refers to normal traffic, −1
points out known attacks, and −2 indicates an unknown attack [26]. In the Kyoto dataset,
there is no clear demarcation between the training and test sets and the dataset is extremely
huge. As a result, we chose a random subset to test our assumptions, which is shown in
Table 2.

Table 2. Composition of the Kyoto dataset.

Train Test

Normal 45,260 11,250
Known attack 303,412 75,945

Unknown attack 11,095 2747
Total 359,767 89,942

4.1.3. CSE-CIC-IDS-2018

The Canadian Institute of Cybersecurity (CIC) with the Communications Security Es-
tablishment (CSE) created this dataset, which is a modernised version of CIC-IDS 2017 [62].
It is the most up-to-date launched dataset for intrusion detection research, which reflects the
present real network environment, including seven traffic categories [36]: Benign, Botnet,
Web Attacks, DDoS, DoS, Brute Force, Infilteration, and 14 types of labeled attacks with
84 features [63]. Additionally, there is no formal distinction between training and test sets in
CSE-CIC-IDS 2018, and it is an excessively large dataset. Therefore, we randomly selected
a subset to test our proposal, which is indicated in Table 3.
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Table 3. Composition of the CSE-CIC-IDS 2018 dataset.

Category Attack Type Training Test

Benign - 144,198 36,003

Botnet Bot 14,602 3759

Brute Force-Web 611 160
Web Attack Brute Force-XSS 230 51

SQL Injection 87 24

DDOS attack-HOIC 34,376 8536
DDOS Attack DDOS attack-LOIC-UDP 1730 450

DDOS attacks-LOIC-HTTP 28,906 7215

DOS Attack

DoS attacks-GoldenEye 8185 2059
DOS attacks-Hulk 23,113 5796

DOS attacks-SlowHTTPTest 7068 1753
DOS attacks-Slowloris 4003 992

Brute force FTP-BruteForce 9998 2494
SSH-Bruteforce 9973 2439

Infilteration Infilteration 8107 2066

Total - 295,187 73,797

4.2. Performance Metrics

In this passage, we explain the evaluation measures for assessing the performance of
our proposed model, which are calculated based on the various variables in the confusion
matrix, a two-dimensional matrix that describes the actual/predicted classes, as is presented
in Table 4 [45]. Correct identification of the data instances by classifiers as an attack is
denoted a True Positive (TP) case, while if correctly identifying it as normal it is denoted a
True Negative (TN). However, incorrect identification of the data instances by classifiers
as an attack is denoted a False Positive (FP), while if correctly identifying as normal it is
denoted a False Negative (FN) [31].

Table 4. Confusion matrix.

Predicted (Attack) Predicted (Normal)

Actual (Attack) True Positive (TP) False Negative (FN)
Actual (Normal) False Positive (FP) True Negative (TN)

• Accuracy (ACC): It is the proportion of instances that have been correctly detected to
the overall number of instances. It is determined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(21)

• Recall (R): It is the proportion of successfully recognized normal instances to the
total number. Furthermore, it is called the detection rate (DR), sensitivity (S), or true
positive rate (TPR). It is calculated according to:

R =
TP

TP + FN
(22)

• False Alarm Rate (FAR): It calculates the ratio of records that are mistakenly detected
as attacks to all records. Furthermore, it is names the false positive rate (FPR). It is
estimated as follows:

FAR =
FP

FP + TN
(23)
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• False Negative Rate (FNR): It is also known as the missed alarm rate (MAR), and is
the proportion of instances that are wrongly detected as normal to all instances. It is
given as follows:

FNR =
FN

FN + TP
(24)

• Precision (P): It is the ratio of accurately predicted attacks to all attack samples, which
provides how accurate predicted positive values are. It is evaluated as follows:

P =
TP

TP + FP
(25)

• F-measure (F): It is utilized to assess the accuracy of a detection system taking into
account precision and recall, also known as the F1 score. It is computed according to:

F−measure =
2(precision ∗ recall)
(precision + recall)

(26)

4.3. Results Discussion

By the simulation, the performance metrics of multi-class classification are calculated
for our proposed model in terms of accuracy and the macro-average of recall, precision,
and F1-score.

Table 5 presents the performance of the various feature selection approaches such
as filter methods, stacked autoencoder, and fused features. It is observed that the fused
feature method has succeeded in exhibiting better results than the others.

Table 5. Comparison of performance with filter-based feature selection, automated feature selection
with SAE, and fused features.

Method Dataset No. of Features ACC R P F

NSL-KDD 50 97.99 90.42 96.44 93.13
Filter methods Kyoto 10 96.52 95.81 94.42 94.88

CSE-CIC-IDS-2018 6 98.90 92.75 99.50 95.17

Automated with
SAE methods

NSL-KDD 93 98.41 94.33 98.33 96.17
Kyoto 33 97.67 96.96 96.14 96.43

CSE-CIC-IDS-2018 6 99.02 97.86 99.91 98.79

NSL-KDD 45 99.01 99.08 99.95 99.51
Fused features Kyoto 15 98.99 98.93 98.16 98.53

CSE-CIC-IDS-2018 6 99.99 99.87 99.96 99.91

Table 6 presents the performance of the proposed method with and without the
CSA. The proposal without the CSA used random weights, while with the CSA approach
optimized weights have been generated. Therefore, CSA-based weighted voting showed a
better performance than the method without the CSA.

Table 6. Comparison of performance when the CSA is not used and when the CSA is used.

Method Dataset ACC R P F

NSL-KDD 97.01 90.31 95.45 92.61
Without CSA Kyoto 96.19 95.52 91.92 93.25

CSE-CIC-IDS-2018 98.18 96.11 93.21 92.69

NSL-KDD 99.01 99.08 99.95 99.51
With CSA Kyoto 98.99 98.93 98.16 98.53

CSE-CIC-IDS-2018 99.99 99.87 99.96 99.91
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Tables 7–9 show a performance comparison between previous works and our proposed
ensemble-based cloud intrusion detection. The studies presented in Tables 7–9 all used one
of the following:

• Feature selection or feature extraction methods in addition to one of the machine
learning models for classification.

• Deep learning models to determine and classify features.
• A method to handle the problem of imbalanced datasets along with ML or DL models.
• Ensemble learning model based on majority voting.
• One of the optimization algorithms in addition to ML or DL models.

Our proposal differs from others because it begins with preparing the dataset and
addressing the issue of imbalance. Next, we formed a comprehensive feature set using
feature selection approaches, which was then fed into ML and DL algorithms. Additionally,
the results were optimized via the crow search algorithm according to the weight-based
voting approach to obtain a high performance in our ensemble learning model.

Table 7. Comparison of the proposed model with state-of-the-art methodologies on the NSL-KDD
dataset.

No. Reference No. Year Published Methodology ACC R P F

1 [64] 2019 FFDNN 86.62 - - -
2 [65] 2019 ICVAE-DNN 85.97 77.43 97.39 86.27
3 [66] 2019 5-layers DNN 78.50 78.50 81.00 76.50
4 [67] 2019 WGAN-GP 80.80 - - -
5 [68] 2019 AE-RL 80.16 80.16 79.74 79.40
6 [69] 2019 CNN-1D 78.97 - - -
7 [70] 2019 AFSA-GA-PSO-DBN 82.36 - - -
8 [71] 2019 FNN-LSO 94.04 89.83 97.43 93.05
9 [72] 2019 MDPCA-DBN 82.08 70.51 97.27 81.75
10 [73] 2019 RNN-ABC 95.62 95.84 - -
11 [74] 2019 GA+DBN - 97.67 97.36 -
12 [24] 2020 BAT-MC 84.25 - - -
13 [29] 2020 CFS-BA-Voting(C4.5,RF,ForestPA) 99.81 99.80 99.8 99.8
14 [33] 2020 DSSTE+AlexNet 82.84 82.78 83.94 81.66
15 [40] 2020 AESMOTE 82.09 82.09 84.11 82.43
16 [75] 2020 AE 87.00 82.04 87.85 81.21
17 [76] 2020 FCM-SMO 86.00 88.40 84.70 86.50
18 [77] 2020 C5+OC-SVM 83.24 - - -
19 [78] 2020 Multi-CNN fusion 81.33 - - -
20 [79] 2020 CNN-BiLSTM 83.58 84.49 85.82 85.14
21 [80] 2020 DRNN 92.18 94.27 90.23 92.29
22 [81] 2020 GA-KELM - 94.01 - -
23 [8] 2021 T2FNN - 97.30 98.50 96.00
24 [16] 2021 UEFFS 96.06 97.90 - -
25 [18] 2021 MFFSEM 84.33 96.43 74.61 84.13
26 [20] 2021 MapReduce+GA+Random Tree 90.45 - - -
27 [21] 2021 CAFE-CNN 83.43 - - -
28 [36] 2021 PTDAE+DNN 83.33 83.33 86.02 82.04
29 [82] 2021 OCNN-HMLSTM 90.67 95.19 86.71 91.46
30 [83] 2021 I-SiamIDS 80.00 - - -
31 [30] 2022 IG+GR+CS-SVM 88.15 90.45 82.87 83.48
32 [84] 2022 ABC-BWO-CONV-LSTM 98.67 100 97.48 98.73
33 [85] 2022 CP-GWO-O-LSTM 96.38 98.63 97.59 98.11
34 [31] 2023 EGA-PSO-IRF 98.09 88.53 96.24 91.87

Our Proposed Ensemble 99.01 99.08 99.95 99.51
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Table 8. Comparison of the proposed ensemble with conventional methodologies on the Kyoto dataset.

No Reference No Year Published Methodology ACC R P F

1 [86] 2014 CSV-ISVM - 90.14 - -
2 [87] 2015 OS-ELM 96.37 97.95 95.80 96.86
3 [88] 2018 VAE-Label - 75.30 97.50 85.00
4 [89] 2018 BA-ELM 97.96 98.75 - -
5 [66] 2019 5-layers DNN 88.50 96.40 91.30 93.80
6 [90] 2019 HIDS (NBFS-OSVM-PKNN) - 94.75 56.89 -
7 [31] 2023 IG+GR+CS-SVM 96.42 96.23 90.53 92.96

Our Proposed Ensemble 98.99 98.93 98.16 98.53

Table 9. Comparison of the proposed ensemble with recent methods on the CSE-CIC-IDS 2018 dataset.

No Reference No Year Published Methodology ACC R P F

1 [91] 2019 SMOTE-LSTM+AM 96.20 96.00 96.00 -
2 [92] 2019 CNN 95.14 - - -
3 [33] 2020 DSSTE+miniVGGNet 96.99 96.97 97.46 97.04
4 [58] 2020 RBM 96.55 94.00 - -
5 [93] 2020 DNN+PSO 95.00 98.20 - -
6 [94] 2020 DNN 90.25 59.00 65.00 -
7 [36] 2021 PTDAE+DNN 95.79 95.79 95.38 95.11
8 [95] 2021 HCRNN 97.75 97.12 96.33 97.60
9 [84] 2022 ABC-BWO-CONV-LSTM 98.25 98.67 97.48 98.18
10 [31] 2023 IG+GR+CS-SVM 99.89 92.93 93.02 92.97

Our Proposed Ensemble 99.99 99.87 99.96 99.91

From Tables 7–9, it can be inferred that the proposed ensemble model outperforms
other strategies. Compared to others, the proposed work assigns more importance to
feature selection. Feature selection plays a crucial role in improving performance metrics.
Our approach was tested on multiple benchmark datasets during validation, unlike some
other works, and this provides the benefit of including a variety of attacks. The proposed
ensemble-based intrusion detection system focuses on generating a feature set and opti-
mizing weights. The feature selection technique incorporates both filter and automated
approaches to create an extensive feature set, and the usage of the ensemble model over a
single classifier results in a better accuracy.

From Figure 3a, it can be inferred that the proposed ensemble model has the lowest FPR
value, making it the best-performing model among those tested in terms of minimizing false
positive detections. Conversely, the XGBoost model has the highest FPR value, indicating a
higher likelihood of misclassifying benign network activities as attacks. The other models,
SVM, LSTM, and FLN, follow in that order. Figure 3b demonstrates that the proposed
ensemble model has the lowest FNR value, establishing it as the top-performing model
among those evaluated for reducing false negative detections. In contrast, the XGBoost
model possesses the highest FNR value, suggesting an increased probability of incorrectly
categorizing attacks as normal activities. The remaining models, SVM, LSTM, and FLN, are
ranked in that order according to their FNR values.

Overall, Figure 3 presents a comparison of FPRs and FNRs between each of the
individual models (SVM, XGBoost, LSTM, and FLN) used in the ensemble model and our
proposal tested on the NSL-KDD dataset. A performance comparison was conducted to
show the strength of the ensemble model over individual models in the ensemble. The
performance comparison shows that the FPR and the FNR are reduced when compared
with the individual models.

Figure 4a reveals that the proposed ensemble model exhibits the lowest FPR value,
while the XGBoost model presents the highest FPR value. As for the remaining models, the
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FPR values decrease in the order SVM, FLN, and LSTM. Notably, the FPR values for SVM
and FLN are identical. Similarly, Figure 4b explains the FNR values in the same manner.

(a) (b)
Figure 3. FPR and FNR comparison between the individual models and ensemble model for the
NSL-KDD dataset. (a) FPR and (b) FNR.

(a) (b)

Figure 4. FPR and FNR comparison between the individual models and ensemble model for the
Kyoto dataset. (a) FPR and (b) FNR.

The overall FPR and FNR comparisons for the Kyoto dataset are shown in Figure 4.
The ensemble model’s FPR and FNR are lower than the individual ML models, as can be
observed.

In Figure 5, the performance of the FPR and FNR of the CSE-CIC-IDS 2018 shows a
decline compared to the ML and DL models used in the ensemble. Figure 5a illustrates that
the proposed ensemble model showcases the minimum FPR value, whereas the XGBoost
model has the maximum FPR value. Regarding the other models, SVM, LSTM, and FLN, they
are arranged according to their individual FPR values. It is worth noting that the FPR values
for LSTM and FLN are the same. In a similar fashion, Figure 5b describes the FNR values.

(a) (b)
Figure 5. FPR and FNR comparison between individual models and ensemble model for CSE-CIC-IDS
2018. (a) FPR and (b) FNR.
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Figures 3–5 show that the proposed ensemble model was able to achieve a lower FPR
and FNR, indicating improved classification accuracy. The occurrence of falsely reporting
data as an intrusion is reduced in all types of attacks. In summary, a lower FPR signifies
that the model has a reduced chance of incorrectly identifying benign network activities as
malicious. Similarly, a lower FNR indicates that the model has a decreased likelihood of
misclassifying attacks as benign network activities.

Figures 6–8 illustrate the confusion matrices of our proposed ensemble. Each dataset
(NSL-KDD, Kyoto, and CSE-CIC-IDS 2018) has its own confusion matrix representing the
performance of our proposed ensemble. In the case of these datasets (NSL-KDD, Kyoto,
and CSE-CIC-IDS 2018), the proposed ensemble is trained to predict the type of network
attack or normal traffic from a total of 5, 3, and 15 categories (including normal traffic),
respectively. These datasets are used for evaluating intrusion detection systems. The
confusion matrix is a square matrix, where each row represents the actual class (true labels)
and each column represents the predicted class (predicted labels). The diagonal elements
represent correct predictions, while the off-diagonal elements represent misclassifications.

Figure 6 shows the confusion matrix of the NSL-KDD dataset. In this matrix, the first
row and the first column represent the number of DoS attack instances. The proposed
model has correctly predicted 7459 DoS attack instances with only one misclassification,
where it predicted the normal category instead. The second row and the second column
represent the number of probe attack instances. The proposed model accurately predicted
2421 instances of this attack type without any misclassifications. The same analysis can be
applied to the remaining three types.

Figure 6. Confusion matrix of the NSL-KDD dataset.

Figure 7 displays the Kyoto dataset’s confusion matrix. Within this matrix, the first
row and column correspond to the count of known attack instances. The suggested
system accurately identified 75,759 instances of known attacks. Nevertheless, 52 and
134 misclassifications occurred where the model predicted normal traffic and unknown
attack categories, respectively. The second row and column denote the number of normal
traffic instances. The proposed system successfully predicted 10,987 normal traffic instances.
However, there are 263 instances where the model incorrectly identified a known attack.
No cases were misclassified as the unknown attack category. This analysis can be extended
to the unknown attack type as well.

Figure 8 showcases the confusion matrix for the CSE-CIC-IDS 2018 dataset. Within
this matrix, the first row and column pertain to the count of benign traffic instances.
The recommended system precisely identified 36,003 instances of benign traffic, with no
misclassifications. The second row and column signify the number of bot attack instances.
The proposed system effectively predicted 3759 bot attack instances, also without any
misclassifications. This analysis can be similarly applied to the remaining thirteen types
of attacks.
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Figure 7. Confusion matrix of Kyoto dataset.

Figure 8. Confusion matrix of the CSE-CIC-IDS 2018 dataset.

In summary, the confusion matrices demonstrate that the proposed ensemble system
boasts a high degree of accuracy in detecting various network attack types and normal traf-
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fic, exhibiting outstanding performance on all three datasets. The most correct predictions
lie on the diagonal, with only a minimal number of misclassifications. For a thorough as-
sessment of the proposed system’s performance, it is crucial to take into account additional
metrics such as recall, FAR, FNR, precision, and F1-score, alongside the confusion matrix.
These metrics are detailed in Tables 10–12.

Based on Figure 6, the performance metrics of the classes in the NSL-KDD dataset are
calculated, as shown in this Table 10.

Table 10. Performance metrics of various classes by the proposed ensemble model for the NSL-KDD
dataset.

Attack Type ACC R FAR FNR P F

Normal 99.98 99.98 0.02 0.02 99.97 99.97
DOS 99.99 99.99 0.01 0.01 99.99 99.99
Probe 99.99 100.00 0.01 0.00 99.92 99.96
R2L 99.97 99.90 0.02 0.10 99.90 99.90
U2R 99.99 95.52 0.00 4.48 100.00 97.71

Figure 9 shows that our approach outperformed other traditional works in terms
of detection rate, false alarm rate, and accuracy for the various types of classes in the
NSL-KDD dataset. Most of the attack types were detected with a higher detection rate and
a reduced FAR.

Figure 9. Cont.
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Figure 9. Comparison of the performance of various categories between conventional models and
the proposed ensemble model for the NSL-KDD dataset [24,29,36,66–70,74,78,81,84].

The performance metrics of the classes in the Kyoto dataset were determined using
Figure 7, as presented in Table 11, which shows that normal, known, and unknown attacks
were detected with a high performance. To our knowledge, we did not find any previous
work containing a similar analysis of performance metrics for the Kyoto dataset to compare
the results of our work with.

Table 11. Performance metrics of types of categories by the proposed ensemble for the Kyoto dataset.

Attack Type ACC R FAR FNR P F

Normal 99.65 97.66 0.07 2.34 99.53 98.59
Known Attack 99.48 99.76 2.00 0.24 99.63 99.69

Unknown Attack 99.83 99.38 0.15 0.62 95.32 97.31
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Figure 8 was used to generate the performance metrics for the classes in the CSE-CIC-
IDS-2018 dataset, as shown in Table 12.

Table 12. Performance metrics of types of classes by the proposed ensemble for the CSE-CIC-IDS-2018
dataset.

Attack Type ACC R FAR FNR P F

Benign 100.00 100.00 0.00 0.00 100.00 100.00
Bot 100.00 100.00 0.00 0.00 100.00 100.00

Brute Force-Web 100.00 100.00 0.00 0.00 99.38 99.69
Brute Force-XSS 100.00 98.04 0.00 1.96 100.00 99.01

SQL Injection 100.00 100.00 0.00 0.00 100.00 100.00
DDOS attack-HOIC 100.00 100.00 0.00 0.00 100.00 100.00

DDOS attack-LOIC-UDP 100.00 100.00 0.00 0.00 100.00 100.00
DDoS attacks-LOIC-HTTP 100.00 100.00 0.00 0.00 100.00 100.00

DoS attacks-GoldenEye 100.00 100.00 0.00 0.00 100.00 100.00
DoS attacks-Hulk 100.00 100.00 0.00 0.00 100.00 100.00

DoS attacks-SlowHTTPTest 100.00 100.00 0.00 0.00 100.00 100.00
DoS attacks-Slowloris 100.00 100.00 0.00 0.00 100.00 100.00

FTP-BruteForce 100.00 100.00 0.00 0.00 100.00 100.00
SSH-Bruteforce 100.00 100.00 0.00 0.00 100.00 100.00

Infilteration 100.00 100.00 0.00 0.00 100.00 100.00

The following Table 13 displays that the results of our methodology have exceeded
the conventional works regarding the detection rate, false alarm rate, and accuracy for the
various types of classes in the CSE-CIC-IDS-2018 dataset.

Table 13. Comparison of the performance of various classes between the previous works and the
proposed ensemble method for the CSE-CIC-IDS-2018 dataset.

Attack Type Our Proposed [36] 2021 [58] 2020
ACC R FAR ACC R FAR R

Benign 100.00 100.00 0.00 97.48 99.46 4.48 -
Bot 100.00 100.00 0.00 100.00 99.97 0.00 96.19

Brute Force-Web 100.00 100.00 0.00 99.98 60.00 0.00 82.22
Brute Force-XSS 100.00 98.04 0.00 99.99 74.42 0.00 83.16

SQL Injection 100.00 100.00 0.00 100.00 43.75 0.00 100.00
DDOS attack-HOIC 100.00 100.00 0.00 100.00 100.00 0.00 97.54

DDOS attack-LOIC-UDP 100.00 100.00 0.00 99.99 100.00 0.01 96.15
DDoS attacks-LOIC-HTTP 100.00 100.00 0.00 99.98 99.82 0.00 96.18

DoS attacks-GoldenEye 100.00 100.00 0.00 100.00 99.93 0.00 92.01
DoS attacks-Hulk 100.00 100.00 0.00 100.00 99.99 0.00 91.32

DoS attacks-SlowHTTPTest 100.00 100.00 0.00 98.33 51.99 0.43 93.31
DoS attacks-Slowloris 100.00 100.00 0.00 100.00 100.00 0.00 97.04

FTP-BruteForce 100.00 100.00 0.00 98.33 88.16 1.29 100.00
SSH-Bruteforce 100.00 100.00 0.00 100.00 99.97 0.00 100.00

Infilteration 100.00 100.00 0.00 97.50 23.84 0.27 96.41

However, we did not focus on reducing the consumption of computational and
temporal resources in our system; our priority was on designing a comprehensive model
that overcomes some of the most important drawbacks that were presented in previous
studies and that can be implemented on the most three popular datasets for detecting the
largest number of attacks with an outstanding performance according to the comparison in
Tables 7–9 in terms of accuracy, recall, precision, and F-measure.

4.4. Limitations and Constraints of the Study

The limitations and the constraints of the study are explained below:
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1. Lack of a systematically collected dataset: Creating a dataset is an expensive procedure
that requires a lot of money and high-level expertise. As a result, one of the key
difficulties for IDS is the systematic creation of an up-to-date dataset with sufficient
examples of practically all the intruder types. To aid the research community, the
dataset should be regularly updated to incorporate the most recent attack records. In
the current work, datasets with older (NSL-KDD and Kyoto) and newer (CSE-CIC-
IDS-2018) attacks were used to test and validate the proposal. However, we emphasize
the requirement for an up-to-date comprehensive dataset that represents new attacks
on real environment networks that exist today. By including the definition of the
largest number of intrusions in a dataset, the system will be able to discover additional
patterns and offer a defense against the greatest number of zero-day attacks.

2. An unbalanced dataset has an impact on performance: It is noted from the current
study that we used the SMOTE technique to increase the number of minority attack
instances to balance the dataset, which led to an increase in the data size and thus the
computational resources needed. Therefore, we can use random undersampling to
decrease the number of instances in the majority class, then use any existing technolo-
gies such as SMOTE to oversample the minority class to balance the class distribution.
However, we may try alternative approaches, such as the Difficult Set Sampling
Technique (DSSTE), Adaptive Synthetic Sampling (ADASYN), RandomOverSampler
(ROS), etc, to decrease the dataset’s unbalance ratio for a better performance.

3. Unknown efficiency in a real-world environment: The proposal was evaluated in
a lab setting based on publicly available datasets. However, it was not put to the
test in a real-world setting. Therefore, it is not yet clear how it will function in
real situations. Thus, to ensure that the suggested strategy works effectively for
contemporary networks, it should be tested in a real-time setting after being evaluated
in a lab setting.

4. Resource consumption: DL models utilize power to learn features deeply, which
provides outstanding results in detecting attacks; however, it demands a lot of time,
storage, and computational resources. Bio-inspired algorithms can be used in the
future to improve the effectiveness and intelligence of feature selection, reduce com-
putational resources, and achieve better results.

5. Conclusions and Future Work

The security of cloud computing is of utmost importance with the rise in the applica-
tion of cloud computing in the majority of public and private organizations. The proposed
intrusion detection system focused on designing a model that can improve intrusion de-
tection with a higher accuracy using some advancements in the feature selection part by
combining filter and automated feature selection and optimizing weights with the CSA in
the ensemble model. This resulted in better results than other state-of-the-art models. The
proposed approach is capable of detecting various types of attacks with a higher detection
rate and a reduced false alarm rate.

In our future work, we will strive to compute the consumption of computational
resources and perform a comparison with other approaches. Furthermore, bio-inspired
algorithms can be implemented to optimize the value. In verification, we can use the most
recent datasets that have a wide spectrum of attacks that reflect real networks, which will
be prepared well to create a balanced dataset for a better performance.
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