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Abstract: Cluster tools are the key equipment in semiconductor manufacturing systems. They
have been widely adopted for many wafer fabrication processes, such as chemical and physical
vapor deposition processes. Reentrant wafer flows are commonly seen in cluster tool operations for
deposition processes. It is very complicated to schedule cluster tools with reentrant processes. For a
dual-arm cluster tool with two-time reentering, the existing studies point out that a one-wafer periodical
(1-WP) schedule can be found, and it is optimal in terms of productivity. However, for some wafer
fabrication processes, wafers should be processed at some PMs more than two times. This gives rise
to a question of whether there still exists a 1-WP schedule for dual-arm cluster tools with the number
of reentering times being more than two such that the cycle time of a tool can reach the lower bound.
This problem is still open, and this is what this work wants to tackle. For a dual-arm cluster tool with
the number of reentering times being k (>2) times, if there does not exist a value f ∈ {1, 2 . . . } such
that k = 3f, theoretical proofs are given to show that a 1-WP schedule can be found, otherwise it does
not exist. For cases with a 1-WP schedule, the cycle time can be obtained by analytical expressions.
For the cases without a 1-WP schedule, two new methods for a three-wafer periodical schedule are
proposed to improve the system productivity by comparing it with an existing three-wafer periodical
schedule. The applications of the obtained results are demonstrated by examples. Wafer residency
time constraints are required for some wafer fabrication processes. Note that the results obtained
in this work cannot be directly applied to cluster tools with both reentrant wafer flows and wafer
residency time constraints. Nevertheless, schedulablity and scheduling analyses for that applications
can be conducted based on the obtained results in this work.

Keywords: cluster tools; reentrant flows; scheduling; semiconductor manufacturing

1. Introduction

In semiconductor manufacturing, cluster tools have been widely adopted for wafer
fabrication. Such a tool compactly integrates several process modules (PMs), a robot, and
two loadlocks (LLs). Moreover, it adopts a single-wafer processing technology such that
wafers are processed one by one in a PM. With a single- or dual-arm robot, a tool is called a
single-arm cluster tool (SACT) or dual-arm cluster tool (DACT), as shown in Figure 1a,b.

In an SACT or a DACT as shown in Figure 1, PMs are filled with chemicals for wafer
processing, and the internal temperature in PMs is required to be high for some wafer
fabrication processes. The robot in the center of a tool is used to transport wafers among
the PMs. LLs have two doors. One faces the internal chamber in which there are several
PMs, while the other faces outside. LLs are used to ensure the internal vacuum processing
environment.

In semiconductor fabs, 25 wafers are grouped into a lot and held in a front opening
unified pod (FOUP) [1]. FOUPs are transported to the right areas for wafer fabrication
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according to recipes. The recipes of wafers in a lot are identical. In a cluster tool, after a
wafer lot is loaded into an LL, the LL is pumped into a vacuum environment. Then, the
wafers can be delivered to PMs to be processed according to their recipes. After wafers in
an LL are completed, then the raw wafers from the other LL are fed to PMs to be processed
such that the tool can operate under a steady state without interruption [1,2].

Figure 1. Cluster tools: (a) an SACT with a single-arm robot and four PMs; (b) a DACT with a
dual-arm robot and four PMs.

For some wafer fabrication processes, wafers are required to visit some PMs for more
than one time. Such a wafer fabrication process is called a reentering process. Atomic layer
deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD) are such typi-
cal processes. For the ALD process, deposition processes should be repeatedly performed
several times, even more than five. The first deposition layer requires three process steps:
Al2O3 deposition, Ta2O5 deposition, and oxidation process. Each subsequent deposition
layer repeats the last two process steps [3]. For a PECVD process, PECVD tools are used
for depositing thin films onto silicon wafer substrates, which is one of the crucial steps in
the manufacturing of microelectronic circuits and solar cells [4]. For reentering processes,
the reentering operations should be performed under identical processing conditions. This
presents a requirement that only one PM is configured to serve a processing step.

For a DACT with reentrant wafer flows, Qiao et al. [5] developed a one-wafer pe-
riodical (1-WP) scheduling method by adjusting the processing progresses of wafers at
different steps such that a 1-WP schedule can be obtained. Moreover, theoretical proofs
for its optimality are provided in [5]. However, the study is done for a 2-time reentering
process, and it is not known if it is applicable to processes with the reentering times being
more than two. In practice, for some reentering processes, wafers are required to visit some
PMs for k (≥2) times. Recently, it has been found that a 1-WP schedule cannot be obtained
for a DACT with k-time reentrant processes if there exists a value f ∈ N = {1, 2 . . . } such
that k = 3f holds. This implies that the method in [5] is not applicable to such cases, which
motivates us to do this work. Further, this work aims at solving the scheduling problem
of DACTs with k-time (k ≥ 3) reentrant processes such that the solutions to DACTs with
reentrant processes are complete.

2. Literature Review

In SACTs and DACTs, the time taken for robot tasks, including placing, picking, and
moving, is actually quite short in comparison with wafer processing time in PMs. Thus,
for SACTs, a backward strategy is optimal in terms of productivity [6,7], while for DACTs,
a swap strategy is optimal [8]. Further, studies on modeling and scheduling SACTs and
DACTs were conducted in [8–10]. With two wafer types and one shared PM, the scheduling
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analysis was done for DACTs in [11]. The results obtained in the above-mentioned studies
are based on the assumption that there are no wafer residency time constraints (WRTCs).

For some wafer fabrication processes, WRTCs are imposed, which requires that after
a wafer is processed in a PM, it should be removed from the PM within a limited time
interval, otherwise it would be damaged by the high temperature and chemical gas in the
PM. In [12,13], methods were proposed to find optimal periodical schedules for DACTs
with WRTCs. Further, based on Petri nets, a mixed integer programming (MIP) method
was presented in [14] to get optimal cyclic schedules for both SACTs and DACTs with
various wafer processing flows. To improve the computational efficiency in finding an
optimal solution for SACTs and DACTs with WRTCs, schedulability conditions under
which a feasible schedule exists were established in [15,16]. If schedulable checked by
such conditions, the authors established analytical expressions to find optimal solutions.
With multiple wafer types, wafer delay analysis and workload balancing of parallel PMs
were conducted in [17]. Moreover, PM configuring problem of residency time-constrained
DACTs was investigated, and a polynomial-complexity algorithm was developed to find
optimal cyclic schedules in [18].

In practice, the time required for robot activities and wafer processing might be
disturbed. Such a time variation may result in a feasible schedule obtained under the
deterministic activity time assumption becoming infeasible. Thus, a robust scheduling
method is necessary for cluster tools with activity time variation. To do so, in [19], based
on Petri nets, a real-time control policy was proposed for DACTs with WRTCs and activity
time variation to offset the activity time disturbance as much as possible by adjusting the
robot waiting time in real-time. Then, an optimal real-time scheduling method consisting
of an off-line schedule and a real-time control policy was presented in [20]. Since the robot
task sequences for DACTs and SACTs are different, the methods for DACTs in [19,20] are
not applicable to SACTs. Thus, in [21], for SACTs with a backward strategy, a real-time
control policy was proposed to reduce the impact caused by activity time variation as
much as possible and analytical expressions were given to calculate the upper bound of
wafer sojourn time delay. Then, based on the results obtained in [21], an optimal real-time
scheduling method was proposed in [22] for SACT with WRTCs and activity time variation.
In [23], a class of schedules was proposed for cluster tools to keep timing patterns as steady
as possible and adopt timing of tasks in response to process time variation so as to satisfy
WRTCs robustly. To ensure the consistency of wafer sojourn time, ref. [24] examined the
conditions under which a feedback controller proposed in their previous work can stabilize
the wafer sojourn time in a stochastic processing environment with unexpected random
time disturbances.

As the wafer size becomes larger, while the circuit width shrinks down, the wafer
fabrication constraints are more and more strict. Periodical chamber cleaning operations
are normally required for a PM in cluster tools after a PM processes a specified number
of wafers so as to ensure the processing environment. Let h denote the number of wafers
that a PM processes at most before it requires a chamber cleaning operation. When h = 1,
the chamber cleaning operation is called a purge cleaning operation. To improve the pro-
ductivity of SACTs and DACTs with purge operations, a backward(z) strategy is presented
in [25] for SACTs based on the conventional backward strategy, while a swap(a, z) strategy
is presented in [26,27] for DACTs based on the conventional swap strategy. By considering
more general cases with h ≥ 1, Qiao et al. [28] presented a virtual wafer-based method for
DACTs to deal with chamber cleaning requirements. Besides, in [29,30], efficient scheduling
approaches were proposed to deal with the chamber cleaning operation issue caused by
the processing environment detection.

All the above-mentioned studies were conducted for cluster tools without reentrant
processes. In fact, for an SACT or a DACT without reentrant processes, it can be treated
as a flow-shop system. However, with reentrant processes, it is not, therefore, the above-
mentioned studies are not applicable. Thus, for cluster tools with reentrant processes,
system behavior was modeled by Petri nets (PNs) in [31] for performance analysis without
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tackling their optimization problems. Then, in [3], these problems were addressed for
SACTs based on a developed PN model and formulated by an MIP model. To improve
the computational efficiency, based on a resource-oriented PN (ROPN) model, an analytical
method was proposed to schedule the overall system with reentrant processes in [32]. For
DACTs with reentrant processes, Wu et al. [33,34] pointed out that the tool may operate
under a transient process for some cases all the time based on a three-wafer periodical (3-WP)
scheduling method. This means that the obtained results under the steady state in [31] are
not applicable. Further, ref. [35] presented the cycle time analysis for DACTs with k-time
(k ≥ 3) reentrant processes based on the 3-WP scheduling method. Then, Qiao et al. [5]
developed a 1-WP scheduling method by adjusting the processing progresses of wafers at
different steps and theoretically proved its optimality. Furthermore, for time-constrained
DACTs with reentrant processes, the schedulability and scheduling analysis was carried
out in [36,37] based on such a 1-WP schedule. By taking the activity time variation into
account, for time-constrained DACTs with reentrant processes, efficient algorithms were
developed to calculate the upper bound of wafer sojourn time delay in [38] and an optimal
real-time scheduling method was proposed in [31] to operate DACTs.

The existing studies for cluster tools with reentrant wafer flows are summarized in
Table 1. In [31], it did not present a method to obtain optimal schedules. In [5], although
the proposed MIP model can find optimal solutions, it would take a long time to solve the
model as the number of reentering times increases. In [32], deadlock control policies were
presented, and efficient scheduling methods were proposed for SACTs. In [5,33,34,36–39],
the scheduling problem of DACTs with two-time reentrant processes was fully investigated.
Moreover, by the swap strategy, a 1-WP scheduling method was found in [5] to achieve the
lower bound of cycle time. However, as mentioned in the Introduction, in a case study for
DACTs with three-time reentrant processes, it was found that a 1-WP schedule cannot be
obtained by the swap strategy. Thus, it gives rise to a question of how to schedule DACTs
with three-time reentrant processes so as to maximize productivity. With such motivation,
this work is conducted.

Table 1. The existing studies for cluster tools with reentrant wafer flows.

References Number of
Reentrant Times Other Constraints The Addressed

Problem Methods Results

[31] k ≥ 2 None Deadlock analysis PNs No optimality analysis
[3] k ≥ 2 None Scheduling PNs and MIP Optimal

[32] k = 2 None Scheduling PNs Optimal for SACTs

[33] k = 2 None Scheduling PNs and 3-WP
scheduling Optimal for some cases

[34] k = 2 None Scheduling PNs and 2-WP
scheduling Optimal for some cases

[5] k = 2 None Scheduling PNs and 1-WP Optimal
[36,37] k = 2 WRTCs Scheduling 1-WP Optimal

[38,39] k = 2 WRTCs, time
variation

Control and
Scheduling PNs and 1-WP Optimal

[35] k ≥ 2 None Cycle time
analysis PNs and 3-WP Optimal for some cases

In this work, if there does not exist a value f ∈ {1, 2 . . . } such that k = 3f, theoretical
proofs are given to show that a 1-WP schedule can be found for DACTs with k-time
reentrant processes. Furthermore, for cases with a 1-WP schedule, simple expressions are
given to calculate the cycle time. For the cases without a 1-WP schedule, two new 3-WP
scheduling methods are proposed to improve the system productivity by comparing it
with an existing 3-WP scheduling method presented in [35]. In summary, compared with
the existing studies, this work aims to tackle the open problem in this research field and
makes significant improvements.
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In the next section, the reentrant processes and the 1-WP schedule are introduced.
Then, for k-time reentrant processes with k ≥ 3, Section 4 shows that a 1-WP schedule
cannot be found if there exists a value f ∈ N such that k = 3f holds. In Section 5, two novel
methods are proposed to improve the productivity of DACTs for the cases where a 1-WP
schedule cannot be found. The applications of the obtained results are demonstrated by
examples in Section 6, and this work is concluded in Section 7.

3. The Reentrant Process and Periodical Schedules
3.1. Reentrant Process

PMs in a cluster tool are divided into different groups. The PMs in the same group
serve to perform the same fabrication operation called a step. For serial wafer flows, raw
wafers sequentially visit several steps according to their processing recipes. For reentrant
wafer flows (i.e., reentrant processes), wafers should revisit some steps multiple times.
Notice that, for the steps involving reentrant processes, only one PM is configured so as to
ensure processing consistency. For example, ALD and PECVD have such a requirement.
Thus, if a wafer is repeatedly processed at a reentrant step, the processing environment is
exactly identical such that the processing quality can be ensured.

There are three processing steps for the ALD process. After a raw wafer is moved out
of an LL by the robot, the wafer is delivered to Step 1 to be processed, then Step 2, and
followed by Step 3. When the processing of the wafer in Step 3 is completed, it revisits
Steps 2 and 3 again such that a wafer visits Steps 2 and 3 totally k ≥ 2 times. Note that
each step of Steps 2 and 3 has only one PM. In fact, the workloads at the reentrant steps are
much greater than that in Step 1. Thus, more than one PM used for Step 1 cannot improve
the productivity of a cluster tool. Therefore, only one PM is used to serve for Step 1 as well.
Moreover, it can save cost to operate such a tool in this way since a PM (i.e., a chamber) is
quite expensive. PMi, i ∈ {1, 2, 3}, is used for Step i. Then, the wafer flow pattern is denoted
as (PM1, (PM2, PM3)k), with (PM2, PM3)k being the reentrant process.

Another commonly seen reentrant process is PECVD. For PECVD, it has two steps
(i.e., Steps 1 and 2), and both are reentrant ones. PM1 is used to complete plasma-enhanced
chemical vapor deposition in Step 1, while PM2 in Step 2 is used to complete a cure
operation so as to ensure wafer quality. Then, (PM1, PM2)k, k ≥ 2, is used to represent the
wafer flow pattern of PECVD. By observing the wafer flow patterns of ALD and PECVD,
the reentrant pattern of PECVD is a special case of ALD from the perspective of scheduling.
Thus, this work focuses on the scheduling analysis of DACTs with (PM1, (PM2, PM3)k) with
k ≥ 2, which is commonly seen in cluster tool scheduling with reentrant processes. Note
that the results in [5] are conducted for DACTs with (PM1, (PM2, PM3)k) as well.

3.2. Activity Description

In a DACT, the two robot arms are named Arm-1 and Arm-2, respectively. Robot
activities include picking a wafer from a PM, moving between two PMs, placing a wafer
into a PM, rotating, and waiting. For a DACT, a swap strategy is efficient. At a state,
assume that Arm-1 is empty and stays at PMi, while Arm-2 carries a wafer. At this state, a
swap operation at PMi, i ∈ {1, 2, 3}, includes the following activities: Picking a processed
wafer from PMi by Arm-1→ rotating→ placing the wafer held by Arm-2 into PMi. The
robot picking and placing activities at PMi are denoted as PIi and PLi, respectively. A swap
operation at PMi is denoted as SWPi. Thus, SWPi includes PIi, robot rotation, and PLi.
Besides, Mij is used to denote the robot moving from Steps i to j. Note that LLs are denoted
as Step 0.

To model the time aspect, we assume that the time needed to execute each of the
above-mentioned robot activities is constant. The activities of executing PIi, PLi, and Mij
spend α, β, and µ time units, respectively. In practice, the time taken for SWPi is often less
than the sum of the time for performing PIi, robot rotation, and PLi. Thus, symbol λ is
introduced to represent the time needed for SWPi. Except for the robot activities, the wafer
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processing time at PMi, i ∈ {1, 2, 3}, is denoted as ρi. The meanings of the notations are
summarized in Table 2.

Table 2. Robot and processing activities.

Notations Robot Tasks Time

PIi Picking a wafer in Step i α
PLi Placing a wafer in Step i β
Mij Moving from Steps i to j µ

SWPi Swapping in Step i λ

3.3. Periodical Schedules

In a cluster tool, raw wafers enter the system one by one. The d-th wafer entering the
system is denoted as Wd, d ∈ N. To find a periodical schedule, it is necessary to analyze
the state evolution of the system. Let Θi = {Wd(q)}, i ∈ {1, 2, 3}, denote the state of PMi
(Step i), indicating that Wd is processed in PMi for the q-th operation. Furthermore, let
Θ4 = {Ri(Wd(q)} denote the state of the robot, representing that the robot is staying at PMi, i
∈ {1, 2, 3}, and at the same time, carrying Wd with its q-th operation to be processed in the
PM. Then, the state of the system is denoted as S = {Θ1, Θ2, Θ3, Θ4}.

For a DACT with (PM1, (PM2, PM3)2), by a swap strategy, Wu et al. [33] present a
three-wafer periodical schedule called a 3-WP schedule in short. With a 3-WP schedule,
starting from S1 = {W3(1), W2(2), W1(3), R1(W4(1))}, a DACT evolves as follows: S1 = {W3(1),
W2(2), W1(3), R1(W4(1))}→ S2 = {W4(1), W3(2), W1(3), R3(W2(3))}→ S3 = {W4(1), W1(4),
W2(3), R3(W3(3))}→ S4 = {W4(1), W2(4), W3(3), R3(W1(5))}→ S5 = {W4(1), W3(4), W1(5),
R3(W2(5))}→ S6 = {W4(1), W3(4), W2(5), R1(W5(1))}→ S7 = {W5(1), W4(2), W3(5), R1(W6(1))}
→ S8 = {W6(1), W5(2), W4(3), R1(W7(1))}→ S9 = {W7(1), W6(2), W4(3), R3(W5(3))}. Notice
that S1 and S8 are equivalent. It implies that evolution from S1 to S8 forms a period.

Note that, to transfer S1 to S2 and S8 to S9, robot task sequence σ1 = 〈SWP1 → M12
→ SWP2 →M23〉 is performed, i.e., the robot sequentially performs the following robot
tasks: Swaps at PM1, moves to PM2 from PM1, swaps at PM2, and moves to PM3 from
PM2. To transfer S2 to S3, σ2 = 〈SWP3 →M32 → SWP2 →M23〉 is performed, i.e., the robot
sequentially performs the following robot tasks: Swaps at PM3, moves to PM2 from PM3,
swaps at PM2, and moves to PM3 from PM2. σ2 is repeated for S3 to S4 and S4 to S5. Note
that σ2 forms a robot task cycle involving the reentrant process (PM2, PM3)2, and it is called
a local cycle. σ3 = 〈SWP3 →M30 → PL0 → PI0 →M01〉 is for S5 to S6. This means that the
robot sequentially performs the following robot tasks for σ3: Swaps at PM3, moves to an
LL from PM3, place a wafer into the LL, pick a wafer from the LL, and moves to PM1 from
the LL. σ4 = 〈SWP1 →M12 → SWP2 →M23 → SWP3 →M30 → PL0 → PI0 →M01〉 is for
S6 to S7 and S7 to S8. This means that the robot sequentially performs the following robot
tasks for σ4: Swaps at PM1, moves to PM2 from PM1, swaps at PM2, moves to PM3 from
PM2, swaps at PM3, moves to an LL from PM3, place a wafer into the LL, pick a wafer from
the LL, and moves to PM1 from the LL. Obviously, σ4 is a robot cycle involving all PMs,
and it is called a global cycle. Moreover, σ1 and σ3 together form a global cycle as well.
Thus, as shown in Figure 2, a period from S1 to S8 (or S2 to S9) contains three local and
three global cycles. Notice that, in each global cycle, one wafer with all operations being
completed is returned to LLs. Thus, three wafers are returned to LLs in this period.

Figure 2. A 3-WP schedule for a DACT with (PM1, (PM2, PM3)2).
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For a DACT with (PM1, (PM2, PM3)2), by a 3-WP schedule, as shown in Figure 2,
Wu et al. [33] point out that the tool may operate under a transient process in some cases all
the time. In such cases, once the robot enters the global cycles from local cycles, there might
be a time delay when the robot arrives at the PMs involving reentrant processes. Such time
delay makes that the lower bound of the system cycle time cannot be reached, i.e., a 1-WP
schedule may not be optimal in such cases. This also implies that productivity reduction
is caused by multiple local and global cycles in a period. Thus, it raises the question
of whether the performance of the system can be improved by reducing the number of
local and global cycles. To answer this question, for a DACT with (PM1, (PM2, PM3)2),
Qiao et al. [5] present a 1-WP schedule.

By a 1-WP schedule, the tool should start to operate from a steady state, i.e., S1 =
{W3(1), W1(4), W2(3), R1(W4(1))}. Then, by performing σ1, the system enters state S2 =
{W4(1), W3(2), W2(3), R3(W1(5))}. Further, by executing σ2, it reaches S3 = {W4(1), W2(4),
W1(5), R3(W3(3))}. Finally, by executing σ3, S4 = {W4(1), W2(4), W3(3), R1(W5(1))} is reached.
At this time, S1 and S4 are equivalent. Thus, as shown in Figure 3, a period with a local and
a global cycle is formed. Moreover, during such a period, a wafer is returned to LLs.

Figure 3. A 1-WP schedule for a DACT with (PM1, (PM2, PM3)2).

For a DACT with (PM1, (PM2, PM3)2), Qiao et al. [5] proved that the 1-WP schedule is
optimal in terms of cycle time. However, in the cases where wafers are required to visit
some PMs for k (>2) times, if there exists a value f ∈ N = {1, 2 . . . } such that k = 3f holds, it
is found that a 1-WP schedule cannot be obtained for a DACT, resulting in that the method
in [5] is not applicable to such cases. It motivates us to conduct this work. Next, this work
gives theoretical proofs for the above findings and provides the analytical expressions of
the system cycle time if a 1-WP schedule exists for a DACT with (PM1, (PM2, PM3)k).

4. Scheduling Analysis by One-Wafer Cyclic Schedule

For a DACT with (PM1, (PM2, PM3)k), k ≥ 3, with a 3-WP schedule, the cycle time
analysis has been conducted in [35]. It is found that there are (3k − 3) local cycles and three
global cycles in a period. Thus, before a completed wafer goes back to LLs in a global cycle,
it should undergo (3k − 3) local cycles to complete the reentrant process. Furthermore,
when this wafer is returned to LLs, it has completed its (2k + 1)-th operation. Assume that
a 1-WP schedule exists for a DACT with (PM1, (PM2, PM3)k). Then, the 1-WP schedule
should result in a one-wafer period with multiple local cycles and a global cycle. Since only
one completed wafer is returned to LLs in such a period, this wafer has already experienced
(3k − 3) local cycles in fact. Notice that if (3k − 3) local cycles are consecutively performed,
three wafers should be returned to LLs by three consecutive global cycles. This is a 3-WP
schedule. If a 1-WP schedule exists, an obtained period should have (k − 1) local cycles
first and then a global cycle such that a wafer is returned to LLs during each global cycle.
Further, with a 1-WP schedule, there should be a state, i.e., S1 = {W1(1), W(ϑ1), W(2k + 1),
R3(W(ϑ2))} at which the last local cycle in a period is just completed.

Theorem 1. For a DACT with (PM1, (PM2, PM3)k), if there exists a value f ∈ N ∪ {0} such that
k = 3f + 2 holds, then the system can be scheduled by a 1-WP schedule.

Proof. Starting from S1 = {W1(1), W(ϑ1), W(2k + 1), R3(W(ϑ2))}, S2 = {W2(1), W1(2), W(ϑ2),
R3(W(ϑ1 + 1))} is reached after a global cycle. Thus, the tool then evolves in local cycles.
After (k − 1) local cycles, the robot stays at PM3 and prepares to place W1 into PM3 for
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processing the (2f + 3)-th operation. Then, the tool undergoes a global cycle such that W1
is processed at PM3 for the (2f + 3)-th operation. Further, after (k − 1) local cycles, W1 is
processed at PM2 for the (4f + 4)-th operation. In the next global cycle, the robot picks W1
from PM2 and moves to PM3, implying that the robot is going to place W1 into PM3 for
processing the (4f + 5)-th operation. The following evolution also undergoes (k − 1) local
cycles. After that, W1 is processed at PM3 for the (6f + 5)-th operation. Note that, the robot
is staying at PM3 at this time. With k = 3f + 2, (6f + 5) = 2k + 1 holds. This means that W1
can be returned to LLs in the next global cycle. Further, by repeatedly performing (k − 1)
local cycles and a global cycle, wafers (i.e., Wd, d ∈ N\{1}) are continuously completed and
returned to LLs. Hence, the system can be scheduled by a 1-WP schedule. �

In this case, for a DACT with (PM1, (PM2, PM3)k), k ≥ 2, if k is known and there exists
a value f ∈ N ∪ {0} such that k = 3f + 2 holds, Theorem 1 provides a simple way to find
a state (i.e., S2 = {W2(1), W1(2), W(2f + 3), R3(W(4f + 5))}) starting from which a 1-WP
schedule exists.

Theorem 2. For a DACT with (PM1, (PM2, PM3)k), if there exists a value f ∈ N such that k = 3f
holds, then the system cannot be scheduled by a 1-WP schedule.

Proof. Starting from marking S1 = {W1(1), W(ϑ1), W(2k + 1), R3(W(ϑ2))}, S2 = {W2(1), W1(2),
W(ϑ2), R3(W(ϑ1 + 1))} is reached after a global cycle. Thus, the tool then evolves in local
cycles. After (k − 1) local cycles, the robot is at PM3, and wafer W1 is just being processed
at the PM for the (2f + 1)-th operation. By a 1-WP schedule, a global cycle should be
performed next. In this global cycle, W1 should be delivered to LLs without completing all
operations. Hence, the theorem holds. �

In this case, a 1-WP schedule is not applicable. Thus, this work presents two novel
scheduling methods for this case in the next section to improve the system productivity.

Theorem 3. For a DACT with (PM1, (PM2, PM3)k), if there exists a value f ∈ N such that k = 3f
+1 holds, then the system can be scheduled by a 1-WP schedule.

Proof. Starting from S1 = {W1(1), W(ϑ1), W(2k + 1), R3(W(ϑ2))}, S2 = {W2(1), W1(2), W(ϑ2),
R3(W(ϑ1 + 1))} is reached after a global cycle. Thus, the tool then evolves in local cycles.
After (k − 1) local cycles, wafer W1 is just being processed at PM2 for the (2f + 2)-th
operation. Then, after a global cycle, the robot picks W1 from PM2, moves to PM3, and
stays there. By a 1-WP schedule, the following state evolution is for local cycles. After (k
− 1) local cycles, the robot is at PM3 with W1 being held to be placed into the PM for the
(4f + 3)-th operation. After the wafer is placed into the PM, W1 is processed in PM3 for the
(4f + 3)-th operation, and then the system just enters the next global cycle. Then, after a
global cycle, the system evolves for (k − 1) local cycles. After that, W1 is processed at PM3
for the (6f + 3)-th operation. Due to k = 3f + 1, (6f + 3) = 2k + 1 holds, implying that W1
can be returned to LLs in the next global cycle. Further, by repeatedly performing (k − 1)
local cycles and a global cycle, wafers (i.e., Wd, d ∈ N\{1}) are continuously completed and
returned to LLs. Hence, the system can be scheduled by a 1-WP schedule. �

In this case, for a DACT with (PM1, (PM2, PM3)k), k ≥ 2, if k is known and there exists
a value f ∈ N such that k = 3f + 1 holds, Theorem 3 provides a simple way to find a state
(i.e., S2 = {W2(1), W1(2), W(4f + 3), R3(W(2f + 3))}) starting from which a 1-WP schedule
exists. Then, for the cases where a 1-WP schedule is applicable to a DACT with (PM1, (PM2,
PM3)k), k ≥ 2, the cycle time is analyzed next.

For DACTs, in Step i (PMi), a swap operation makes a processed wafer removed from
the PM and a new wafer placed into the PM. Then, the PM starts to process the wafer.
When the robot comes to the PM again to perform a swap operation, the wafer in the PM is
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picked up, and a new wafer is placed into the PM again. Thus, the time taken to complete a
wafer in Step i (i.e., the workload) is

Π i = ρi + λ, i ∈ {1, 2, 3} (1)

Let ϕ and ψ denote the time taken for a local and a global cycle without considering
the robot waiting time, respectively. Then, they can be calculated as follows.

ϕ = 2λ + 2µ (2)

ψ = α + β + 3λ + 4µ (3)

Further, let Πlocal = max{Π2, Π3, ϕ} and Π1-WP be the cycle time of a DACT with (PM1,
(PM2, PM3)k), k ≥ 2, if a 1-WP schedule exists. Then, according to the cycle time analysis
for a 1-WP schedule in [5], if Π1 ≤ (k − 1)Πlocal + ψ, Corollaries 1 and 2 are given below.

Corollary 1. For a DACT with (PM1, (PM2, PM3)k), when there does not exist a value f ∈ N such
that k = 3f holds, by a 1-WP schedule, if Π1 ≤ (k − 1)Πlocal + ψ and max{Π2, Π3} ≤ ψ, the cycle
time is

Π1-WP = (k − 1)Πlocal + ψ (4)

In fact, the time taken for the (k − 1) local cycles is (k − 1)Πlocal. In this case, due to
Π1 ≤ (k − 1)Πlocal + ψ and max{Π2, Π3} ≤ ψ, when the robot comes to PMi, i ∈ {1, 2, 3}, the
PM has completed the wafer processing. Thus, the robot can perform a swap operation
immediately such that there is no robot waiting in the global cycle. Therefore, the time
taken for the global cycle is ψ. Hence, in this case, (4) holds.

Corollary 2. For a DACT with (PM1, (PM2, PM3)k), when there does not exist a value f ∈ N such
that k = 3f holds, by a 1-WP schedule, if Π1 ≤ (k − 1)Πlocal + ψ and max{Π2, Π3} > ψ, the cycle
time is

Π1-WP = kΠlocal (5)

In this case, due to Π1 ≤ (k − 1)Πlocal + ψ, it implies that when the robot comes to PM1,
PM1 has completed the wafer processing. Thus, the robot can perform a swap operation
immediately. However, due to max{Π2, Π3} > ψ, it implies that the time taken for the global
cycle is max{Π2, Π3}. Therefore, (5) holds. Further, if Π1 > (k − 1)Πlocal + ψ, according to
the cycle time analysis for a 1-WP schedule in [5], Corollaries 3–5 are given below.

Corollary 3. For a DACT with (PM1, (PM2, PM3)k), when there does not exist a value f ∈ N such
that k = 3f holds, by a 1-WP schedule, if kΠlocal ≥ Π1 > (k − 1)Πlocal +ψ and max{Π2, Π3} > ψ,
the cycle time is

Π1-WP = kΠlocal (6)

In this case, due to Π1 > (k − 1)Πlocal + ψ, it implies that when the robot comes to PM1,
the robot has to wait for some time since the PM has not completed the wafer processing
yet at this time. The robot waiting time at PM1 should be Π1 − [(k − 1)Πlocal + ψ]. Without
loss of generality, in this case, let Π3 = max{Π2, Π3} = Πlocal > ψ. This means that in a global
cycle, the total robot waiting time should be Πlocal − ψ at least. Note that Π1 − [(k− 1)Πlocal
+ ψ] ≤ kΠlocal − [(k − 1)Πlocal + ψ] = Πlocal − ψ, indicating that, in a global cycle, although
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the robot has waited at PM1 for Π1 − [(k − 1)Πlocal + ψ] time units, it still needs to wait at
PM3 such that the time taken for the global cycle is Πlocal. Therefore, (6) holds.

Corollary 4. For a DACT with (PM1, (PM2, PM3)k), when there does not exist a value f ∈ N such
that k = 3f holds, by a 1-WP schedule, if Π1 > kΠlocal and max{Π2, Π3} > ψ, the cycle time is

Π1-WP = Π1 (7)

Corollary 5. For a DACT with (PM1, (PM2, PM3)k), when there does not exist a value f ∈ N such
that k = 3f holds, by a 1-WP schedule, if Π1 > (k − 1)Πlocal + ψ and max{Π2, Π3} ≤ ψ, the cycle
time is

Π1-WP = Π1 (8)

For the cases given by Corollaries 4 and 5, in a global cycle, when the robot comes to
PM1, the robot must wait there since the PM has not completed the wafer processing yet.
However, when the robot comes to PMi, i ∈ {2, 3}, the wafer in the PM has been completed,
meaning that the workload at PM1 dominates the system cycle time. Therefore, (7) and (8)
for Corollaries 4 and 5 hold, respectively.

Besides, in the cases given by Corollaries 1–5, a 1-WP schedule can achieve the lower
bound of the cycle time, i.e., it is optimal in terms of productivity. Up to now, the cycle
time analysis has been done in all cases where a 1-WP schedule is applicable to a DACT
with (PM1, (PM2, PM3)k). Based on the above analysis, to apply a 1-WP schedule, the key
is to get the desired state of the system shown above, then, by starting from this state, the
system can evolve with the 1-WP schedule.

5. Two Novel Scheduling Methods

As above-discussed, given the number k of revisiting times, if there is an f ∈ N such
that k = 3f, then no 1-WP schedule can be found. Thus, in this case, there is an issue of how
to schedule the system so as to improve productivity. This section aims to tackle this issue
by proposing two novel scheduling methods.

For a DACT with (PM1, (PM2, PM3)k), k ≥ 2, when the system evolves from local
cycles to a global cycle, there might be wafer delay time in PMs involved in the reentrant
process in the global cycle such that the system cycle time cannot reach its lower bound [33].
Thus, after the local cycles, if the number of global cycles can be decreased, the system
cycle time can be improved. With this idea, the first scheduling method is proposed.

5.1. Scheduling Method One

Without loss of generality, the scheduling analysis is conducted for a DACT with
(PM1, (PM2, PM3)3). Then, by the proposed method, a DACT with (PM1, (PM2, PM3)3)
evolves as follows: S1 = {W4(1), W3(2), W1(5), R3(W2(5))} → S2 = {W4(1), W1(6), W2(5),
R3(W3(3))}→ S3 = {W4(1), W2(6), W3(3), R3(W1(7))}→ S4 = {W4(1), W3(4), W1(7), R3(W2(7))}
→ S5 = {W5(1), W4(2), W2(7), R3(W3(5))}→ S6 = {W6(1), W5(2), W3(5), R3(W4(3))}→ S7 =
{W6(1), W3(6), W4(3), R3(W5(3))}→ S8 = {W6(1), W4(4), W5(3), R3(W3(7))}→ S9 = {W6(1),
W5(4), W3(7), R3(W4(5))}→ S10 = {W7(1), W6(2), W4(5), R3(W5(5))} with S1 and S10 being
equivalent. Thus, a period from S1 to S10 is formed. Note that to reach S2 from S1, S3
from S2, S4 from S3, S7 from S6, S8 from S7, and S9 from S8, robot task sequence σ2 for a
local cycle is performed, respectively. To reach S5 from S4, S6 from S5, and S10 from S9,
σ5 = 〈SWP3 → M30 → PL0 → PI0 → M01 → SWP1 → M12 → SWP2 → M23〉 is executed,
respectively. Note that σ5 is a global cycle.

During a period from S1 to S10, before two global cycles (i.e., the first global cycle
from S4 to S5 and the second one from S5 to S6), three local cycles are performed at first.
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Then, there are three local cycles again, and they are followed by one global cycle (i.e.,
the third global cycle from S9 to S10). Thus, after the local cycles, the number of global
cycles followed is decreased by comparing with the 3-WP schedule presented in [33,35].
Moreover, in each global cycle, one wafer is returned to LLs. Totally, three wafers are
returned to LLs in a period. Therefore, it is also a 3-WP schedule. However, it is different
from the 3-WP schedule presented in [33,35], by which three wafers are completed in three
consecutive global cycles in a period. Thus, it is a new 3-WP schedule, called an N3-WP1
schedule in short. Let ΠN3-WP1 denote the system cycle time by an N3-WP1 schedule.

Theorem 4. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP1 schedule, if Π1 ≤ 3Πlocal +
ψ and max{Π2, Π3} ≤ ψ, the cycle time is

ΠN3-WP1 =

{
2Πlocal + ψ, i f ψ ≥ Π1
6Πlocal+2ψ+Π1

3 , i f ψ < Π1
(9)

Proof. From S1 to S4, there are three local cycles that take 3Πlocal time units. After that, the
system performs two global cycles. Due to Π1 ≤ 3Πlocal + ψ and max{Π2, Π3} ≤ ψ, when
the robot arrives at PMi, i ∈ {1, 2, 3}, to pick up a wafer in the first global cycle from S4 to
S5, the wafer should have been processed and can be picked up from the PM immediately.
Therefore, the robot does not need to wait at PMi, i ∈ {1, 2, 3}, such that ψ time units are
needed for the first global cycle. Then, if ψ < Π1, the next global cycle from S5 to S6 takes
Π1 time units, and otherwise, it takes ψ time units. From S6 to S9, the three local cycles take
3Πlocal time units. For the global cycle from S9 to S10, ψ time units are required due to Π1
≤ 3Πlocal + ψ. Thus, by an N3-WP1 schedule, if ψ ≥ Π1, a period takes 6Πlocal + 3ψ time
units, and otherwise it takes 6Πlocal + 2ψ + Π1 time units. Therefore, (9) holds. �

In this case, when ψ < Π1, the result obtained by a 3-WP schedule is improved. Let
ω1i, ω2i, and ω3i, i ∈ {1, 2, 3}, denote the robot waiting time before a swap operation at PM1,
PM2 and PM3 in the i-th global cycle in a period, respectively. Moreover, let χ = Π1 − Πlocal.
The following result is achieved.

Theorem 5. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP1 schedule, if Π1 ≤ 3Πlocal +
ψ and max{Π2, Π3} > ψ, the cycle time is

ΠN3-WP1 =

{
3Πlocal , i f Πlocal − ψ ≥ χ

3Πlocal +
χ+ψ−Πlocal

3 , i f Πlocal − ψ < χ
(10)

Proof. By Theorem 4, for the three local cycles from S1 to S4, 3Πlocal time units are required.
After that, the system undergoes two global cycles. Due to Π1 ≤ 3Πlocal + ψ, when the
robot arrives at PM1 to pick up a wafer in the first global cycle from S4 to S5, the wafer
should have been processed and can be picked up from the PM immediately. Therefore,
ω11 = 0. Further, due to max{Π2, Π3} > ψ, ω21 + ω31 = Πlocal − ψ. In this way, the wafer in a
PM with a higher workload of PM2 and PM3 can be picked up once it is processed. Thus,
Πlocal time units are needed for the first global cycle. In the second global cycle from S5 to
S6, when the robot comes to PM1, there are two cases: (1) Πlocal − ψ ≥ χ and (2) Πlocal − ψ
< χ. In the first case, before the robot can pick a wafer up from PM1, it should wait at the
PM for ω12 = Π1 − (ψ + ω21 + ω31) = Π1 − Πlocal = χ time units if χ ≥ 0, or ω12 = 0 if χ < 0.
Then, due to max{Π2, Π3} > ψ, ω22 + ω32 = Πlocal − ψ − ω12 = Πlocal − ψ − max(χ, 0) ≥ 0,
implying that a wafer in a PM with the higher workload of PM2 and PM3 can be picked up
once it is processed. Thus, the time taken for the second global cycle is Πlocal in this case. In
Case (2), before the robot can pick a wafer up from PM1, it should wait at the PM for ω12 =
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Π1 − (ψ + ω21 + ω31) = Π1 − Πlocal = χ > Πlocal − ψ > 0 time units. Further, when the robot
comes to PM2 or PM3 to pick up a wafer, the wafer has already been processed due to Πlocal
− ψ < χ = ω12 (i.e., Πlocal < ω12 + ψ). Thus, for the second global cycle, it spends ω12 + ψ =
χ + ψ time units. Similarly, the time taken for the process from S6 to S10 is 4Πlocal. Hence,
(10) holds. �

In this case, when Πlocal − ψ ≥ χ, the cycle time is optimal. Furthermore, when Πlocal
− ψ < χ, the result obtained by a 3-WP schedule is improved.

Theorem 6. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP1 schedule, if 4Πlocal ≥ Π1 >
3Πlocal + ψ and max{Π2, Π3} > ψ, the cycle time is

ΠN3-WP1 = (Π1 + 7Πlocal + ψ + max{2Π1 − ψ − 7Πlocal, 0})/3 (11)

Proof. Note that in the second global cycle from S5 to S6, due to Π1 > 3Πlocal + ψ, ω22 +
ω32 = 0 should hold. Thus, from S6 to S10, it takes 4Πlocal time units due to 4Πlocal ≥ Π1 >
3Πlocal + ψ and max{Π2, Π3} > ψ. Further, in the third global cycle, ω13 = Π1 − (3Πlocal + ψ)
and ω23 + ω33 = Πlocal − ω13 − ψ = 4Πlocal − Π1.

By Theorem 4, from S1 to S4, it takes 3Πlocal time units. Further, with ω23 + ω33 =
4Πlocal − Π1, during the first global cycle from S4 to S5, ω11 = max(Π1 − (3Πlocal + ψ) −
(ω23 + ω33), 0) = max(Π1 − (3Πlocal + ψ) − (4Πlocal − Π1), 0) = max{2Π1 − ψ − 7Πlocal, 0}
and ω21 + ω31 = Πlocal − ψ − max{2Π1 − ψ − 7Πlocal, 0}. If 2Π1 − ψ − 7Πlocal > 0, then
Πlocal − ψ − max{2Π1 − ψ − 7Πlocal, 0} = Πlocal − ψ − 2Π1 + ψ + 7Πlocal = 8Πlocal − 2Π1 ≥
0, i.e., ω21 + ω31 ≥ 0. Therefore, the time taken for the first global cycle is ψ + ω11 + ω21 +
ω31 = Πlocal.

In the second global cycle from S5 to S6, ω12 = Π1 − Πlocal + max{2Π1 − ψ − 7Πlocal, 0}
> 2Πlocal + ψ + max{2Π1 − ψ − 7Πlocal, 0} holds due to Π1 > 3Πlocal + ψ. Thus, ω22 + ω32 =
0. Therefore, the time taken for this global cycle is ω12 + ψ = Π1 − Πlocal + max{2Π1 − ψ −
7Πlocal, 0} + ψ.

Thus, the time taken for a period from S1 to S10 is Π1 + 7Πlocal + ψ + max{2Π1 − ψ −
7Πlocal, 0}. With three wafers being completed in a period, the cycle time can be obtained
by (11). �

Similar to Corollaries 4 and 5, the following two theorems are presented. Due to the
space limit, their proofs are omitted.

Theorem 7. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP1 schedule, if Π1 > 4Πlocal and
max{Π2, Π3} > ψ, the cycle time is

ΠN3-WP1 = Π1 (12)

Theorem 8. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP1 schedule, if Π1 > 3Πlocal +
ψ and max{Π2, Π3} ≤ ψ, the cycle time is

ΠN3-WP1 = Π1 (13)

Note that in the cases presented by Theorems 7 and 8, the cycle time is optimal.

5.2. Scheduling Method Two

Up to now, the cycle time analysis for a DACT with (PM1, (PM2, PM3)3) by an N3-WP1
schedule has been done. With the N3-WP1 schedule, in some cases, the productivity of
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the system is improved over the existing 3-WP schedule. However, in some other cases,
the optimal cycle time cannot be achieved. Thus, we present another scheduling method
by which a DACT with (PM1, (PM2, PM3)3) evolves as follows: S1 = {W4(1), W3(2), W2(3),
R3(W1(7))}→ S2 = {W4(1), W2(4), W1(7), R3(W3(3))}→ S3 = {W5(1), W4(2), W3(3), R3(W2(5))}
→ S4 = {W5(1), W3(4), W2(5), R3(W4(3))}→ S5 = {W5(1), W2(6), W4(3), R3(W3(5))}→ S6 =
{W5(1), W4(4), W3(5), R3(W2(7))}→ S7 = {W5(1), W3(6), W2(7), R3(W4(5))}→ S8 = {W6(1),
W5(2), W4(5), R3(W3(7))}→ S9 = {W6(1), W4(6), W3(7), R3(W5(3))}→ S10 = {W7(1), W6(2),
W5(3), R3(W4(7))}. Since S1 and S10 are equivalent, a period is formed by this state evolution.
In the above state evolution, to realize the process from S1 to S2, S3 to S4, S4 to S5, S5 to
S6, S6 to S7, and S8 to S9, robot task sequence σ1 for a local cycle is executed, respectively,
while to reach S3 from S2, S8 from S7, and S10 from S9, robot task sequence σ5 for a global
cycle is executed, respectively.

During the period from S1 to S10, at first, there is a local cycle followed by a global cycle
(i.e., the first global cycle from S2 to S3). Then, there are four local cycles and then a global
cycle (i.e., the second global cycle from S7 to S8) is followed. After that, there is a local cycle
followed by a global cycle (i.e., the third global cycle from S9 to S10) again. In each global
cycle, one wafer is completed. Thus, during the period, it is also a 3-WP schedule that is
different from the one presented in [33,35]. In this work, the second scheduling method
is called an N3-WP2 schedule in short. Let ΠN3-WP2 denote the system cycle time under
an N3-WP2 schedule. Based on Corollary 1 and Theorem 4, we present Theorem 9, while
based on Corollary 2 and Theorem 5, we can get Theorem 10. The proofs of Theorems 9
and 10 are omitted due to the space limit.

Theorem 9. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP2 schedule, if Π1 ≤ Πlocal + ψ
and max{Π2, Π3} ≤ ψ, the cycle time is

ΠN3-WP2 = 2Πlocal + ψ (14)

Theorem 10. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP2 schedule, if Π1 ≤ Πlocal +
ψ and max{Π2, Π3} > ψ, the cycle time is

ΠN3-WP2 = 3Πlocal (15)

In these two cases, as presented in Theorems 9 and 10, the cycle time cannot be
shortened anymore, implying that this is the lower bound. For an N3-WP2 schedule, ω1i,
ω2i, and ω3i, I ∈ {1, 2, 3}, are also used to denote the robot waiting time before a swap
operation at PM1, PM2, and PM3 in the i-th global cycle during a period, respectively. Then,
the following result is presented.

Theorem 11. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP2 schedule, if 2Πlocal ≥ Π1 >
Πlocal + ψ and max{Π2, Π3} > ψ, the cycle time is

ΠN3-WP2 = 3Πlocal (16)

Proof. Due to 2Πlocal ≥ Π1 > Πlocal + ψ, the time taken for the state evolution from S3 to S8
is 5Πlocal. Further, ω22 + ω32 = 0 holds. For the local cycle from S8 to S9, it takes Πlocal time
units. In the global cycle from S9 to S10, when the robot comes to PM1, due to Π1 > Πlocal +
ψ, it has to wait there for ω13 = Π1 − (Πlocal + ψ) time units. Further, we have ω23 + ω33 =
Πlocal − ψ − ω13 = 2Πlocal − Π1 ≥ 0. Then, the time taken for the global cycle from S9 to
S10 is ψ + ω13 + ω23 + ω33 = Πlocal. Similarly, for the local cycle from S1 to S2, it takes Πlocal
time units. For the global cycle from S2 to S3, when the robot comes to PM1, due to Π1 >
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Πlocal + ψ, it has to wait there for ω11 = max(Π1 − (Πlocal + ψ) − (ω23 + ω33), 0) = max(Π1
− (Πlocal + ψ) − (2Πlocal − Π1), 0) = max(2Π1 − 3Πlocal − ψ, 0) time units. Then, there are
two cases: (1) ω11 = 0 and (2) ω11 = 2Π1 − 3Πlocal − ψ. In Case (1), ω21 + ω31 = Πlocal − ψ,
leading to that the time taken for the global cycle from S2 to S3 is ψ + ω11 + ω21 + ω31 =
Πlocal. In Case (2), ω21 + ω31 = Πlocal − ψ − ω11 = Πlocal − ψ − (2Π1 − 3Πlocal − ψ) = 4Πlocal
− 2Π1 ≥ 0 due to 2Πlocal ≥ Π1. Thus, in this case, the time taken for the global cycle from
S2 to S3 is ψ + ω11 + ω21 + ω31 = Πlocal as well. Therefore, it takes 9Πlocal time units for the
period from S1 to S10. With three wafers completed in the period, (16) holds. �

The cycle time cannot be shortened in this case either, i.e., it is optimal. Further, the
following result for another case can be obtained.

Theorem 12. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP2 schedule, if 4Πlocal ≥ Π1 >
2Πlocal and max{Π2, Π3} > ψ, the cycle time is

ΠN3-WP2 =

{
3Πlocal , i f 5Πlocal − 2Π1 − ψ ≥ 0

4Πlocal+ψ+2Π1
3 , i f 5Πlocal − 2Π1 − ψ < 0

(17)

Proof. For the four local cycles from S3 to S7, it takes 4Πlocal time units. With 4Πlocal ≥ Π1 >
2Πlocal, 4Πlocal + ψ > Π1 holds. Thus, during the global cycle from S7 to S8, when the robot
comes to PM1, the robot does not need to wait before swapping at the PM, i.e., ω12 = 0.
Further, ω22 + ω32 = Πlocal − ψ, resulting in that the time taken for the global cycle from S7
to S8 is ψ + ω12 + ω22 + ω32 = Πlocal. For the local cycle from S8 to S9, it takes Πlocal time
units. In the global cycle from S9 to S10, when the robot comes to PM1, it has to wait there
for ω13 = Π1 − Πlocal − ψ − (ω22 + ω32) = Π1 − 2Πlocal > 0 time units due to 4Πlocal ≥ Π1 >
2Πlocal. Further, we have ω23 + ω33 = max(Πlocal − (ω13 + ψ), 0) = max(Πlocal − (Π1 − 2Πlocal
+ ψ), 0) = max(3Πlocal − Π1 − ψ, 0). Then, there are two cases as follows.

Case 1: max(3Πlocal − Π1 − ψ, 0) = 3Πlocal − Π1 − ψ. In this case, the time taken for
the global cycle from S9 to S10 is ψ + ω13 + ω23 + ω33 = ψ + Π1 − 2Πlocal + 3Πlocal − Π1 −
ψ = Πlocal. Then, the time taken for the local cycle from S1 to S2 is Πlocal. Furthermore, in
the global cycle from S2 to S3, when the robot arrives at PM1, it has to wait there for ω11
= Π1 − Πlocal − ψ − (ω23 + ω33) = Π1 − Πlocal − ψ − (3Πlocal − Π1 − ψ) = 2Π1 − 4Πlocal >
0 time units due to 4Πlocal ≥ Π1 > 2Πlocal. Thus, ω21 + ω31 = max(Πlocal − (ω11 + ψ), 0) =
max(Πlocal − (2Π1 − 4Πlocal + ψ), 0) = max(5Πlocal − 2Π1 − ψ, 0). Then, there are two cases
as follows again. Case 1.1: max(5Πlocal − 2Π1 − ψ, 0) = 5Πlocal − 2Π1 − ψ. In this case, the
time taken for the global cycle S2 to S3 is ψ + ω11 + ω21 + ω31 = ψ + 2Π1 − 4Πlocal + 5Πlocal
− 2Π1 − ψ = Πlocal. Hence, the time taken for a period from S1 to S10 is 9Πlocal in this case.
Case 1.2: max(5Πlocal − 2Π1 − ψ, 0) = 0. In this case, the time taken for the global cycle
from S2 to S3 is ψ + ω11 + ω21 + ω31 = ψ + 2Π1 − 4Πlocal. Hence, the time taken for a period
from S1 to S10 is 4Πlocal + ψ + 2Π1 in this case.

Case 2: max(3Πlocal − Π1 − ψ, 0) = 0. In this case, the time taken for the global cycle
from S9 to S10 is ψ + ω13 + ω23 + ω33 = ψ + Π1 − 2Πlocal. Then, the time taken for the local
cycle from S1 to S2 is Πlocal. Furthermore, in the global cycle from S2 to S3, when the robot
arrives at PM1, it has to wait there for ω11 = Π1 − Πlocal − ψ − (ω23 + ω33) = Π1 − Πlocal
− ψ > 0 time units. Thus, ω21 + ω31 = max(Πlocal − (ω11 + ψ), 0) = max(2Πlocal − Π1, 0) = 0.
Therefore, the time taken for the global cycle from S2 to S3 is ψ + ω11 + ω21 + ω31 = Π1 −
Πlocal. Hence, the time taken for a period from S1 to S10 is 4Πlocal + ψ + 2Π1 in this case.

In summary, we conclude that the theorem holds. �

Therefore, by an N3-WP2 schedule, we ensure that, in the case with 5Πlocal − 2Π1 − ψ
≥ 0, the cycle time is optimal. Further, by Theorem 12, the following result can be obtained.
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Theorem 13. For a DACT with (PM1, (PM2, PM3)3), by an N3-WP2 schedule, if 3Πlocal + ψ ≥
Π1 > Πlocal + ψ and max{Π2, Π3} ≤ ψ, the cycle time is

ΠN3-WP2 = (4Πlocal + 2Π1 + ψ)/3 (18)

Proof. For the four local cycles from S3 to S7, it takes 4Πlocal time units. With 3Πlocal + ψ
≥ Π1, 4Πlocal + ψ > Π1 holds. Thus, during the global cycle from S7 to S8, when the robot
comes to PM1, the robot does not need to wait before swapping at the PM, i.e., ω12 = 0.
Further, ω22 + ω32 = 0 due to max{Π2, Π3} ≤ ψ. Therefore, the time taken for the global
cycle from S7 to S8 is ψ. For the local cycle from S8 to S9, it takes Πlocal time units. During
the global cycle from S9 to S10, when the robot comes to PM1, it has to wait there for ω13 =
Π1 − Πlocal − ψ − (ω22 + ω32) = Π1 − Πlocal − ψ > 0 time units. Further, ω23 + ω33 = 0 due
to max{Π2, Π3} ≤ ψ. Thus, the time taken for the global cycle from S9 to S10 is ψ + ω13 +
ω23 + ω33 = Π1 − Πlocal. Similarly, the time taken for the local cycle from S1 to S2 and the
global cycle from S2 to S3 is Πlocal and Π1 − Πlocal, respectively. Thus, the time taken for the
period from S1 to S10 is 4Πlocal + ψ + 2Π1. Therefore, with three wafers being completed in
such a period, the cycle time can be obtained by (18), or the theorem holds. �

Based on the above development, Algorithm 1 is presented to determine one of the
schedules N3-WP1 and N3-WP2 to be applied to the system to maximize productivity.

Algorithm 1: For a DACT with (PM1, (PM2, PM3)3), the following algorithm is applied to choose
one of the N3-WP1 and N3-WP2 schedules for the tool.

Input: ρ1, ρ2, ρ3, α, µ, β, and λ

Output: The adopted schedule
1. Calculate ψ, Π1, Π2, Π3, and Πlocal;
2. If max{Π2, Π3} ≤ ψ

3. If Π1 ≤ Πlocal + ψ

4. The N3-WP2 schedule is applied, and the cycle time is calculated by Theorem 9;
5. If Πlocal + ψ < Π1 ≤ 3Πlocal + ψ

6. Calculate ΠN3-WP1 by Theorem 4 and ΠN3-WP2 by Theorem 13;
7. If ΠN3-WP1 < ΠN3-WP2
8. The N3-WP1 schedule is applied;
9. Else
10. The N3-WP2 schedule is applied;
11. If Π1 > 3Πlocal + ψ

12. The N3-WP1 schedule is applied, and the cycle time is calculated by Theorem 8;
13. Else
14. If Π1 ≤ Πlocal + ψ

15. The N3-WP2 schedule is applied, and the cycle time is calculated by Theorem 10;
16. If Πlocal + ψ < Π1 ≤ 2Πlocal
17. The N3-WP2 schedule is applied, and the cycle time is calculated by Theorem 11;
18. If 2Πlocal < Π1 ≤ 2.5Πlocal − 0.5ψ

19. The N3-WP2 schedule is applied, and the cycle time is calculated by Theorem 12;
20. If 2.5Πlocal − 0.5ψ < Π1 ≤ 3Πlocal + ψ

21. Calculate ΠN3-WP1 by Theorem 5 and ΠN3-WP2 by Theorem 12;
22. If ΠN3-WP1 < ΠN3-WP2
23. The N3-WP1 schedule is applied;
24. Else
25. The N3-WP2 schedule is applied;
26. If 3Πlocal + ψ < Π1 ≤ 4Πlocal
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27. Calculate ΠN3-WP1 by Theorem 6 and ΠN3-WP2 by Theorem 12.
28. If ΠN3-WP1 < ΠN3-WP2
29. The N3-WP1 schedule is applied;
30. Else
31. The N3-WP2 schedule is applied;
32. If Π1 > 4Πlocal
33. The N3-WP1 schedule is applied, and the cycle time can be obtained by Theorem 7;

Note that, in the case with 4Πlocal < Π1 and max{Π2, Π3} > ψ, by Theorem 7, an N3-WP1
schedule can achieve the minimum system cycle time, while in the case with Π1 > 3Πlocal
+ ψ and max{Π2, Π3} ≤ ψ, by Theorem 8, an N3-WP1 schedule can achieve the minimum
system cycle time as well. Thus, we do not present the cycle time analysis in both cases
under an N3-WP2 schedule. Now, we have completed the cycle time analysis for a DACT
with (PM1, (PM2, PM3)3) by the N3-WP1 and N3-WP2 schedules.

Based on Theorems 10–12, in the case with 2.5Πlocal − 0.5ψ ≥ Π1 and max{Π2, Π3} >
ψ, an N3-WP2 schedule is optimal. Based on Theorem 7, in the case with Π1 > 4Πlocal and
max{Π2, Π3} > ψ, an N3-WP1 schedule is optimal. Based on Theorem 9, in the case with
Π1 ≤ Πlocal + ψ and max{Π2, Π3} ≤ ψ, an N3-WP2 schedule is optimal. Based on Theorem
8, in the case with Π1 > 3Πlocal + ψ and max{Π2, Π3} ≤ ψ, an N3-WP1 schedule is optimal.
In other cases, for the N3-WP1 and N3-WP2 schedule, the one with the minimum cycle
time can be applied to a DACT with (PM1, (PM2, PM3)3). This is what Algorithm 1 does.
Besides, in such cases, the adopted scheduling method cannot ensure optimality in terms
of the cycle time. This is also the limitation of this work.

Note that by extending the N3-WP1 and N3-WP2 schedules, similar schedules can
be developed for a DACT with (PM1, (PM2, PM3)k), k ∈ {3f | f ∈ N\{1}}. Furthermore, the
cycle time can be analyzed in a similar way. Besides, according to the investigation from
enterprises of integrated circuit high-end technological equipment, for DACTs with k-time
reentrant processes, k is normally no greater than five. Therefore, the obtained results in
this work match the practical demand well.

6. Implementation of the Proposed Methods and Illustrative Examples
6.1. Implementation of the Proposed Methods

For a DACT with (PM1, (PM2, PM3)k), k ≥ 2 and k 6= 3f, f ∈ {1, 2 . . . }, based on
Theorems 1 and 3, a 1-WP schedule exists for the tool such that the lower bound of the
system cycle time can be achieved. Let W0 denote a virtual wafer and assume that a tool
starts from its idle state. To implement the 1-WP schedule for a DACT, virtual wafers are
introduced into the tool, and we assume that at the initial state, each PM is processing a
virtual wafer and also the robot is holding a wafer.

For the case that a DACT with (PM1, (PM2, PM3)k), k = 3f +2 and f ∈ N ∪ {0}, Theorem
1 provides a simple way to find a state (i.e., {W2(1), W1(2), W(2f + 3), R3(W(4f + 5))}) starting
from which a 1-WP schedule exists. By introducing virtual wafers into the tool, let S0 =
{W0(1), W0(2), W0(3), R3(W0(5))} be the initial (idle) state of the tool. Then, by the swap
strategy, the tool can evolve into a state in which all virtual wafers are removed from the
tool. At this time, the wafers in the tool are all real ones. In this way, the 1-WP schedule is
implemented.

For the case that a DACT with (PM1, (PM2, PM3)k), k = 3f +1 and f ∈ N, Theorem 3
provides a simple way to find a state (i.e., {W2(1), W1(2), W(4f + 3), R3(W(2f + 3))}) starting
from which a 1-WP schedule exists. By introducing virtual wafers into the tool, let S0 =
{W0(1), W0(2), W0(7), R3(W0(5))} be the initial (idle) state of the tool. Then, by the swap
strategy, the tool can evolve into a state in which all virtual wafers are removed from
the tool, and the wafers in the tool are all real ones. In this way, the 1-WP schedule is
implemented.

For a DACT with (PM1, (PM2, PM3)k), k = 3f and f ∈ N, based on Theorem 2, a
1-WP schedule does not exist. In this case, this work presents two methods (an N3-WP1
schedule and an N3-WP2 schedule) to operate the tool for productivity improvement. To
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implement the N3-WP1 schedule, by introducing virtual wafers, let S0 = {W0(1), W0(2),
W0(5), R3(W0(5))} be the initial (idle) state of the tool. Then, by the swap strategy, the tool
can evolve into a state in which all virtual wafers are removed from the tool, and the wafers
in the tool are all real ones. To implement the N3-WP2 schedule, by introducing virtual
wafers, let S0 = {W0(1), W0(2), W0(3), R3(W0(7))} be the initial (idle) state of the tool. Then,
by the swap strategy, the tool can evolve into a state in which all virtual wafers are removed
from the tool, and the wafers in the tool are all real ones. In this way, the N3-WP1 schedule
and N3-WP2 schedule are implemented.

6.2. Illustrative Examples

Now, several examples are presented to demonstrate the obtained results in this work.
Among them, Examples 2–4 come from [35]. Note that Π3-WP represents the system cycle
time obtained by a 3-WP schedule.

Example 1. For a DACT with (PM1, (PM2, PM3)5), the wafer processing time at PM1, PM2, and
PM3 is 80 s, 35 s, and 50 s (i.e., ρ1 = 80 s, ρ2 = 35 s, and ρ3 = 50 s), respectively, and α = µ = β =
3 s and λ = 8 s.

For this example, k = 3 × 1 + 2 with f = 1, Π1 = 88 s, Π2 = 43 s, Π3 = 58 s, and ψ =
42 s. By applying a 3-WP schedule, Π3-WP = (290 + 44/3) s ≈ 304.67 s. However, if a 1-WP
schedule is applied, it follows from Corollary 2 that Π1-WP = 5Π3 = 290 s. Obviously, the
1-WP schedule outperforms the 3-WP schedule.

Example 2. For a DACT with (PM1, (PM2, PM3)3), ρ1 = 37 s, ρ2 = 22 s, ρ3 = 32 s, α = µ = β =
4 s, and λ = 8 s.

For this example, Π1 = 45 s, Π2 = 30 s, Π3 = 40 s, and ψ = 48 s. By using a 3-WP
schedule, we get Π3-WP = 128 s. If an N3-WP1 schedule is applied, by Theorem 4, we
get ΠN3-WP1 = 128 s, while if an N3-WP2 schedule is applied, by Theorem 9, we also get
ΠN3-WP2 = 128 s. Thus, the three scheduling methods can obtain the same results.

Example 3. For a DACT with (PM1, (PM2, PM3)3), ρ1 = 50 s, ρ2 = 22 s, ρ3 = 32 s, α = µ = β =
4 s, and λ = 8 s.

For this example, Π1 = 58 s, Π2 = 30 s, Π3 = 40 s, and ψ = 48 s. By using a 3-WP
schedule, Π3-WP = 404/3 s ≈ 134.67 s. However, if an N3-WP1 schedule is applied, by
Theorem 4, ΠN3-WP1 = 394/3 s ≈ 131.33 s. If an N3-WP2 schedule is applied, by Theorem
9, ΠN3-WP2 = 128 s. Thus, in this case, an N3-WP2 schedule should be applied since it can
achieve the best performance among the three schedules.

Example 4. For a DACT with (PM1, (PM2, PM3)3), ρ1 = 450 s, ρ2 = 200 s, ρ3 = 250 s, α = µ = β
= 3 s, and λ = 8 s.

For this example, Π1 = 458 s, Π2 = 208 s, Π3 = 258 s, and ψ = 42 s. By using a 3-WP
schedule, Π3-WP = (774 + 184/3) s ≈ 835.33 s. However, if an N3-WP1 schedule is applied,
by Theorem 5, ΠN3-WP1 = 774 s. If an N3-WP2 schedule is applied, by Theorem 11, ΠN3-WP2
= 774 s. Thus, in this case, we can choose either N3-WP1 or N3-WP2 to improve the cycle
time by 7.34% in comparison with a 3-WP schedule.

Example 5. For a DACT with (PM1, (PM2, PM3)3), ρ1 = 200 s, ρ2 = 45 s, ρ3 = 50 s, α = µ = β =
2 s, and λ = 5 s.

In this example, Π1 = 205 s, Π2 = 50 s, Π3 = 55 s, and ψ = 27 s. By using a 3-WP
schedule, we have Π3-WP = (165 + 272/3) s ≈ 255.67 s. However, if an N3-WP1 schedule is
applied, by Theorem 6, ΠN3-WP1 = 617/3 s ≈ 205.67 s. If an N3-WP2 schedule is applied, by
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Theorem 12, ΠN3-WP2 = 219 s. Thus, in this case, the N3-WP1 schedule should be applied,
and it improves the cycle time by 19.56% in comparison with a 3-WP schedule.

In Examples 1–5, with the parameters of the cluster tool provided, we can quickly
obtain the cycle time of the system under any one of the 3-WP schedule, N3-WP1 schedule,
N3-WP2 schedule, and 1-WP schedule (if existing). With the system cycle time obtained,
one can determine the best scheduling method to be applied to DACTs with reentrant wafer
flows.

Besides, more examples are given in Table 3 to show the superiority of the proposed
methods by comparing them with the 3-WP schedule in terms of the system cycle time. In
the cases in Table 3, the time for the robot activities and wafer processing is set according
to real applications in a semiconductor equipment vendor in China. With these given
parameters of cluster tools, Algorithm 1 can be used to obtain the best scheduling method
immediately in the cases shown in Table 3. Furthermore, by using the best one of the N3-
WP1 and N3-WP2 schedules, the cycle time of the system is improved by 16.8% on average
by comparing with the 3-WP schedule. Besides, in Cases 1–6, the adopted scheduling
method can achieve a minimal cycle time. However, in Cases 7–11, the optimality of
the adopted scheduling method cannot be ensured. Nevertheless, the adopted method
significantly outperforms the existing 3-WP schedule.

Table 3. Comparison results.

No. ρ1 ρ2 ρ3 N3-WP1 N3-WP2 3-WP The Adopted
Scheduling

Method

Improvement

ΠN3-WP1 Theorem ΠN3-WP2 Theorem Π3-WP

1 250 35 50 258 7 / / 302 N3-WP1 14.57%
2 150 25 30 158 8 / / 195(1/3) N3-WP1 19.11%
3 70 25 30 130 4 118 9 142 N3-WP2 16.90%
4 70 25 35 140(1/3) 5 129 10 152 N3-WP2 15.13%
5 95 40 50 183(2/3) 5 174 11 198(2/3) N3-WP2 12.42%
6 110 40 50 188(2/3) 5 174 12 208(2/3) N3-WP2 16.61%
7 140 25 30 153(1/3) 4 163(1/3) 13 188(2/3) N3-WP1 18.73%
8 100 25 30 140 4 136(2/3) 13 162 N3-WP2 15.64%
9 210 35 50 222 6 236(2/3) 12 275(1/3) N3-WP1 19.37%
10 200 35 50 218(2/3) 5 230 12 268(2/3) N3-WP1 18.61%
11 120 35 50 192 5 176(2/3) 12 215(1/3) N3-WP2 17.96%

7. Conclusions

Wafer reentrant flows normally exist for some processes, such as chemical vapor and
physical vapor deposition. Moreover, cluster tools are widely applied to wafer fabrication
for such processes. Such a tool compactly integrates several PMs, a wafer transport robot,
and two LLs. It can provide a highly precise vacuum environment for wafer fabrication.
Since there is no buffer between PMs, it is important to effectively schedule such a tool
with reentrant processes. For a DACT with two-time reentrant processes, it is found that a
1-WP schedule can achieve the optimal cycle time. However, for some wafer fabrication
processes, wafers should be processed at some processing steps more than two times. Up
to now, the problem is open for the issue if a 1-WP schedule exists for a DACT with wafer
reentrant processes for more than two times. If not, it raises the question of whether a better
schedule exists by comparing it with an existing 3-WP schedule. This motivates us to do
this work to answer this question.

In this work, theorical analysis is conducted on it. In Section 4, it is shown that if
there exists a value f ∈ N such that k = 3f holds, then a 1-WP schedule does not exist, and
otherwise, the system can be scheduled by a 1-WP schedule. Further, analytical expressions
are given to calculate the system cycle time if a 1-WP schedule exists. In the cases where
a 1-WP schedule is not applicable, this work presents two novel scheduling methods
in Section 5 to improve the cycle time by comparing it with an existing 3-WP schedule.
Meanwhile, by these two scheduling methods, analytical expressions are given to obtain
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the system cycle time. Further, an algorithm is given to display the conditions under which
one of the two novel scheduling methods can be used to operate cluster tools. Besides,
this work presents the conditions under which the two novel scheduling methods may
not achieve the minimal cycle time, i.e., the limitation of the methods. Thus, given a case,
by simply calculating the cycle time, one can decide which method should be applied to
the system. In Section 6, by introducing virtual wafers, a way to implement the proposed
scheduling methods is given, and the application of the proposed scheduling methods is
demonstrated by examples.

In the future, we aim to deal with the scheduling problems of cluster tools handling
multi-wafer types with different wafer flow patterns as well as multi-cluster tools. More-
over, the proposed scheduling methods cannot achieve the minimal system cycle time in
some cases. Thus, another future work needs to be done for optimal scheduling of such
cases.
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