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Abstract: This paper introduces a novel lateral guidance strategy for autonomous ground vehicles
operating in deformable environments. The strategy combines a geometric algorithm with a dynamic
controller to leverage the advantages of both methods. The geometric algorithm is based on a modified
Pure Pursuit method, which calculates the lateral error by considering a dynamic parameter associated
with the look-ahead distance. The controller takes model uncertainties and time-variant parameters
into account in a grid-based LPV (Linear Parameter Varying) synthesis. To validate the proposed
control architecture, a dedicated off-road vehicle simulator that accounted for deformable soils was
used. The effectiveness and robustness of the proposed lateral guidance strategy were demonstrated
by integrating and validating the control architecture on a vehicle prototype. The results indicate
that the proposed approach effectively handled complex and uncertain deformable environments.
Overall, this study presents a new lateral guidance strategy that enhances the performance and
reliability of autonomous ground vehicles in challenging environments.

Keywords: off-road vehicle; deformable soils; autonomous vehicle; robust control; control architecture;
lateral guidance; real-time implementation

1. Introduction

With a rapidly expanding population and obvious climate change, conventional agri-
culture has been undergoing a profound transformation for several years. Multiple factors,
such as low irrigation of crops, depletion of various fossil resources, soil degradation, and a
shortage of labor, are leading to a deep change in conventional agricultural methods and
a shift towards agriculture 4.0 [1]. Despite the unfavorable context, we must be able to
produce enough food to properly feed the whole population. On the other hand, these
changes increase the economic risks for farms with limited means for dealing with these
changes. As a result, through their scientific research, the academic and industrial worlds
are major players in providing innovative technological solutions. The main challenge is,
thus, to reduce economic risks and increase production while ensuring acceptable working
conditions for farmers. Of all of the research around autonomous vehicles, the “Navigation”
domain opens up interesting perspectives in the field of autonomous agricultural robotics
and, more specifically, the contribution to the overall control of such vehicles. The need
to better understand, measure, and work with nature relies on advanced methods and
tools with dedicated equipment. Today, autonomous agricultural robots are a key element
in providing a real solution. On the other hand, the development of lighter robots than
conventional machines (i.e., tractors with their specific tools or equipment for spraying
or harvesting) is flourishing in order to mitigate problems related to soil compaction and
to access fields that are not suitable for heavy machinery (such as sloping vineyards or
lands affected by wet conditions) [2]. In this context, this paper deals with the automation
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of small off-road agricultural vehicles by providing an innovative robust lateral control
architecture for smooth off-road vehicle guidance.

1.1. Objectives and Related Work

In general, the lateral guidance of an autonomous vehicle consists of controlling the
lateral position and heading of the vehicle around a given reference trajectory. Many
different control methods have been proposed in the literature. The main results were
grouped in the study proposed by [3]. This work illustrated the main approaches used
in the literature and the advantages and drawbacks of each method by comparing them.
Among the various proposed algorithms, two categories stand out: the so-called “geometric”
approach and the dynamic approach.

The geometric approach is the most widely used. It is based on the principle of
calculating the steering angle to be applied to a vehicle’s wheels to follow a path defined by
a set of points based on the Ackerman principle [4]. The Follow the Carrot (FC) [5] and the
Pure Pursuit (PP) algorithms [6] are used very often. These approaches provide simplicity
of implementation and a low number of parameters to be adjusted. Moreover, no dynamic
models are necessary to represent the vehicle, which greatly simplifies their development.
However, the tracking performance deteriorates when the vehicle’s lateral dynamics are
solicited—for example, with high-speed profiles, which can impair dynamic performance
and/or make the system unstable.

On the other hand, the dynamic approach is based on a vehicle model that allows
the explicit calculation of trajectory tracking errors as a function of a vehicle’s dynamics
and its parameters. This approach allows the implementation of a more advanced control
architecture based on modern synthesis methods, such as, the optimal linear quadratic
regulator (LQR) approach [7], the model predictive control (MPC) approach [8], robust
H∞ approach [9], or the sliding-mode control (SMC) approach [10]. An example of an
application using this type of dynamic approach was proposed by [11], where the guidance
architecture used a state feedback control that was calculated from the resolution of differ-
ent linear matrix inequalities (LMIs), which made the approach robust but conservative.
The advantage of this type of approach lies in obtaining a controller whose performance can
be optimized with respect to the desired performance, thus greatly improving the vehicle’s
behavior in high-speed maneuvers. The difficulty, however, lies in the implementation and
complexity of the algorithm, since the measurements must be provided as necessary inputs
for computing the control output.

However, both of these approaches are mostly applied in on-road conditions where the
lateral slip is low [8,9,11]. In the context of deformable soils, this assumption is no longer
respected and, consequently, requires the development of a control strategy that takes this
phenomenon into account. Different studies have been carried out to improve the guidance
of vehicles on deformable ground [12–15]. However, the proposed methods simplified the
ground’s nature by neglecting the soft soil properties or were applied to trajectories that
did not require significant lateral dynamics (for example, straight-line trajectory tracking).
More recent works [16,17] based on robust sliding-mode control approaches showed real-
time implementations that were limited by the fact that the actuator switched at a very
high frequency.

This paper is dedicated to the development of a robust lateral guidance strategy for
autonomous off-road vehicles. To the best of the authors’ knowledge, the study reported in
this work is novel in proposing a robust uncertain- and variant-parameter lateral control
architecture that addresses the problem of soft ground by combining both geometric and
dynamic approaches to create a whole control architecture.

1.2. Paper Contributions and Organization

In addition to the implementation of the overall robust lateral guidance architecture,
this paper includes multifold contributions, which are summarized as follows:



Electronics 2023, 12, 2395 3 of 21

• A global guidance architecture based on an original combination of geometric and
dynamic algorithms.

• A modification of the Pure Pursuit algorithm that now computes the lateral error
based on a dynamic parameter related to the look-ahead distance.

• Robustness improvements that were achieved by incorporating uncertainties and
time-varying parameters in a grid-based LPV control synthesis.

• The use of a dedicated off-road vehicle simulator that takes deformable soils into
account for the validation of the proposed algorithms.

• A real-time integration and validation of the proposed control architecture on a
vehicle prototype.

Therefore, this paper is organized as follows: Section 2 presents the off-road vehicle
model, which includes the wheel–ground interaction for soft soils. The lateral guidance
problem and the modified Pure Pursuit algorithm are presented in Section 3. The robust
grid-based LPV control approach is given in Section 4. TheH∞ control synthesis is provided
in Section 5. Finally, the simulation results are presented in Section 6, followed by those of
the real-time implementation, which are given in Section 7.

2. Off-Road Vehicle Modeling

To solve autonomous off-road vehicle guidance problems, a nonlinear 7-DOF model is
commonly used in the literature [18]. The associated dynamics are given by the state vector[
vx vy ψ̇ ω f r . . . ωrr

]
, which are, respectively, the longitudinal and lateral velocities,

the yaw rate, and the angular wheel rate of the ith wheel, with i =
[
l f lr rl rr

]
. Figure 1

reports a schematic representation of such a model, and Table 1 gives the meanings of the
different symbols that are used.

l

L

Fyrr Fy f r

Fy f lFyrl

Fxrr

Fxrl

Fx f r

Fx f l

vx

vy
v

CoG

ψ̇

δ

α f r

α f l

δ

αrr

αrl

Figure 1. 7-DOF vehicle model.

Table 1. Variables of the 7-DOF model.

Symbol Description

δ steering angle
αi associated lateral slip angle of the ith wheel
l wheelbase
L track width

Fxi longitudinal tire force of the ith wheel
Fyi lateral tire force of the ith wheel
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Some classical assumptions are also employed:

• Pitch, roll, and vertical motions are neglected.
• Aerodynamic drag force is considered null due to the low speeds employed in

this application.
• The front steering angle δ has a low range of variation and is considered equal for

both the left and right wheels.

Let us remark that the particularity of ground vehicles addresses the wheel–soil
interaction problem, where soil deformation highly affects a vehicle’s behavior [19].

This specificity is represented through the longitudinal (Fx) and lateral (Fy) forces
and will be discussed in more detail in Section 2.3. Moreover, the longitudinal and lateral
dynamics are expressed as presented in the following subsections.

2.1. Longitudinal Vehicle Model

The longitudinal vehicle dynamics represent one of the most important factors for
ground vehicles. Converting wheel power into vehicle motion is strongly related to the
ability to generate sufficient traction between the wheels and the ground. In this purpose,
the connection is described by the following torque balance equation, which is applied for
each ith wheel:

Jω̇i = Tw − Tf − rFxi (1)

where J is the wheel inertia, r is the wheel’s effective radius, and Tw and Tf are, respectively,
the driving and friction torque of the wheel. The equation of the longitudinal dynamics
expressed at the center of gravity (CoG) is given by [18]:

m
(
v̇x − ψ̇vy

)
= ∑

i
Fxi (2)

where Fxi is the longitudinal tire force generated at the ith wheel and is transformed into
the vehicle frame.

2.2. Lateral Vehicle Model

The lateral vehicle model is represented through the lateral dynamic equation and is
expressed at the CoG by [18]:

m
(
v̇y + ψ̇vx

)
= ∑

i
Fyi (3)

where Fyi is the lateral force applied at the ith wheel and is transformed into the vehicle
frame. The yaw equation is then given by:

Izzψ̈ = l f ∑
i

Fy f i − lr ∑
i

Fyri (4)

where Izz denotes the vehicle’s inertia along the z-axis, and Fy f i and Fyri are, respectively,
the lateral forces applied at the front and rear ith wheels and are transformed into the
vehicle frame. In addition, l f and lr are, respectively, the distance between the front and
rear axles and the CoG.

2.3. Soft Wheel–Soil Interaction Model

For ground vehicles, wheel–soil interaction phenomena have a significant impact
on a vehicle’s dynamics, since the soil deformation greatly affects traction and wheel
grip [19]. In classic on-road contexts, several model types have been proposed in the
literature [20–22]. However, these models are not able to capture the complex off-road
phenomena. Therefore, specific off-road tire models are required. As a common approach,
the predicted off-road tire forces are provided according to the Bekker–Wong theory [23].
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Considering the mathematical framework provided in [24], the longitudinal and lateral tire
forces can be expressed as follows:

Fxi = rb
(∫ θe

−θr
τ(θ) cos θdθ −

∫ θe

−θr
σ(θ) sin θdθ

)
(5a)

Fyi = b
∫ θe

−θr
(c + σ tan φ)

(
1− exp

(
jy
ky

))
dθ (5b)

where b is the wheel width, τ is the shear stress acting at the wheel contact patch, σ is the
normal stress, c is the soil cohesion coefficient, φ is the angle of internal friction of the soil,
jy is the lateral shear displacement, ky is the lateral shear deformation modulus, and θe,r
are, respectively, the entry and exit angles given by the soil–wheel contact, as shown in
Figure 2. The interaction at the contact between the wheel and the ground exerts a vertical
pressure, which leads to the sinkage (z) of the wheel into the ground, thus affecting the
overall tire forces Fxi and Fyi .

θr

θe

σ

τ

vw

ω

z

b
r

Figure 2. Shear and normal wheel driving mode stresses.

Consequently, the soil acts as an additional resistive force that introduces a significant
wheel slip and lateral slip. These relevant phenomena are then introduced into (2) and (3),
thus affecting the dynamic behavior of the whole body, and they are presented in more
detail in [19,24,25]. Considering this wheel–soil interaction problem, the proposed control
strategy aims to be robust to the uncertainties introduced by the variation in the soil’s
nature, as presented in Section 3.

3. Lateral Guidance Problem

The lateral guidance problem aims to minimize the errors between a vehicle’s posi-
tion and the desired reference path. In the context of ground vehicles, and especially in
agricultural applications, these errors must be minimized to optimize the working area
while ensuring the lowest possible field coverage [26]. For this purpose, the overall lateral
guidance strategy is developed as follows.

3.1. Problem Formulation

By considering the simplified bicycle vehicle model [4], the main goal of the lateral
guidance problem is to minimize the lateral and orientation errors (ey and eψ) between the
CoG and the reference path, as shown in Figure 3. The lateral error can be expressed in the
global frame (X,Y) as [4]:

ey =
(

YCoG −Yre f

)
cos(ψre f )−

(
XCoG − Xre f

)
sin(ψre f ) (6)
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where
[
XCoG YCoG

]
and

[
Xre f Yre f

]
are, respectively, the coordinates of the vehicle’s

position and the reference path points’ coordinates, and ψre f is the desired yaw angle.

CoG

~iv

~jv

ey

ψ

vx

vy

ψref

eψ

Figure 3. Heading and lateral errors.

The heading error is provided by

eψ = ψ− ψre f (7)

where ψ is the orientation of the vehicle’s CoG in the global coordinate system.

3.2. Control Objectives and Desired Performance

The lateral guidance objectives are specified by considering path tracking at different
longitudinal speeds vx of the vehicle. Since navigation on deformable soil leads to exoge-
nous disturbances that can greatly affect the tracking performance, the vehicle guidance
must be robust. As a result, the closed-loop performance is then stated as follows:

• A lateral error lower than 20 cm.
• The trajectory tracking must be performed for longitudinal speeds between 1 and

15 km/h.
• Overshoots around the reference path must be less than 40 cm.

These specifications were established in accordance with the intended applications,
whose validation was carried out by T&S Group (industrial partner) in view of its experi-
ence in this field. Note that 15 km/h is considered a high speed for agricultural applications.

3.3. A Combined Geometric–Dynamic Lateral Guidance Approach

In order to track the coordinates of the reference points and the orientation of the
trajectory, the tracking algorithm provides the steering angle δ to be applied to the wheels.
To solve this problem, a combined lateral guidance approach is proposed. It is based on
combining a geometric algorithm with a controller (synthesized by using a dynamic model)
that calculates and minimizes the lateral error. The proposed control architecture is then
provided in Figure 4 and was designed to simplify the integration of the algorithms for
real-time implementations. Given the variations caused by the nature of the ground and the
longitudinal speed of the vehicle, a purely geometric approach cannot be applied. In this
way, a robust controller K(s) is associated with the overall guidance architecture, as seen in
Figure 4, and the development thereof is described in Section 4.
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Vehicle
Local

Trajectory

Lateral
Error

Modified Pure
Pursuit

K(s)
ey yδPP-parameters

Global Trajectory

vx, XCoG, YCoG, ψ

Figure 4. Combined geometric and dynamic architecture for trajectory tracking.

3.4. Modified Pure Pursuit Algorithm (Geometric Approach)

The geometric algorithm used in this paper is based on the Pure Pursuit (PP) algorithm
described in [6]. It consists of a simple geometric equation that calculates a “virtual” circle
of curvature designated by the radius R from the center of the rear axle to the target point
(xg, yg) on the path ahead of the vehicle, as shown in Figure 5. The target point is determined
from the look-ahead distance ld, and the desired steering angle δ is obtained from the angle
ψd, which defines the vehicle’s orientation relative to the look-ahead distance ld.

R

R

ld

2ψ

(xg, yg)

ψd δ

(a)

Trajectory followed for a low ld

Trajectory followed for a high ld

Reference path

Trajectory waypoints

(b)

Figure 5. Pure Pursuit algorithm. (a) Geometric vehicle guidance scheme. (b) Effect of the parameter
ld on the guidance performance.

This approach is modified here to improve the tracking performance according to the
following propositions:

• Local trajectory generation: This modification defines a sliding window based on a
certain number of points chosen among the total number of points constituting the
global trajectory in the local navigation frame. It reduces the computational load and
allows the management of trajectories with intersections.

• Lateral error computation: The target point is projected into the vehicle frame to
compute the lateral error.

• Adapted look-ahead distance: The parameter ld is adapted according to the vehicle’s
longitudinal speed with the following equation:

ld = kldvx + lconst
d

with kld and lconst
d being constants and ld ∈ [lmin

d , lmax
d ].
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• Steering angle computation: The required steering angle is calculated from the lateral
error ey and not from the Ackerman angles. A controller K(s) is then employed to
provide the steering angle δ in order to cancel the lateral error between the vehicle
and the reference trajectory.

As mentioned before, a pure geometric algorithm cannot minimize the lateral errors,
as the soil dynamically affects the vehicle’s behavior. The dynamic compensation is, thus,
obtained by adding a robust controller, as presented in the next section.

4. A Robust Quasi-Grid-Based LPV-H∞ Control Approach

The proposed approach is based on an LPV (linear parameter-varying) representation.
This is generally used when some parameters vary over time. Such representations have
several advantages, e.g., they take nonlinearities into account and use the synthesis tools
of LTI models. They allow the consideration of unmeasured variables as uncertainties to
reduce their impacts on the closed-loop behavior when they are involved in the model.
Consequently, a synthesis model is established to allow the design of a robust controller that
is capable of ensuring closed-loop performance regardless of the value of the uncertainty
contained in a bounded range.

4.1. Vehicle Synthesis Model

The lateral synthesis model developed in this section aims to describe the lateral
behavior of the vehicle with sufficient accuracy while reducing its complexity.
This model is obtained from Equations (1)–(5b) and is expressed through the following
state-space representation:

ẏv

ÿv

ψ̈

 =


0 1 0

0 −
2Cα f +2Cαr

mvx
−

2Cα f l f−2Cαr lr
mvx

− vx

0 −
2Cα f l f−2Cαr lr

Izzvx
−

2Cα f l2
f +2Cαr l2

r

Izzvx


yv

ẏv

ψ̇

+


0

2Cα f
m

2Cα f l f

Izz

δ

y =
[
1 0 0

]yv

ẏv

ψ̇


(8)

where l f and lr are, respectively, the front and rear center-of-gravity distances, Izz is the
vehicle’s moment of inertia around the vertical axis, m is the total mass of the vehicle,
and Cα f and Cαr are, respectively, the front and the rear cornering stiffnesses obtained by
considering the Adapted Burckhardt Tire Model (ABTM), as developed in [27]. Due to
the complexity of Equations (5a) and (5b), a straightforward interaction model for control
design cannot be obtained. An equivalent cornering stiffness Cαi for each wheel can then
be addressed by identifying the ABTM parameters and linearizing the model as follows:

Cαi =
∂Fy

∂α

∣∣∣
α=α∗
=
(
ky1ky2 exp

(
−ky2α∗

)
+ ky3

)
Fz (9)

The coefficient Cα was derived through an identification procedure proposed by the
authors in another article [27]. This procedure encompasses four steps:

• Collecting data that correspond to different deformable soils that were studied by
using a dedicated simulation tool.

• Adapting the mathematical structure of the interaction model (ABTM).
• Identifying new parameters.
• Determining the range of variation in stiffness of Cα around different operating points.

By using model (11), it is possible to establish a set of Cα values that include a nominal
value and its deviation within a bounded range, where kyi is the identified model parameter
for a given soft soil and α∗ is the lateral slip operating point.
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On the other hand, a steering actuator defined by a linear cylinder is considered and is
given by the following transfer function between the linear position pv and the steering
angle δ:

A(s) =
δ

pv
=

Ka(
s

ω0

)2
+ 2

ζ ω0s + 1
(10)

where Ka is the static gain, ω0 is the natural frequency, and ζ is the damping ratio. The trans-
fer function parameters were obtained from an identification procedure by using the
harmonic response of an actuator with real recorded data.

Thereby, the model (8) expresses the uncertainties through the coefficients Cα f and
Cαr , which correspond to variations in the nature of the ground. The varying parameter
is the vehicle’s longitudinal velocity vx, which renders the overall model as an uncertain
LPV system.

4.2. Quasi-Grid-Based LPV Approach

The grid-based LPV approach leverages an interpolation network of linearized LTI
models around different operating points [9]. This approach is commonly used when the
parametric dependence of the model is nonlinear. The varying parameters are then gridded
and selected with a N points, as shown in Figure 6. Note that the interpolation between
each model can be linear or nonlinear.

P =
{

ρ(·) :=
[
ρ1(·) · · · ρl(·)

]
∈ Rp | ρi ∈

[
¯
ρi, ρ̄i

]
, ∀i ∈ {1, ..., l}

}
(11)

where p is the number of variant parameters and
¯
ρi and ρ̄i are, respectively, the minimum

and the maximum values of the considered variant parameter.

· · ·
ẋ = A1x + B1u

ẋ = Akx + Bku

ẋ = Ak+1x + Bk+1u

ρ1

ρ2

¯
ρ1

ρ̄1

¯
ρ2

ρ̄2

Figure 6. Illustration of a grid-based LPV system with two varying parameters.

Thus, the grid-based LPV model representation is given by a linear interpolation
between two points of the state-space matrices as follows:[

Agrid(ρ) Bgrid(ρ)

Cgrid(ρ) Dgrid(ρ)

]
=

k+1

∑
i=k

αi(ρ)

[
Ai Bi
Ci Di

]
(12)

with ρ ∈ [ρk, ρk+1] and with αk being given by:

αk =
ρk+1 − ρ

ρk+1 − ρk
and αk+1 =

ρ− ρk
ρk+1 − ρk

(13)

By using this modeling approach, a K controller is independently synthesized with
each linear model defined in the grid and is linearly interpolated as follows:[

AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

]
=

k+1

∑
i=k

αi(ρ)

[
AKi BKi

CKi DKi

]
(14)
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where αk and αk+1 are as defined in (13). Despite its simplicity, it must be emphasized that
the local stability of each controller does not guarantee the global stability of the closed-
loop system. A stability assessment could be conducted according to the work proposed
by [28,29]. The stability problem can be addressed by using a Lyapunov candidate function
that depends on the varying parameter ρ. However, as shown in [9], a large number of
models and, consequently, controllers must be designed. This causes conservatism and,
therefore, degrades the performance in the closed loop. On the other hand, the model (8) is
not only parameter-variant, but also uncertain with respect to the soil’s nature through the
Cα parameters. However, an LPV model cannot be established, since the nonlinearity is not
measurable. Thus, this solution cannot be considered.

Consequently, the proposed method uses the grid-based LPV approach that describes
the time-varying parameter to vx but differs by performing the controller’s synthesis
separately by using a H∞ approach to be robust to the Cα uncertainties, as described in
Section 5.

5. Grid-Based LPV-H∞ Control Design

In this section, the controller synthesis is addressed by using anH∞ mixed-sensitivity
approach [30], where the general scheme is given in Figure 7.

K(s) G(s)

w2

w1

+

−

yref u y

S(s)yref

KS(s)yref
z2

z1

ey

Figure 7. Mixed-sensitivity trajectory tracking problem.

The figure presents a control block diagram in which K(s) is the controller and G(s) is
the plant given by the actuator model (10) that is added to the vehicle model dynamics (8).
The controller output u = δ rejects the lateral error ey = yref − y, where yref is the lateral
reference position and y is the current lateral position of the vehicle. Therefore, the main
objective of theH∞ control is to minimize the `2-induced gain from the external input yref

to the controlled output z =
[
z1 z2

]T by solving the following minimization problem:

‖z‖2 ≤ γ‖w‖2 (15)

where 0 < γ < 1 represents the attenuation gain. Moreover, the mixed-sensitivity approach
amounts to searching for a controller K(s) that ensures the internal stability of the closed
loop and satisfies the following constraints [30]:∥∥∥∥[ w1S(jω)

w2KS(jω)

]∥∥∥∥
∞
< 1 (16)

where w1 and w2 are weighting functions that specify a trade-off between the limitations of
the tracking and actuator performance, with S(s) = (I+ G(s)K(s))−1 being the sensitivity
function of the output y to the reference yref.
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5.1. Weighting Functions

The weighting functions offer the possibility of setting up the closed-loop performance.
By considering the actuator–vehicle model (8)–(10), the weighting functions w1, w2 are
defined according to the work proposed by [31]. Consequently, the tracking weighting
function is given by

w1(jω) =

 jω
Ms

+ ωbs

jω + ωbsεS

k

(17)

where Ms := ‖S(jω)‖∞, ωbs is the break frequency, εS is the maximum permissible static
error, and k is the transfer function order. Similarly, the actuator weighting function is
given by

w2(jω) =

(
jω + ωbu

Mu

εu jω + ωbu

)k

(18)

where Mu := ‖KS(jω)‖∞, ωbu is the break frequency, εu is the maximum permissible static
error, and k is the transfer function order. Note that the weighting functions’ parameter
values will be discussed in the next section.

5.2. Grid-Based LPV-H∞ Control Synthesis

Referring to the guidance problem mentioned in Section 3 and considering the uncer-
tain grid-based LPV model described in Section 4.2, the uncertain parameter Cα is fixed at
its nominal value of 10,000 N and has a standard deviation of ±50%. This was determined
by using the computation procedure described in Section 4.1. The varying parameter vx is
considered to be bounded as follows:

P = {ρ(·) = vx(t) ∈ [ρ1 = vk = 1, ρ2 = vk+1 = 15] km/h} (19)

and the grid is represented by two LTI models (8) such that the quality of the nonlinear
model’s approximation can be assessed through the analysis provided by Figure 8.

(a) (b)

Figure 8. Grid-based LPV model’s approximation. (a) Lateral velocity error evy versus the longitudinal
velocity vx and steering angle δ. (b) A 2D view of the error surface.

In order to validate the model’s approximation with two vertices, the computation
error between the output v̇y of the nonlinear model (3) and the output v̇y of the model
expressed by (12) is evaluated. The error between these two quantities assesses the quality
of the grid-based model, which is evaluated under the assumption that the maximum
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steering angles are bounded between ±20°. The error between the two models is then
quantified by calculating the root mean square error (RMSE), whose value is

RMSE : Evy = 0.0032 m/s

The obtained results indicate that the approximation of the grid-based model can then
be specified with only two vertices as follows:[

Agrid(ρ) Bgrid(ρ)

Cgrid(ρ) Dgrid(ρ)

]
=

2

∑
i=1

αi(ρ)

[
Ai Bi
Ci Di

]
(20)

Therefore, two controllers are designed (one at each vertex), the combination of which
is achieved linearly via Equation (13). The values of the weighting functions selected for
each controller are provided in Table 2. TheH∞ synthesis result of each controller is then
given by the performance index γ, as presented in Table 3.

Table 2. Parameter values that were fixed for the weighting functions w1 and w2 for each controller.

vk = 1 km/h vk+1 = 15 km/h

w1 w2 w1 w2

Ms = 1.0366 Mu = 20 Ms = 1.3179 Mu = 20
ωbs = 0.1 rad/s ωbu = 0.0032 rad/s ωbs = 0.2 rad/s ωbu = 1000 rad/s
εS = 0.1 εu = 0.1 εS = 0.1 εu = 0.1
k = 2 k = 2 k = 2 k = 2

Table 3. H∞ synthesis performance index.

K1(s) K2(s)

γ = 0.96 γ = 0.64

5.3. Frequency Domain Analysis ofH∞ Synthesis Results

The controller’s synthesis requirements can be verified with the performance index
γ, as well as with the frequency domain. The results are provided in Figure 9, where the
sensitivity functions are compared to the weight functions designed in Section 5.1 for each
model in the grid.

(a) (b)

Figure 9. Sensitivity functions compared to the weights w1 and w2. (a) Vertex vx = 1 km/h. (b) Vertex:
vx = 15 km/h.
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As the sensitivity functions S are under the weight 1
w1

for both vertices, the demanded
tracking error is achieved. On the other hand, the sensitivity functions KS are compared
with the weight 1

w2
. Here, the control input δ shows that each controller respects the

demanding limitations regarding noise sensitivity. Based on these overall results, the global
control architecture can then be proposed and applied to the lateral guidance problem.

6. Simulation Results and Analysis of the Developed and Tuned Robust Lateral
Control Architecture

This section is devoted to describing a simulation of the proposed lateral control archi-
tecture for off-road vehicle guidance based on the ProjectChrono simulator [32]. The choice
of this simulator was due to its ability to model deformable ground, unlike other pop-
ular vehicle simulators, such as Car-Maker [33], Carla, Adams, etc. It uses an accurate
wheel–ground contact model [34] to characterize all off-road vehicle dynamics [35]. The sim-
ulations were performed in discrete time with a sampling time of Ts = 20 ms.

6.1. Global Lateral Vehicle Guidance Architecture

The developed robust lateral control architecture for the autonomous lateral guidance
of the vehicle is presented in Figure 10.

yLocal
Trajectory

Lateral
Error

Modified Pure
Pursuit ey

δPP-parameters

Trajectory

vx, XG, YG, ψ

Vehicle

K(s)
αi

Estimated
Measurements

vx

k

k + 1

Figure 10. Global control architecture for autonomous lateral vehicle guidance.

The global architecture included a number of independently developed components:

• The local path planner was designed to calculate a lateral error to be minimized.
• A grid-based LPV controller made the guidance robust to the vehicle’s longitudinal

speed and variations in the soil’s nature.
• An extended Kalman filter state estimator, as developed in [36], ensured the accuracy

of the vehicle’s location and attitude.

Moreover, the simulated vehicle was designed according to an off-road prototype
developed in collaboration between IRIMAS and T&S Group, as shown in Figure 11.

In addition, the vehicle parameters and the PP parameters are given in Table A1.
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(a) (b)

Figure 11. Comparison of the simulated vehicle and prototype. (a) Real prototype. (b) ProjectChrono
vehicle model.

6.2. Simulation Results

Among the multiple simulations that were performed to validate the proposed robust
lateral guidance architecture (see Figure 10), those that were chosen are discussed hereafter.
Two cases were considered to show the robustness regarding the speed and the variations
in the soil’s nature.

1. The first case (Figure 12) considered the lateral guidance of an autonomous vehicle
for different longitudinal speeds on rigid soil. The adhesion was represented by dry
weather conditions.

2. The second (Figure 13) case showed the lateral guidance of an autonomous vehicle
with different longitudinal speeds on deformable ground. The proposed test consid-
ered sandy soil, which is the worst-case situation with respect to soil deformation.

From a general perspective, the guidance performance that was obtained on rigid
soil remained relatively consistent regardless of the longitudinal speed while within the
specified range of variations. Figure 12b illustrates that the lateral error, heading error,
and steering angle exhibited similar magnitudes. Furthermore, the root mean square (RMS)
of the lateral error, which was represented by the performance indicator in Table 4, showed
very close values for the three different longitudinal speeds achieved with the robust
control strategy.

(a) (b)

Figure 12. Case 1: Robustness to longitudinal velocity variations vx on rigid soil. (a) Trajectory
tracking performance. (b) Complementary guidance performance signals.
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(a) (b)

Figure 13. Case 2: Robustness to longitudinal velocity variations vx on deformable ground. (a) Tra-
jectory tracking performance. (b) Complementary guidance performance signals.

Table 4. Lateral RMS error in trajectory tracking for different longitudinal speeds on rigid soil.

vx = 5 km/h vx = 8 km/h vx = 10 km/h

RMS ey 0.1231 m 0.1472 m 0.1666 m

For the purpose of comparison, the proposed method was evaluated against a geomet-
ric controller called the Pure Pursuit algorithm (PPA). This type of controller is typically
employed for vehicles operating at low speeds, as mentioned in [9,37].

Figures 12a and 13a clearly demonstrate that the trajectory tracking was weaker
compared to that of the robust method, and the overall behavior of the vehicle showed
oscillatory tendencies. This phenomenon arises when the dynamics of the vehicle, par-
ticularly those related to the steering actuator, can no longer be ignored, as was the case
in this study. Consequently, it became impossible to impose any performance criteria or
constraints during the controller synthesis to mitigate this behavior.

On the other hand, the results displayed in Figure 13 show the lateral vehicle guidance
alongside the previously mentioned path while running on sandy soil. The lateral error,
heading error, and applied steering angle for each longitudinal speed are also presented.
The obtained results successfully highlight the identical global path tracking performance
on deformable ground with the robust control strategy, and the lateral tracking errors
are given in Table 5. However, a more significant overshoot can be noticed during the
first turn of the trajectory, as depicted in Figure 13a. This behavior can be explained by
the greater amount of lateral drift caused by the extremely deformable and non-cohesive
characteristics of the soil.

Table 5. Lateral RMS error in trajectory tracking for different longitudinal speeds on sandy soil.

vx = 5 km/h vx = 8 km/h vx = 10 km/h

RMS ey 0.1235 m 0.1536 m 0.1775 m

In conclusion, the simulated tests on rigid and deformable ground presented in
this section demonstrated the strong lateral guiding performance. As a result, a real-
time implementation of the global control architecture was realized and tested with an
experimental vehicle, as described in Section 7.
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7. Real-Time Implementation

In this section, different experimental results are presented to point out the efficiency
of the proposed global control structure in real time. As the prototype vehicle was equipped
with a number of sensors (GNSS, IMU, Lidar, etc.) and actuators (linear cylinder, electric
motor), it was intended to make navigation autonomous and safe in rough environments.
The different elements of the overall control architecture were integrated into STM32
microcontrollers, whose main functions were embedded in the C programming language.
In addition, the vehicle’s longitudinal speed was regulated by a robust H∞ controller
together with the lateral guidance.

Therefore, two different tests were set to validate the proposed guidance algorithm in
real time.

1. The first test (Figure 14), which was conducted on a rigid surface at different speeds
and values of tire pressure, simulated variations in tire stiffness and, consequently, in
wheel–soil interaction; the objective was to demonstrate the robustness with respect
to uncertainties in the Cα parameter.

2. The second experiment was conducted at variable longitudinal speeds on soft ground.
A typical agricultural work trajectory (Figure 15) was proposed and defined with
two zones; the work zone, in this case, had straight lines and U-turns. In this scenario,
each straight line had a different longitudinal speed, while for the U-turns, the speed
was set to a maximum of 1 km/h.

(a) (b)

(c)
(d)

Figure 14. Cont.
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(e) (f)

Figure 14. First test: Robustness to variations in lateral cornering stiffness Cα on rigid soil in real time.
(a) Trajectory tracking performance at 5 km/h for different tire pressures. (b) Complementary guid-
ance performance signals at 5 km/h for different tire pressures. (c) Trajectory tracking performance
at 8 km/h for different tire pressures. (d) Complementary guidance performance signals at 8 km/h
for different tire pressures. (e) Trajectory tracking performance at 10 km/h for different tire pressures.
(f) Complementary guidance performance signals at 10 km/h for different tire pressures.

The first test was performed by substituting different deformable soil types with
different tire inflation pressures. These tests offered the possibility of easily modifying
the parameter Cα in a known and reproducible environment, since the tire pressure could
be measured in practice, unlike the nature of the terrain, which could be affected by
different types of disturbances. Six tests were realized for three different speeds (i.e., 5, 8,
and 10 km/h) and two different inflation pressures (i.e., 0.5 and 0.2 bar).

Note that the tire pressures that were used were particularly low considering the
special low-pressure tires used for this type of vehicle. According to Figure 14b,d,f, the am-
plitude variations of the lateral error, heading error, and control output were approximately
similar. Moreover, the steering angle error was quantified and is given in Table 6. It can
be seen that as the inflation pressure decreased, the lateral error decreased. Figure 14e
clearly shows this phenomenon, since the overshoot during the first turn was greater for the
pressure of 0.5 bar than for 0.2 bar. This result is interesting, since it helps one understand
the physical relationship between the size of the contact patch and the lateral forces that
are generated.

Table 6. Lateral RMS error in trajectory tracking for different tire pressures and longitudinal speeds
in real time.

vx = 5 km/h vx = 8 km/h vx = 10 km/h

psi = 0.5 bar 0.0768 m 0.0743 m 0.0974 m
psi = 0.2 bar 0.0763 m 0.0711 m 0.0703 m

The second test involved an agricultural work trajectory in an orchard (Figure 16c) whose
soil was heterogeneous, i.e., it was composed of both ground and lawn areas. These tests were
also realized at longitudinal speeds varying between 1 and 7 km/h.

In the proposed case, each straight line was assigned to a different longitudinal speed,
while the speed for U-turns was set to a maximum of 1 km/h. It can be seen that the
obtained results ensured fully safe and autonomous navigation along the whole working
trajectory. The performance that was obtained in terms of lateral guidance accuracy showed
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that the uncertainty related to the nature of the ground, as well as the variations in the
longitudinal speed, did not degrade the guidance objectives defined in the specifications in
Section 3.2.

(a) (b)

Figure 15. Second test: Real-time autonomous lateral guidance in an orchard. (a) Trajectory tracking
performance in an orchard. (b) Complementary guidance performance signals in an orchard.

(a) (b) (c)

Figure 16. Pictures of the vehicle prototype on agricultural fields. (a) Front view of the vehicle proto-
type. (b) Rear view of the robot in an orchard. (c) Front view of the robot in an orchard.

8. General Conclusions

This paper addresses the problem of robust lateral guidance in off-road vehicles navi-
gating on deformable grounds that involve variable and uncertain parameters. The paper
proposes a global lateral guidance architecture that was validated in a simulation and
implemented in a vehicle prototype. The proposed approach combines lateral guidance
with a geometric algorithm and a dynamic controller, which provided robustness and
simplicity of integration in a real prototype.

The geometric Pure Pursuit algorithm was used to minimize the lateral error at each
sample time, followed by a robust controller that took longitudinal speed variations and
uncertainties related to wheel–ground interactions into account. The resulting solution
with the coupling between the robust control and localization modules constitutes a global
control architecture that automates the lateral guidance of off-road vehicles that serve
various precision agricultural tasks.

The proposed control architecture was validated in a simulation by using the Pro-
jectChrono environment and was integrated into a prototype. The experimental tests
demonstrated the feasibility of the solution, which showed similar guidance performance
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with respect to the objectives set during the control law synthesis, regardless of the ter-
rain type.

However, it is acknowledged that more complex terrain configurations, such as slopes,
banks, and bumps, still need to be addressed to improve the robustness of the proposed
control architecture. Additionally, the autonomous guidance of a vehicle while consid-
ering an attached or hitched tool is an interesting perspective that should be explored in
future research.
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Appendix A

Table A1. Vehicle and Pure Pursuit parameter values.

Vehicle Parameters Value (Unit) Description

l 1.26 m Wheelbase : l = lr + l f
l f 0.57 m Front CoG distance
lr 0.69 m Rear CoG distance
L 0.9 m Track width
m 440 kg Vehicle total mass
Izz 82.4 kg/m2 Vehicle moment of inertia
h 0.31 m CoG height
mw 15 kg Wheel weight
r 0.30 m Wheel radius
b 0.203 m Wheel width
Jw 0.99 kg/m2 Wheel moment of inertia
Tn

m 16 Nm Nominal motor torque
Tmax

m 42 Nm Maximal motor torque
δmax ±25 deg Maximal steering angle

PP-Parameters Value (Unit) Description

kld 0.36 s Look-ahead time gain
ldconst 0.83 m Constant look-ahead distance
ldmin 1.33 m Minimal look-ahead distance
ldmax 5 m Maximal look-ahead distance
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