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Abstract: Sleep staging has always been a hot topic in the field of sleep medicine, and it is the
cornerstone of research on sleep problems. At present, sleep staging heavily relies on manual
interpretation, which is a time-consuming and laborious task with subjective interpretation factors.
In this paper, we propose an automatic sleep stage classification model based on the Bidirectional
Recurrent Neural Network (BiRNN) with data bundling augmentation and label redirection for
accurate sleep staging. Through extensive analysis, we discovered that the incorrect classification
labels are primarily concentrated in the transition and nonrapid eye movement stage I (N1). Therefore,
our model utilizes a sliding window input to enhance data bundling and an attention mechanism to
improve feature enhancement after label redirection. This approach focuses on mining latent features
during the N1 and transition periods, which can further improve the network model’s classification
performance. We evaluated on multiple public datasets and achieved an overall accuracy rate of
87.3%, with the highest accuracy rate reaching 93.5%. Additionally, the network model’s macro F1
score reached 82.5%. Finally, we used the optimal network model to study the impact of different
EEG channels on the accuracy of each sleep stage.

Keywords: sleep staging; data augmentation; label redirection; physiological signal; BiRNN

1. Introduction

Sleep is one of the most important activities in a person’s life, and all life activities are
inseparable from the process of sleep [1]. In 2019, the COVID-19 pandemic swept across the
world. A new study published in the authoritative medical journal The Lancet Respiratory
Medicine showed that more than half of the patients who were infected with COVID-19
early on still had lingering sequelae, and 31% of them reported difficulty sleeping [2]. The
diagnosis of sleep problems cannot be separated from important data—the sleep-staging
chart. The earliest sleep-staging chart divided the whole sleep process into six stages: wake
stage (W), N1, nonrapid eye movement stage II (N2), nonrapid eye movement stage III (N3),
nonrapid eye movement stage IV (N4), and rapid eye movement stage (REM) according to
the R&K standard [3]. In 2007, the American Academy of Sleep Medicine (AASM) merged
the N3 stage and N4 stage of the R&K standard into the N3 stage and released the Manual
for the Scoring of Sleep and Associated Events [4]. The 5-class sleep-staging chart with 30 s
data as a window became the mainstream and the scoring standard in the field of sleep
medicine. Today, the acquisition of sleep-staging charts in all hospitals still relies on the
original manual interpretation, which not only consumes a lot of manpower and material
resources, but also is prone to errors due to personal subjective factors or fatigue [5]. The
mainstream machine learning classifiers include support vector machine (SVM), random
forest, relevance vector machine (RVM), K-nearest neighbor (KNN), hidden Markov model,
and Back Propagation (BP) network; deep learning classifiers include Convolutional Neural
Networks (CNNs), Recurrent Neural Network (RNN), Artificial Neural Network (ANN),
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and combinations of different neural networks. Although machine learning and deep
learning have achieved remarkable results in the field of sleep staging, there are still the
following problems in automatic sleep staging by algorithm:

1. Misclassifying a certain stage as the most common category in the whole due to
sample data imbalance [6];

2. The recognition accuracy of the N1 stage between the W stage and N2 stage is gener-
ally lower than 50%;

3. There is a large difference among databases [7], and the channel mismatch problem
is significant.

To solve the above problems, we propose a sleep stage automatic classification model
based on a dual-layer BiRNN network with data bundling enhancement and label redirec-
tion, which is expected to replace the manual division of sleep stages. The model combines
a data augmentation algorithm and an attention mechanism to realize the automatic scoring
of sleep stages. The main contributions of this work are as follows:

• We build a sleep stage automatic classification model based on a dual-layer BiRNN
network with data bundling enhancement and label redirection. By combining an
attention mechanism to realize feature enhancement after label redirection, we enhance
the feature distinguishability of the sleep transition period and the N1 stage and further
improve the classification performance of the network model;

• We design a signal bundling enhancement method, which obtains new signal pat-
terns, while preserving long-term context information and reducing the probability of
transition stage recognition error;

• We conduct extensive experiments on three public datasets, and the experimental
results show that our model improves the expression ability of sleep features by mining
deep features of the N1 stage, preliminarily solves the problem of low recognition
accuracy of the N1 stage easy-to-recognize as the adjacent stage, and further improves
the classification accuracy of the sleep stages.

2. Related Work

Sleep stage differentiation, as a typical time series analysis problem, has attracted the
attention of many researchers. In recent years, with the continuous expansion of sleep
databases, more and more researchers have begun to look for breakthroughs in automatic
sleep staging based on deep learning algorithms. At present, mainstream deep learning
algorithms, such as CNN, RNN, and Generative Adversarial Network (GAN), have been
widely used for automatic sleep staging, especially the sequence network model based on
CNN for extracting time-invariant features and frequency information, which has achieved
good annotation effects by capturing the correlation between sleep time and scoring. Some
researchers proposed a hierarchical RNN named SeqSleepNet [8], which treats this task
as a sequence-to-sequence classification task. Meanwhile, hybrid models are also adopted
by some researchers. DeepSleepNet [9] uses CNN to extract time-invariant features and
uses Bidirectional Long Short-Term Memory (BiLSTM) to learn the transition rules between
sleep stages, achieving relatively good classification results.

RNN networks, with their innate advantages in processing temporal signals, have been
favored by many researchers. XSleepNet [10] proposed a sequence-to-sequence network
staging model based on RNN, which effectively learned features through time-frequency
images, and the evaluation results of the model showed that it was at an advanced level in
the field of automatic sleep staging. However, the current automatic sleep staging mainly
faces three major problems: data imbalance, low accuracy of the N1 stage, and easy errors
in the transition stage [6,7]. Data imbalance caused by different sleep stage durations and
other reasons is an important factor affecting the accuracy of automatic sleep staging. The
low accuracy of the N1 stage compared with other sleep stages is also a problem that many
staging methods have not solved.

In this paper, we propose a novel RNN-based network model, which has two main
parts: data augmentation and label redirection. In the process of network training, we
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effectively capture the salient features of the N1 stage and transition stage and further
enhance the correlation between adjacent sleep stages. In addition, we adopt the strategy
of sacrificing some redundant data to achieve data balance, thus improving the accuracy of
the network model.

In sleep network model research, it is very challenging to achieve accurate sleep stage
classification with as few physiological signals as possible. In the current trend of automatic
sleep-staging research, most researchers tend to use more electroencephalogram (EEG)
channels to capture more sleep-related features to improve the accuracy of automatic stag-
ing, although significant results have been achieved [11], but considering the applications of
related fields, such as sleep monitoring, it is a trend to use fewer signals to achieve accurate
automatic sleep staging. Therefore, we only used single-channel EEG, electrooculography
(EOG), and electromyogram (EMG) to conduct automatic sleep-staging research.

3. Method
3.1. Signal Preprocessing

The polysomnography (PSG) signals highly related to sleep mainly include EEG, EOG,
and EMG [12], and professional sleep physicians also identify the characteristic waves of
each sleep stage based on these three signals to complete the manual sleep stage annotation.
Introducing multiple signals for sleep-staging research can extract more sleep-related
features [10] to improve the accuracy of sleep staging, so we used the combination of EEG,
EOG, and EMG signals for sleep-staging research. The sampling rates of different signals in
the same dataset were mostly different. In order to improve the compatibility of the input
network data shape, improve the data consistency, reduce the computation, and prevent
overfitting [7], we downsampled the signals above 100 Hz to 100 Hz and upsampled the
signals below 50 Hz to 100 Hz, so that they can continuously enhance the useful signals in
the training iteration process. Some datasets contained a large amount of signals before
turning off the light. If a large amount of awake-state data are introduced in the network
training stage, it will lead to a decrease in network staging accuracy due to data imbalance
and a large amount of noise interference in the monitoring signal before turning off the
light. Therefore, we deleted the data from the start of collection to 5 min before turning off
the light. The original data contained a lot of noise interference. We used a second-order
IIR notch filter to perform 50 Hz/60 Hz power frequency notch filtering on the original
signal. In addition, according to the distribution of characteristic waves of different sleep
stages, we used zero-phase delay filter to perform 0.3–40 Hz [13] band-pass filtering on
EEG and EOG signals.

3.2. Signal Enhancement

To address the problem of low recognition accuracy of N1 stage and easy identification
of adjacent stages, this paper proposes a signal-bundling enhancement training method.
First, each sleep stage label corresponded to 30 s of EEG, EOG, and EMG data. We grouped
the adjacent 90 s of data and labeled them as A, B, and C data segments. We scanned
the data with a sliding window of 90 s and a sliding length of 30 s, as shown in Figure 1.
Figure 2 shows that the current group AB segment data are the same as the previous group
BC segment data, and the current group BC segment data are the same as the next group
AB segment data, and the current group C segment data are the same as the second group’s
data segment A. In the network training stage, we used a sliding window to achieve
bundling between adjacent data, thus enhancing the current group C segment data.

By analyzing the confusion matrix of various neural network staging results, it is
apparent that N1 stage is more likely to be identified as W stage and N2 stage because it
is in the transition stage between W stage and N2 stage and has no obvious features [14].
We bundled the adjacent 90 s data into a whole by scanning with a sliding window, except
for the first and last 60 s data, and the remaining data were scanned 3 times to strengthen
the correlation between the previous and next data and the current label, that is, each set
of window data were bound with the previous and next 60 s data. In addition, because
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N1 stage has a short time in the whole sleep process, there will be a problem of sample
imbalance in sleep stage, which will lead to N1 stage being biased toward most other stages,
such as W stage and N2 stage [15]. To solve this problem, in the process of scanning data
with a sliding window, we re-encoded the data label corresponding to N1 stage as 1 and
re-encoded the data of other stages as 0, realizing N1 stage label redirection. In the process
of network training, each window data will map two labels, one is the original label, and
the other is the redirected label. The data with redirected label 1 will strengthen the data
features in the training process, and the data with redirected label 0 will not be processed
in the training process.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 16 
 

 

0
time(s)

EEG

EMG

EOG

30 60 90 120 150 180

Sliding distancesliding window

Sliding direction

 
Figure 1. Scan of the three processed signals with a sliding window. 

W N1W

N1 N1W

N1 N2N1

N2 RN1

R N1N2

N1 N1R

N1

N2

R

N1

N1

N1

1

0

0

1

1

1

A B C

 
Figure 2. Data bundling and label recoding. 

By analyzing the confusion matrix of various neural network staging results, it is ap-
parent that N1 stage is more likely to be identified as W stage and N2 stage because it is 
in the transition stage between W stage and N2 stage and has no obvious features [14]. We 
bundled the adjacent 90 s data into a whole by scanning with a sliding window, except 
for the first and last 60 s data, and the remaining data were scanned 3 times to strengthen 
the correlation between the previous and next data and the current label, that is, each set 
of window data were bound with the previous and next 60 s data. In addition, because 
N1 stage has a short time in the whole sleep process, there will be a problem of sample 
imbalance in sleep stage, which will lead to N1 stage being biased toward most other 
stages, such as W stage and N2 stage [15]. To solve this problem, in the process of scanning 
data with a sliding window, we re-encoded the data label corresponding to N1 stage as 1 
and re-encoded the data of other stages as 0, realizing N1 stage label redirection. In the 
process of network training, each window data will map two labels, one is the original 
label, and the other is the redirected label. The data with redirected label 1 will strengthen 
the data features in the training process, and the data with redirected label 0 will not be 
processed in the training process. 

Figure 1. Scan of the three processed signals with a sliding window.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 16 
 

 

0
time(s)

EEG

EMG

EOG

30 60 90 120 150 180

Sliding distancesliding window

Sliding direction

 
Figure 1. Scan of the three processed signals with a sliding window. 

W N1W

N1 N1W

N1 N2N1

N2 RN1

R N1N2

N1 N1R

N1

N2

R

N1

N1

N1

1

0

0

1

1

1

A B C

 
Figure 2. Data bundling and label recoding. 

By analyzing the confusion matrix of various neural network staging results, it is ap-
parent that N1 stage is more likely to be identified as W stage and N2 stage because it is 
in the transition stage between W stage and N2 stage and has no obvious features [14]. We 
bundled the adjacent 90 s data into a whole by scanning with a sliding window, except 
for the first and last 60 s data, and the remaining data were scanned 3 times to strengthen 
the correlation between the previous and next data and the current label, that is, each set 
of window data were bound with the previous and next 60 s data. In addition, because 
N1 stage has a short time in the whole sleep process, there will be a problem of sample 
imbalance in sleep stage, which will lead to N1 stage being biased toward most other 
stages, such as W stage and N2 stage [15]. To solve this problem, in the process of scanning 
data with a sliding window, we re-encoded the data label corresponding to N1 stage as 1 
and re-encoded the data of other stages as 0, realizing N1 stage label redirection. In the 
process of network training, each window data will map two labels, one is the original 
label, and the other is the redirected label. The data with redirected label 1 will strengthen 
the data features in the training process, and the data with redirected label 0 will not be 
processed in the training process. 

Figure 2. Data bundling and label recoding.

3.3. BiRNN with Attention Mechanism

In order to extract the salient features related to sleep staging from EEG, EOG, and
EMG signals, considering the ability of sleep network to process sequential data and data
augmentation, we proposed a dual-layer BiRNN with attention mechanism to learn key
features to achieve more accurate sleep-staging results. As shown in Figure 3, the input part
of our sleep network consisted of a BiRNN with attention mechanism, which is used for
data augmentation and feature extraction. The output part of the sleep network consisted
of a bidirectional recurrent neural network with softmax classification layer, which is used
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for feature learning and classification. The improved sleep network not only has a stronger
ability to capture salient features, but also solves the problem of gradient explosion or
disappearance. On the other hand, by proposing a data augmentation method, the feature
learning ability of transition period and N1 stage is greatly improved, and the classification
performance of sleep network is further optimized.
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Figure 3. Automatic sleep-staging network architecture.

We used the preprocessed data X ∈ RT×C as the input of the sleep network, where
T = 90 represents the data of 90 s for each input, and C = 3 represents the number of
channels of the input data. Then, we input the data sequence X into the sleep network
in the form of sliding windows, where the window size is 90 s and the window sliding
distance is 30 s.

First, we used a BiRNN with attention mechanism to extract the sequence features
of each window data. The forward and backward recurrent layers of RNN computed the
forward sequence h f

t and backward sequence hb
t of hidden layer state vectors in opposite

directions, defined as follows:
h f

t = σ
(

h f
t−1, xt

)
(1)

hb
t = σ

(
hb

t−1, xt

)
(2)

at = W(hb
t � h f

t ) + ba (3)

where σ denotes the hidden layer activation function sigma, at denotes the output com-
putation, � denotes the vector combination, and ba denotes the bias vectors. We used the
sigmoid function as the activation function, which is defined as follows:

S(x) =
1

1 + e−x (4)

We compared Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU); GRU
is a variant of LSTM, and compared to LSTM, GRU’s internal structure is much simpler,
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and the performance is almost the same [16]. In order to shorten the training time of the
sleep network as much as possible, we finally chose GRU. The purpose of introducing the
attention mechanism layer was to reweight the vectors that are redirected to label 1. As
shown in Figure 4, on the one hand, it strengthens the attention to the vectors with label 1,
and, on the other hand, it further emphasizes the feature vectors that are strongly related to
the target. Less attention was paid to the vectors with redirected label 0. The formula for
calculating the attention weight at time t is as follows:

αt =
exp( f (at))

∑T
i=1 exp( f (ai))

(5)

where f (x) is the scoring function of the attention layer, defined as follows:

f (x) = at(Wm ⊗Wt) (6)

where Wm is a trainable weight matrix, Wt is a redirect weight matrix, and ⊗ denotes
matrix combination.
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Like the BiRNN based on attention mechanism, we used the attention feature vector
output by the attention layer as the input of the second layer RNN network. The hidden
layer also used GRU, and the forward and backward sequences of the hidden layer state
vector were calculated in the same way as (1) and (2). The output vector O was calculated
as follows:

Ot = ot−1 ⊕ ot ⊕ ot+1 (7)

Finally, the output vector was fed into the softmax layer to complete the classification,
and the output sequence Y = (y1, y2, . . . , yp) was obtained, where yp represents the proba-
bility distribution of the sleep stage output. We chose the cross-entropy loss function as our
loss function, which is commonly used and has relatively good results.

4. Experiment
4.1. Sleep Database
4.1.1. Sleep-EDF Database Expanded

The dataset used is the public dataset Sleep-EDF Database Expanded collected by
PhysioNet website [17]. The database contains 197 whole-night sleep records, including
EEG, EOG, chin EMG, and manual annotations of sleep stages. The EEG was collected at
Fpz-Cz and Pz-Oz locations. The sampling frequency of EEG and EOG was 100 Hz; the
sampling frequency of EMG in the Sleep Cassette (SC) subset was 1 Hz, and the sampling
frequency of EMG in the Sleep Telemetry (ST) subset was 100 Hz. Among them, half of the
subjects in the ST subset took temazepam and the other half took placebo. Temazepam is
clinically used to treat sleep disorders, so only 153 whole-night sleep data points from the
SC subset were used in the experiment.
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4.1.2. Sleep Heart Health Study (SHHS)

The SHHS is a multicenter cohort study conducted by the National Heart, Lung, and
Blood Institute to determine the cardiovascular and other consequences of sleep-disordered
breathing [18,19]. The database contains 6441 subjects who participated in sleep-monitoring
records, and we only used the data from SHHS1 for experimental testing, because its dataset
is large enough. The sampling frequency of both EEGs (C4-A1 and C3-A2) and EMG signals
was 125 Hz, while the sampling frequency of EOG signal was 50 Hz.

4.1.3. Haaglanden Medisch Centrum Sleep-Staging Database

The dataset comes from 151 whole-night sleep records collected by Haaglanden
Medisch Centrum sleep center [20]. The dataset includes EEG, EOG, and EMG as well
as manual annotations of sleep stages by professional sleep technicians. The PSG data
included 4 EEGs (F4-M1, C4-M1, O2-M1, and C3-M2), 2 EOGs (E1-M2 and E2-M2), and all
signals had a sampling frequency of 256 Hz.

4.2. Experiment Setup

In order to investigate the impact of different EEG channels on the staging of N1
sleep stage, we used two EEG channels, Fpz-Cz and Pz-Oz, from the Sleep-EDF Database
Expanded as our study subjects. For the SHHS dataset, we selected C4-A1 as our EEG
channel of interest, and for the Haaglanden Medisch Centrum sleep-staging database, we
chose C4-M1 as our EEG channel of interest.

To better validate the universality of the network model, we tested it on different
databases. Because some databases had a small sample size that did not meet the optimal
training requirements of the model, we used 30-fold cross-validation to select the model
and optimize its parameters in those databases with small sample sizes, and achieved
excellent experimental results. During the network model training process, the different
probabilities of occurrence of each sleep stage meant that there was a huge imbalance in
the sample sizes of each sleep stage, which in turn affected the accuracy of the model
training. If the sample size of one sleep stage was much larger than that of other sleep
stages, or if the sample size of one sleep stage was much smaller than that of other sleep
stages, a serious problem of sample imbalance would cause the final classification result
to be biased toward the sleep stage with many samples. This phenomenon is particularly
evident in the sleep transition stage [6,15]. To solve this problem, we used a clever method
of randomly dropping data in the preprocessing step of sleep network training to remove
some continuous, large sample size sleep stage data, while leaving the data in the transition
stage untreated. Additionally, we removed data with a large amount of wake time during
the lights-on period, which would affect the training effectiveness of the model.

The network model was implemented in tensorflow_gpu_2.4.0 framework; python
version was 3.8; computer processor was Intel® Core™ i9-10940X CPU @3.30 GHz (Intel
Corporation, Santa Clara, CA, USA), using NVIDIA GeForce RTX 3090 Ti for network
training, and learning rate was 10−4. Without considering the number of cross-validation
folds, the training time was significantly shortened compared with other methods [8].

5. Results and Discussion

We conducted a study analyzing the results of using single-channel EEG automatic
sleep staging. All automatic sleep-staging algorithms, including the most advanced deep
learning algorithms, show that the sleep-staging results of the Wake and REM stages in
the 5-stage classification are the most accurate, almost reaching clinical levels. However,
the accuracy of the N1 stage is much lower than the average accuracy of other stages [21].
Most research results show that the average accuracy of the N1 stage is only about 40% [22],
which largely hinders the pace of automatic sleep staging replacing manual sleep staging.
On the one hand, the N1 stage is a transitional stage from the Wake to N2 stage, and its
significant features are not obvious, which can easily be confused with adjacent stages [14].
Even experienced doctors may make subjective judgment errors. On the other hand, the
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N1 stage accounts for a relatively small proportion in the entire sleep process [13]. In
the process of network training, due to the imbalance of samples, results that originally
belonged to the N1 stage tend to be biased toward those stages with larger sample sizes. We
used the SHHS dataset as the test benchmark to compare the automatic sleep-staging results
before and after data augmentation. Table 1 shows the confusion matrix obtained using the
attention-based RNN. Through analysis of the confusion matrix, the same low accuracy of
the N1 sleep stage was observed, and the misclassification results were concentrated in the
adjacent sleep stages. Similar issues were also present in other sleep stages, but not as severe
as the N1 stage. Table 2 shows the confusion matrix obtained after data augmentation. The
main diagonal of each confusion matrix represents true (TP) values, indicating the number
of stages correctly classified. By comparing the confusion matrices, the classification effect
of the N1 stage was greatly improved, and the probability of misclassification between the
adjacent sleep stages was significantly decreased; especially the effect of the N1 stage is
the most significant. This is because we enhanced the network’s attention to the N1 stage
during label redirection. The results show that the accuracy of the Wake stage increased
by 7.48%, the N1 stage increased by 14.94%, the N3 stage increased by 2.56%, and the
REM stage increased by 0.21%. After introducing data-bundling augmentation and label
redirection, the network model performed better than before and was superior to most
automatic sleep-staging models in terms of the N1 stage classification performance.

Table 1. Confusion matrix without using data augmentation.

Wake N1 N2 N3 REM

Wake 81.5%
(3675)

8.94%
(403)

5.86%
(264)

0.44%
(20)

3.26%
(147)

N1 19.19%
(530)

44.57%
(1231)

30.41%
(840)

0.18%
(5)

5.65%
(156)

N2 2.78%
(205)

6.34%
(468)

78.09%
(5761)

7.95%
(586)

4.84%
(357)

N3 1.74%
(97)

0.07%
(4)

13.84%
(774)

84.24%
(4710)

0.11%
(6)

REM 0.62%
(47)

2.54%
(193)

4.74%
(361)

0.14%
(11)

91.96%
(6999)

Table 2. Confusion matrix with data augmentation.

Wake N1 N2 N3 REM

Wake 88.98%
(4012)

6.61%
(298)

3.10%
(140)

0.38%
(17)

0.93%
(42)

N1 14.93%
(412)

59.51%
(1644)

21.73%
(600)

0.36%
(10)

3.47%
(96)

N2 3.47%
(256)

6.20%
(457)

76.98%
(5679)

8.20%
(605)

5.15%
(380)

N3 0.77%
(43)

0.09%
(5)

12.30%
(688)

86.80%
(4853)

0.04%
(2)

REM 0.41%
(31)

2.48%
(189)

4.89%
(372)

0.05%
(4)

92.17%
(7015)

Through the experimental comparison of the radar chart in Figure 5 and the ran-
dom tester experiment results shown in Figure 6, we can draw the following conclusions
more intuitively:

1. Throughout the sleep process, the N1 stage has the shortest total duration proportion,
while the N2 stage has the longest total duration proportion. Therefore, attention
to the problem of imbalanced training data is essential during the network model
training process;
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2. Although the accuracy of the N1 stage was greatly improved in our network, the
importance of N1 stage data for clinical diagnosis cannot be ignored. Further break-
throughs are needed to meet clinical application standards;

3. Our network model provides reference values for the classification performance of
Wake stage and N1 stage research.
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Figure 6. Radar plots (a,b) show the sleep stage classification accuracies for 8 randomly selected
subjects from the database. Radar plots (c,d) show the sleep stage accuracies and proportions of sleep
time for 2 randomly selected subjects from the SHHS database, where blue represents accuracy and
cyan represents the proportion of sleep time for each stage.
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To further validate the performance of the proposed sleep-staging network, we tested
it on three publicly available datasets. Because the SHHS dataset contains a large amount
of subject data and our staging network received sufficient training on this dataset, we
achieved the best staging results on this dataset. As shown in Figure 7a, the staging accuracy
obtained using the SHHS dataset reached 93.5%. If the classification results of the N1 stage
are not considered, the model’s best performance is comparable to manually staged results
after sufficient training and calibration. By comparing the manually annotated staging and
the network output staging error graph, it is apparent that the network is more likely to
make errors in the N1 stage and the transitional stage. Through analysis of the dataset,
we found that the N1 stage has the least amount of data and the most difficult distinction
process, and about 40% of the data are in the transitional stage, which often contains
multiple sleep stages, making it very challenging to classify [14]. However, our sleep-
staging network achieved some results in these two aspects. As shown in Figure 7b,c, our
network model also shows the best performance on the Sleep-EDF Database Expanded and
Haaglanden Medisch Centrum sleep-staging datasets. The F1 scores for these two datasets
were 79.6.3 ± 3.6%, slightly lower than the SHHS dataset’s testing results. The overall
accuracy test results were the highest for the SHHS dataset, followed by the Sleep-EDF
Database Expanded dataset and the Haaglanden Medisch Centrum sleep-staging dataset,
with accuracies of 87.3%, 86.2%, and 85.9%, respectively. In addition, redirecting the
attention weights toward the N1 stage through label redirection showed that the attention
layer can better capture the typical features of the N1 stage and reduce the probability of
misclassifying the N1 stage as the Wake or N2 stage.

Table 3 presents a comparison of the various network performances using Fpz-Cz
EEG data, along with EOG and EMG data, as the study subject in the Sleep-EDF Database
Expanded. The table shows the predictive performance (accuracy) of each network model
for each stage of sleep, as well as the overall staging accuracy and F1 score. As shown in
the table, the overall accuracy of most models is below 82%, while our model achieves a
staging accuracy of 86.2% and an MF1 of 80.5%. Our proposed model outperforms other
network models in processing the N1 stage, indicating that using data augmentation and
label redirection is more conducive to mining features that are easy to distinguish from
adjacent sleep stages. Our proposed model also shows good performance in classifying
other sleep stages and is on par with other advanced network models, especially in REM
stage classification where it exhibits the best performance.

Table 3. Comparison of our proposed automatic sleep-staging algorithm with other advanced
algorithms using Sleep-EDF Database Expanded as the reference standard. (ACC means overall
accuracy, and MF1 means macro F1 score).

Wake N1 N2 N3 REM ACC MF1

Proposed Network 89.7 54.5 76.9 86.8 87.2 86.2 80.5
Baseline RNN 89.9 43.6 55.6 77.5 80.4 77.6 73.3

ARNN 90.7 44.3 32.4 73.5 76.5 80.1 73.6
1-max CNN [23] 77.4 40.6 87.4 86.0 82.3 82.3 73.8

Dense Encoder [24] 88.5 41.9 86.0 81.1 84.0 82.1 76.3
IITNet [25] 87.7 43.4 87.7 86.7 82.5 83.9 77.6

SAE [14] 71.6 47.0 84.6 84.0 81.4 78.9 73.7
ResnetMHA [26] 90.2 48.3 87.8 85.6 83.0 84.3 79.0
FCNN+RNN [10] 92.5 47.3 85.0 79.2 78.9 82.8 76.6
SeqSleepNet [8] 92.2 47.8 84.9 77.2 79.9 82.6 76.4
AttnSleep [27] 92.0 42.0 85.0 82.1 74.1 81.3 75.1

SleepTransformer [28] 91.7 40.4 84.3 77.9 77.2 81.4 74.3
Deepsleepnet [9] 84.7 46.6 85.9 84.8 82.4 82.0 76.9
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Figure 7. The results of testing with different datasets are shown in (a) SHHS dataset, (b) Sleep-
EDF Database Expanded, and (c) Haaglanden Medisch Centrum sleep-staging dataset. The figures
include the original manually scored sleep graph (top), the estimated sleep graph using our al-
gorithm (middle), and the error sleep graph comparison between the two (bottom), with red x
indicating misclassification.

In addition, we investigated the impact of different EEG channels on the classification
of sleep stages. We selected the Fpz-Cz and Pz-Oz EEG channels from the Sleep-EDF
Database Expanded as the study objects. To reduce the computational complexity of the
automatic sleep network, current mainstream automatic sleep-staging research mostly
uses single-channel EEG research methods. However, a summary of previous research
results shows that using multichannel EEG achieves higher accuracy in automatic sleep
staging than using only single-channel EEG [11,29,30]. Sleep is a complex physiological
process, and different brain regions are active to varying degrees during different stages
of sleep. Extracting EEG features highly correlated with sleep stages from those active
brain regions can more accurately classify sleep stages. Figure 8 shows a comparison of
results for 20 randomly selected testers using the best network model. From the figure, it
is evident that the accuracy of the Wake period, N2 period, and N3 period is not greatly
affected by using the Fpz-Cz or Pz-Oz EEG channels, with individual testers showing
significant differences, which may be related to the quality of the tester’s EEG signal. For
the N1 period and REM period, using the Fpz-Cz EEG channel performed better than using
the Pz-Oz EEG channel. In summary, different EEG channels have varying contributions
to the classification of sleep stages. Considering the limited sleep information contained
in single-channel EEG and the difficulty in improving the classification accuracy of the
N1 stage, the use of a multichannel EEG combination is of great research significance in
overcoming this bottleneck.
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Figure 8. On the best network model, using Sleep-EDF Database Expanded, the effects of different
EEG channels on automatic sleep stage classification are shown in the figure. The blue line represents
the EEG channel Pz-Oz, while the red line represents the EEG channel Fpz-Cz. Panels (a–e) correspond
to Wake, N1, N2, N3, and REM stages, respectively. The horizontal axis represents subject IDs, and
the vertical axis represents accuracy.
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6. Conclusions

This article proposes a novel RNN based on data bundling augmentation and label
redirection for automatic sleep stage classification. The method uses data bundling augmen-
tation to directly extract deep features of transition stages, which enhances its expression
capability and effectively addresses the problem of misclassification in these stages. Ad-
ditionally, the model employs label redirection combined with attention mechanism to
significantly improve the classification accuracy of the N1 stage. The proposed model was
evaluated on three datasets and demonstrated stable and good performance, which not
only reflects the great potential of the network model in automatic sleep stage classification,
but also validates its generalization ability and provides a solid foundation for exploring
transfer learning capabilities in more datasets. Furthermore, this article also tests and
analyzes the influence of different EEG channels on each sleep stage. Specifically, some
channels have better recognition performance in certain sleep stages, while in other stages,
the performance is not ideal. These findings contribute to a deeper understanding of the
changes in EEG signals in different sleep stages, and improve the accuracy and reliability
of automatic sleep stage classification, providing valuable data and references for further
research on sleep problems.
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