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Abstract: This paper presents a novel approach for accelerating the top-k heavy hitters query in data
streams using Field Programmable Gate Arrays (FPGAs). Current hardware acceleration approaches
rely on the direct and strict mapping of software algorithms into hardware, limiting their performance
and practicality due to the lack of hardware optimizations at an algorithmic level. The presented
approach optimizes a well-known software algorithm by carefully relaxing some of its requirements
to allow for the design of a practical and scalable hardware accelerator that outperforms current
state-of-the-art accelerators while maintaining near-perfect accuracy. This paper details the design
and implementation of an optimized FPGA accelerator specifically tailored for computing the top-k
heavy hitters query in data streams. The presented accelerator is entirely specified at the C language
level and is easily reproducible with High-Level Synthesis (HLS) tools. Implementation on Intel Arria
10 and Stratix 10 FPGAs using Intel HLS compiler showed promising results—outperforming prior
state-of-the-art accelerators in terms of throughput and features.
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1. Introduction

Extracting a list of the most frequently occurring items (aka. heavy hitters) from large
datasets is a well-studied problem that is usually tackled with approximation techniques
due to the complexity and size of the problem [1,2]. Several approximation techniques
model the input as a “data stream” consisting of a sequence of items that needs to be
processed in a one-pass manner at high speed and using limited memory [3]. The heavy
hitter problem has applications in many fields, such as network traffic monitoring [4],
website data analysis [5], and sensor networks [6]. A sub-class of the heavy hitter problem
is the “top-k” problem, wherein a user would query the k most frequent items in a data
stream. Examples of such queries include the top-visited websites in web data, the most
frequent destination IPs in network traffic passing through a networking device, the
bestselling products in retail data, etc.

In recent years, data stream algorithms have been deployed by companies such as
Google, Apple, Microsoft, etc. to address several computational problems [7]. With
the growing demand for high-speed data stream processing, several custom hardware
accelerator architectures have emerged (see Section 2). In general, these accelerators rely
on parallelism and deep pipelining to achieve the required processing throughputs. Field
Programmable Gate Arrays (FPGAs) are typically used to implement such accelerators due
to three main reasons: First, the flexibility of FPGAs allows one to change the accelerator
hardware configuration so that it is tailored for specific stream distributions or specific user
requirements. For example, some hardware configurations would favor accuracy, while
other configurations would favor higher throughputs. Second, stream algorithms usually
summarize the properties of the data stream in small data structures referred to as “stream
summaries”. The amount of fast on-chip SRAM memory in a modern FPGA is sufficient for
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implementing practical stream summaries without the need to access the slower external
DRAM. Third, the extensive Intellectual Property (IP) support and flexible high-bandwidth
Input/Output (I/O) in FPGAs allow for the easy integration of FPGAs in edge and cloud
applications that deploy data stream analytics.

With the advances in High-Level Synthesis (HLS) tools, functional hardware imple-
mentations of software algorithms can be easily and quickly realized. However, design
optimizations are often necessary to achieve the optimal operation of hardware accelera-
tors. The main goal in HLS design is to be able to implement a stall-free accelerator or, in
other words, an accelerator with an Initiation Interval (II) of 1. An II of 1 means that the
accelerator pipeline can process a new input item every clock cycle without stalling. An
optimal stall-free accelerator is not always possible, especially if the accelerator requires
complex memory accesses. For example, a hardware implementation of a hash table will
not maintain an II of 1 due to the pipeline stalls needed to resolve collisions when inserting
items in the table.

There are several complexities associated with designing an optimal accelerator to
compute the heavy hitters in data streams, depending on the base algorithm used and
the overall system requirements. For example, several heavy hitter algorithms utilize
hash table data structures for counting item occurrences in a data stream, preventing a
stall-free operation due to hash collisions and memory dependency. Additionally, if the
accelerator is required to support the top-k item query, this adds further complexity to
the design. A suitable data structure, such as a priority queue, needs to be implemented
to maintain a list of the top k items. In addition, a suitable interface is needed for the
host to traverse the top-k item list. Several hardware architectures have been proposed
in the literature to accelerate the heavy hitter problem in data streams (See Section 2).
However, there is no single elegant solution to handle the aforementioned complexities
without scaling down the design. This paper presents a novel hardware adaptation of the
approximate Probabilistic sampling algorithm in [8], which is used for the top-k item query
in data streams. The presented hardware architecture aims to address design complexities
in existing solutions by introducing hardware-specific optimizations at the algorithmic
level. These modifications are based on intuition and favor simplicity and design scalability
to facilitate the strict mapping of the algorithm into hardware. When implemented as an
HLS kernel using Intel HLS compiler and targeting an Intel Stratix 10 FPGA, the proposed
architecture scaled very well and achieved higher throughputs compared to all relevant
existing FPGA accelerators. Furthermore, test results on synthetic and real datasets showed
near-perfect accuracy—exceeding 95% in all test runs. This is a significant improvement
over previously proposed scaled down accelerators that would strictly map the Probabilistic
sampling algorithm into hardware. In short, the main contributions in this paper can be
summarized as follows:

(1) A novel hardware-optimized algorithm for computing the top-k query in data streams.
The algorithm is the first to deploy techniques such as fingerprinting, optimistic
counting, re-hashing, and timestamping to resolve hardware-specific complexities
usually associated with relevant FPGA accelerators.

(2) An HLS kernel design for the proposed optimized algorithm that can be easily repro-
duced using HLS tools from both major FPGA vendors (AMD/Xilinx and Intel). The
HLS kernel also deploys novel optimizations at the hardware level to resolve common
implementation issues such as memory dependency and data hazards.

(3) The fastest FPGA implementation compared to existing accelerators, achieving high
throughputs even when the implementation has a high chip utilization.

(4) Addressing important practicality issues in kernel design such as larger key sizes (up
to 128-bit), result mergeability, and parallelism.

The remainder of this paper is organized as follows: Section 2 briefly introduces the
top-k query problem in data streams and discusses some of the most relevant previously
published work. Section 3 briefly discusses the Probabilistic sampling algorithm, which is
used as the basis for the top-k item query computation. Section 4 presents the proposed
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optimizations for efficient hardware implementation. Sections 5 and 6 details the HLS
accelerator kernel design and FPGA implementation. Section 7 presents the functional
verification and evaluation of the proposed accelerator. Finally, conclusions and future
work plans are summarized in Section 8.

2. Background and Related Work
2.1. The Top-k Item Query in Data Streams

Assume we have a stream S of size N, and we want to find the k most frequent items in
S (known as top-k items or top-k heavy hitters). The size of the stream N is not necessarily
known beforehand. A naïve exact solution for finding the top-k items can be realized using
a lookup table data structure with key-count pairs in its entries. For every item hit, if the
item key is in the table, its count value is updated. Otherwise, a new entry is created in
the table. An additional priority queue data structure can be used to maintain a record
of the current top-k items. Alternatively, the entries in the lookup table can be sorted
according to their count values to extract the top-k items when the stream is exhausted or
when results are required. For a general input distribution containing a large number of
distinct items, finding an exact solution is impractical or even impossible due to the time
and space complexity.

In most practical applications, an exact result is not required. Approximate results
can be obtained using approximate algorithms that do not count every distinct item in
the stream. In general, approximate algorithms only maintain a summary of the stream
and a list of heavy hitter candidates that most likely contain most of the actual top-k items
in the stream. There are two categories of such approximate algorithms in the literature:
counter-based and sketch-based algorithms.

2.2. FPGA Implementations of Counter-Based Algorithms

In general, counter-based algorithms allocate counters in memory, only enough for
counting a small subset of the overall distinct items in the stream. Each counter is a key-
value tuple, where the key is an identifier for a heavy hitter candidate and the value is
the estimated count for this candidate. When the stream is processed, the counters should
contain all or most of the heavy hitters in the stream. Counter-based algorithms do not
require an additional priority queue for computing the top-k items, as this can be performed
by using a simple sort operation.

Several architectures have been proposed to accelerate item counting using FPGAs.
Early works on the related field of itemset mining acceleration with FPGAs proposed
implementing fine-grained systolic arrays with serially connected Processing Elements
(PEs). Each PE contains a small independent memory allocated for updating a single or
small number of key-value tuples [9]. A limited number of such systolic array accelerators
have been specifically designed to compute the heavy hitters in data streams [10–13]. Most
of these accelerators implement the popular Space-Saving algorithm [14]. Space-Saving
uses m counters to monitor the first m distinct items that appear in the stream. A new
incoming item, not in the any of the m counters, replaces the item with the minimum
count. By doing so, frequent items with large counts should remain in some of the counters
when the stream is exhausted. Although implementing Space-Saving is relatively simple in
software, mapping it to a systolic array architecture can be tricky with complexities that
limit the overall number of monitored items. Current Space-Saving FPGA implementations
can be used to monitor hundreds to a few thousands of items using mid-capacity and
large-capacity FPGA chips [11–13]. The work in [10] showed that the Probabilistic sampling
algorithm proposed in [8] maps better to a systolic array architecture, resulting in some
notable improvements compared to Space-Saving.

All the aforementioned systolic array accelerators rely solely on the FPGA logic
resources for implementing small distributed memories to store the key-value tuples.
Although they are stall-free and relatively fast, the maximum number of items that can
be monitored is limited, especially with larger key integer sizes. Several works have
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demonstrated that it is possible to expand the total number of monitored items using
key-value store approaches based on hash tables that utilize the abundant embedded
memory resources on an FPGA chip [15,16]. However, the performance of such approaches
significantly suffers because of hash collisions and the pipeline stalls needed for updating
the monitored items.

2.3. FPGA Implementations of Sketch-Based Algorithms

Sketch-based algorithms aim to summarize the frequency distribution of the data
stream using a unique data structure referred to as a “sketch”. The frequency estimation
sketch can be queried to output the estimated count of a particular item key. A very popular
frequency estimation sketch is the count–min sketch [17]. The count–min sketch consists of
several hash tables with different hash functions. The hash tables only contain count values
in their entries. When the sketch is updated with a new item hit from the stream, the item
key is hashed into all of the tables, and the relevant table entries are incremented. Since the
hash functions are different, item collisions will differ in all of the tables. For any queried
item, the table entry with the minimum count (minimum number of collisions) represents
the best count estimate for the item.

The count–min update process does not require hash collision resolution. Several FPFA
accelerators implement count–min on the on-chip embedded memory to realize constant
update time and, in some cases, stall-free operation [18–23]. As the count–min does not
store item keys in its table entries, it cannot be directly used to solve the top-k item query
problem. An additional hardware data structure is required to maintain a record of the top
key-value tuples [24–26]. Only a few FPGA implementations extend the basic functionality
of count–min to support the top-k query. The sketch accelerator in [27] uses a simple priority
queue architecture. Because the queue update process is sequential, the throughput can be
drastically reduced, even for small values of k. A more sophisticated and improved priority
queue was later presented in the accelerator proposed in [28,29]. This accelerator uses a
large portion of the available embedded memory resources for implementing the queue
rather than for the sketch. The queue is implemented as a pipelined hash table with several
independent buckets to allow for consecutive updates (1 update per clock cycle in most
cases). This allows one to monitor a larger number of top items, but with reduced count
accuracy due to the smaller sketch. In fact, the main objective of this accelerator was not to
output the top-k items accurately but to estimate the entropy of the input stream using the
top-k item list as a sample of the stream.

A related work deploys a hybrid approach, combining a sketch implemented on
embedded memory and a systolic array implemented using the logic resources of the
FPGA. The sketch is only used as a filter that passes item hits for items with counts larger
than a specific threshold to the systolic array that monitors the heavy hitters [10]. While this
architecture achieved good performance, it only allowed one to monitor a relatively small
number of items. Another related work implements an accelerator based on an alternative
sketch algorithm that supports the top-k query without the need for a priority queue [30].
The implemented Heavy-Keeper sketch uses hash tables similar to count–min; however, item
keys are also stored in the table entries, allowing for the sketch to be traversed to extract
the top-k items [31]. Due to the complexity in updating the Heavy-Keeper sketch, the item
update process required several clock cycles (II larger than 1).

2.4. Summary of Existing FPGA Implementations

Table 1 summarizes the most relevant existing FPGA implementations of data stream
heavy-hitter detection algorithms. Implementations are classified into three categories:
systolic array, hash table, and sketch implementations. These categories are compared
according to the following attributes:

Design: A stalling design means that the accelerator cannot guarantee that an item is
processed in a single clock cycle, resulting in a slow FPGA implementation.
Key Size: Smaller key sizes limit the possible applications.
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Top-k Query Support: Several implementations do not directly support the top-k query as
an additional priority queue is needed.
Result Readout Style: Using a buffer implemented as a memory block allows the results
to be easily copied and processed by a host. However, a large buffer increases latency and
host processing time. A First-In First-Out (FIFO) interface is present in accelerators that are
only capable of outputting results for individual item count queries.

Table 1. Summary of FPGA implementations of data stream heavy-hitter detection algorithms.

Ref. Type Algorithm Stalling
Design? Key Size (Bits) Top-k Query? Result

Readout

[10] Systolic Array Probabilistic [8] No 32 Yes Small Buffer
[11–13] Systolic Array Space-Saving [14] Yes 32 No FIFO
[15,16] Hash Table Cukoo Hash [32] Yes 104 Yes Large Buffer
[18–23] Sketch Count–Min [17] No 32-128 No FIFO
[30] Sketch Heavy-Keeper [31] Yes 32 Yes Large Buffer

From Table 1 we can see that there is no single FPGA implementation that excels in all
attributes. Therefore, the presented work focuses on filling this gap by addressing all the
attributes needed to realize a fast and practical FPGA accelerator specifically tailored for
the top-k query in data streams.

3. Base Algorithm: Probabilistic Sampling

Our proposed approach for finding the top-k items borrows several ideas from the
Probabilistic sampling algorithm in [8]. We first briefly introduce Probabilistic sampling in
this section and, later, we detail the proposed hardware-specific optimizations in Section 4.

Probabilistic sampling is generally considered fast and efficient, and can approximate a
list of the top-k items in data streams. The idea behind Probabilistic sampling is very simple
and as follows: the data stream is divided into rounds of size r that are processed separately.
The algorithm uses m counters to count the first m distinct items that appear in the round
(see Figure 1). Hits from items not registered in the m counters are discarded. A hash table
with key-value entries is a fast and simple method for counting the sampled items. At the
end of a round, the k items with the largest round counts are extracted and stored in a list.
The process is then repeated in later rounds of the stream. The final list of approximate
top-k items is obtained by merging the top-k lists at the end of each round. Only the items
with the highest round counts make it to the final list. For duplicate item records, only one
entry with the highest round count is stored in the merged list.
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Figure 1. Probabilistic sampling algorithm.

In addition to the highest round count for an item in the top-k list, an extra total accu-
mulate count field can also be stored for each item. This field represents an underestimated
value for the item count. The value in this field is obtained by accumulating the round
counts of items appearing in the top-k list in consecutive rounds. If an item is recorded as a
top item in all rounds, then the total count estimate is the actual count of this item.
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4. Proposed Approach: Optimizations for Efficient Hardware Implementation
4.1. Updating the Round Table

To implement the Probabilistic algorithm on an FPGA, a hash table is needed for
counting items in a round. The hash table can be implemented as a RAM block. The aim
is to store as many key-value pairs as possible using the available on-chip memory. In
addition, a stall-free operation is necessary to achieve high throughput. The main obstacle
in achieving a stall-free operation is the item collision issue. There are some trivial methods
to minimize hash collisions. For example, we can increase the load factor of the hash table
by using a RAM block with M buckets to count m distinct items (M > m). Additionally, it
is possible to use an additional bloom filter data structure to decrease the number of table
updates [33]. However, using these methods will increase the memory usage and limit the
number of items that can be monitored in a round.

Optimizing memory accesses and the RAM block geometry can also enhance the
performance of a hash table. For example, breaking the RAM block into several pipelined
banks allows for several concurrent memory accesses [16,33]. However, real data streams
are typically skewed, causing contention on some of the memory banks and, as a result,
preventing meaningful performance gains. While there are some methods that have
been proposed to reduce contention on the memory banks when processing has skewed
streams [34,35], there is no efficient solution that guarantees a stall-free operation.

Instead of strictly mapping the round table update process in Probabilistic models into
hardware, we modify this process to address the aforementioned shortcomings associated
with hardware hash tables. The remainder of this section details the proposed optimizations
for the round table update process. Figure 2 shows the pseudo code for the optimized
update_table() function, which returns the round count for a particular item hit in a round.
The function has four arguments:

(1) FP: item fingerprint.
(2) TS: timestamp.
(3) IDX: table index generated by a hash function.
(4) w: weight of an item (w = 1).
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4.1.1. Optimistic Counting

As mentioned earlier, the main obstacle in achieving a stall-free operation is item
collisions when counting the first m distinct items in a round. Rather than increasing
the hash table load factor to decrease item collisions, we opt for an “optimistic counting”
approach that ignores item collisions. The idea behind optimistic counting is simple and
can be described in four steps as follows:

(1) An item hit is hashed to generate an index (IDX) to a bucket in the table.
(2) If the indexed bucket is empty, create an entry for the item in the bucket.
(3) If the indexed bucket already contains an entry for the item, increment the round

count of the item.
(4) If the indexed bucket contains an entry for another item, discard the item hit.

We can see that the optimistic counting approach utilizes all M buckets for item
counting opposite to the conventional hash table approach, which only inserts m items
in the M buckets (M > m). The first item to be hashed into an empty bucket will stick
in the bucket for the remainder of the round. Item collisions are totally ignored in favor
of sampling more items and achieving a stall-free operation in hardware. We refer to the
optimized function as “optimistic” because it assumes, or in other words, hopes that there
will be no item collisions before, at least, the m items are inserted into the table. Due to the
simplicity of this approach, we can count a significantly larger number of items using the
same amount of FPGA embedded memory compared to a conventional hash table with
a large load factor. In addition, to allow for a stall-free operation, we can also argue that
the proposed simplified item counting technique can result in better accuracy compared
to a hash table with a large load factor when the amount of embedded memory is limited.
This is mainly attributed to the larger number of sampled items using the same amount
of memory.

4.1.2. Fingerprinting

As the on-chip memory in FPGAs is generally limited, it is very important to optimize
memory usage to be able to sample as many items as possible. Most of the available
accelerators discussed in Section 3 limit the key size of an item to 4 bytes. While this is
sufficient for some applications (example: IP address in IPv4), there are other applications
that require larger key sizes (example: 128-bit IP address in IPv6). Storing the full item keys
in the round table buckets will limit the total number of buckets possible with the available
memory, especially for larger key sizes. As we are only interested in maintaining a record
of the top-k items, there is no need to store the keys for all the sampled items. Alternatively,
we can store a unique fingerprint (FP) of the item in the round table [31]. This fingerprint
is generated by a hash function and is much smaller in size compared to the actual key
(see Figure 2). Simply, when calling the optimized table_update() function, the function
matches the generated item fingerprint to the fingerprint stored in the indexed table bucket
to decide if the round count should be incremented.

4.1.3. Round Re-Hashing

As our simplified optimistic counting technique ignores item collisions, we need to
consider the case when two or more heavy hitter items generate the same index early in
the round. Only one of these heavy hitters will be registered in a round and considered as
a top-k candidate. In addition, there is a possibility of different items generating the same
table index as well as the same fingerprint.

To rectify the issue of colliding heavy hitters, we propose round re-hashing. Basically,
the seed for the hash function used to generate the item index is randomly generated for
each round (labelled hi(key) in Figure 2). The idea behind round re-hashing is simple and
as follows: if two heavy hitter items collide in a round, it is highly unlikely that the same
items will collide with each other again in another round, as they will likely generate
different hashes.
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4.1.4. Using a Timestamp for Reduced Latency

Another issue that needs to be addressed when updating the round table is the RAM
block reset needed in between rounds. As we are going to use the same RAM block
for counting items in different rounds, all buckets must be reset before starting a new
round. This is time-consuming, as the memory locations in the RAM block need to be
reset sequentially. The latency of the accelerator will significantly increase, especially if the
RAM block is large and the chosen round size is not sufficiently large relative to the RAM
block size.

To address this issue, we propose using a unique timestamp for every round. Items
in the same round will be assigned the same timestamp. When an item is first registered
in a table bucket, the current timestamp is also stored in the bucket (see Figure 2). When
updating the table, if an indexed bucket has a timestamp different to the current timestamp,
the bucket is considered empty and can be used to register a new item. This way, there
is no need to reset the RAM block after each round. To avoid significantly increasing the
memory usage of the round table, only small numbers should be used for the timestamp.
For example, if 1 byte is allocated for the timestamp, this allows one to run 255 rounds
before a reset of the RAM block is required.

4.2. Updating the Heavy Hitter Summary

After counting items in a round, the top-k frequent items in the round should be
extracted and stored in a list. In hardware, the process of updating the top-k item list
should run concurrently with the table update process to achieve a stall-free operation.
Typically, a priority queue data structure is used to maintain a record of the top-k items;
however, FPGA implementations of such data structures can be complex and inefficient,
especially if a stall-free operation is required (see Section 2).

We propose a data structure that is entirely different to a priority queue. We call this
data structure the “heavy hitter summary”. The summary is a hash table with K buckets,
where K is much larger than k but still much smaller than M. Figure 3 shows the pseudo
code for the update_summary() function, which is called after the update_table() function in
Figure 2.
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Each bucket in the summary contains three fields: an item key, round count, and total
accumulate count for the item. The update_summary() function arguments are the key for the
current item hit, the bucket index (IDXs) generated by the hash function, the item’s round
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count returned by the update_table() function, and the weight of the item. The procedure for
updating the summary can be summarized as follows:

(1) An item hit is hashed to generate an index (IDXs) to a bucket in the summary.
(2) If the key matches the key stored in the indexed bucket, the accumulate count is

incremented. The stored round count is also updated in case the current round count
is larger than the stored count.

(3) If the key is different than the stored key in the indexed bucket, the bucket is up-
dated with the new item only if the new item round count is larger than the stored
round count.

The update_summary() function is called for every item hit in the stream. The summary
is only reset when the stream is exhausted. The function basically splits the stream into
K sub-streams using the hash function. Only the heaviest item from each sub-stream is
maintained in the relevant bucket (the item with the largest round count). When K is
sufficiently large relative to k, most of the actual top-k item should stick in some of the
summary’s buckets. Querying the top-k items from the summary is simple and involves
the following: first the items in the summary are sorted according to their accumulate
count. Then, the top-k items are extracted. The latency incurred from the sorting operation
should not affect the performance when implementing the proposed summary in hardware.
This is because, in practical applications, a top-k query is only issued intermittently after
very large intervals of streaming activity. Additionally, K is generally small, and the sorting
operation can be efficiently completed in software by a host.

5. HLS Kernel Architecture

This section details the design of an FPGA accelerator implementing the proposed
algorithm in Section 4. We draw the readers’ attention to the Intel HLS documentation [36],
as the remainder of this section uses technical terminology that may be specific to Intel HLS
design flow. As the presented design only deploys standard pragmas, the design can be
easily migrated to other HLS tools (for example, AMD/Xilinx Vitis HLS). In addition, with
minor modifications, the accelerator can be deployed as a kernel in Intel heterogeneous
computing tools such as the following: Intel FPGA SDK for OpenCL and Intel OneAPI
toolkit. Since these tools use the same core compiler technology as Intel HLS, results should
be the same regardless of which Intel design tool is used.

5.1. Architecture Overview

The accelerator is designed as a kernel that operates alongside a host CPU, which is
the typical hardware setup in streaming applications. The kernel is implemented as a slave
component that is controlled by a host through a memory mapped slave interface (see
Figure 4). In Intel HLS compiler, the “hls_avalon_slave_component” attribute can be used
to infer a slave interface compatible with the Avalon bus specification. The host launches the
kernel to process a single round of the stream. There are some memory mapped registers
that need to be setup by the host before launching the kernel, including the following: the
round size (r), the timestamp of the round (TS), and the hash function seed needed for
generating the round table index (IDX), as explained in Section 4. The kernel contains two
memory blocks, one represents the round table with M memory locations and the other
represents the heavy hitter summary with K memory locations. Both memory blocks are
implemented as simple dual-port RAM using the M20K embedded memory resources
in Intel FPGAs. A simple dual-port memory has a read port dedicated to reading (load
operations) and a write port dedicated to writing (store operations). Using the relevant
component macros in Intel HLS compiler, the heavy hitter summary is specified as a slave
memory with read access granted to the host. By doing so, the compiler inserts arbitration
logic at the read port of the heavy hitter summary to allow the host to read the summary
when results are required. For a simpler arbitration logic, we prevent host access during a
round when the kernel is active.
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After launching the kernel, the kernel runs for r iterations. In every iteration a blocking
read operation from an input stream FIFO is performed to read the item keys from the
data stream. The kernel pipeline can be divided into three main stages: the pre-process
stage, the round table update stage, and the heavy hitter summary update stage. In the
pre-process stage, the input keys are processed to generate the hashes required in the
proposed algorithm. In addition, some control signals are generated to efficiently handle
data hazards in later stages in the pipeline. The round table update stage basically executes
the function in Figure 2, while the heavy hitter summary update stage executes the function
in Figure 3. While a functional hardware implementation of the proposed algorithm in
Section 4 is very straightforward using HLS, achieving an II of 1 requires some design
optimizations, which will be detailed in the remainder of this section.

5.2. Round Table Load-Store Logic

A naïve HLS code for the update_table() function in Figure 2 will certainly result in a
pipeline with an II larger than 1 when compiled. The pipeline will not be able to process
an input item every clock cycle mainly due to memory dependency and the read-modify-
write operation performed when updating a bucket in the round table. With dual-port
RAM, it is possible to perform load and store operations at the same time; however, the
minimum latency of a RAM block is 1 clock cycle. This means that consecutive updates
to the same bucket will create a data hazard issue. To prevent functional failure due to
memory dependency, the HLS compiler inserts stalling logic in the pipeline and increases
II to a number larger than the RAM block latency. Therefore, the best possible II for a naïve
HLS implementation is 2. In addition, the performance will further suffer if the round table
is large—consisting of many FPGA RAM primitives that are physically distanced apart on
the chip. The compiler may decide to further increase II or reduce the maximum operating
frequency (fmax) to meet timing requirements.

HLS tools usually support special pragmas to relax memory dependency. For example,
the “ivdep safelen (m)” pragma can be used to tell the compiler that there will be no
memory dependency for at least m loop iterations. We only need m = 2 to achieve an II of
1. However, when m is sufficiently larger than the RAM block latency, the compiler will
be able to schedule the memory load and store operations further apart in the pipeline to
achieve higher fmax, and this is particularly useful when the RAM block is large [37].

Relaxing memory dependencies and specifying a safe dependence distance m for the
compiler does not guarantee functional correctness. The programmer needs a mechanism
to guarantee that no such dependencies will occur in the first place to prevent functional
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failure. There are several solutions available in the literature for handling dependencies at
run-time when updating frequency estimation sketches (Examples: [19,21,37,38]). None
of the available solutions are directly applicable to our proposed algorithm. Therefore,
we propose a custom solution for handling memory dependencies when updating the
round table according to the update_table() function in Figure 2. The solution is based on a
Load-Store Queue (LSQ) that precedes the round table update stage in Figure 4. The LSQ
mainly performs two tasks—labelled “pre-count” and “hazard detect” in Figure 4.

5.2.1. Pre-Count: Forward Weight Accumulation

Memories constructed using the logic blocks of the FPGA do not have read and write
latencies as in memories constructed with the embedded RAM resources of the FPGA. The
first step in our proposed solution for handling memory dependencies is to pre-count the
occurrences of item keys in a small buffer constructed using the logic blocks. We refer to
this technique as “forward weight accumulation”. The circuit used for forward weight
accumulation is shown in Figure 5. The circuit consists of a shift register of size m. All
registers have parallel connections to the weight accumulation logic.
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When the kernel is launched, the item keys are read from the input FIFO. The kernel
will first wrap each item key in a data structure containing a wight variable (w), which
is initialized to 1 (see Figure 5). In addition to the key and initial weight of 1, the kernel
will wrap a variable t that is assigned to either 0 or 1 depending on the order of the item
in the stream. The variable t is a tag used for dividing consecutive keys into groups or
windows of size m; each key in the same window is assigned the same tag. Basically, the
value of t is inverted in every m loop iteration. When passing items through the shift
register, the weight accumulation logic will compare the key in Reg[0] to the keys in all
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other registers. The weight of any identical key belonging to the same window will be
accumulated forward in Reg[0] before it is reset to zero. Any key with a weight of zero is
regarded as a “bubble” and can be discarded in later stages in the pipeline when it exits the
shift register. By inserting bubbles in the pipeline, memory dependencies are eliminated
for at least m loop iterations.

Implementing forward weight accumulation is straightforward with HLS as it only
requires a simple loop unroll pragma (see the HLS code snippet in Figure 5). It should be
noted that a previously proposed solution deployed a similar backward weight accumula-
tion technique that does not require the stream to be divided into windows with alternating
tags [37]. The idea was to keep accumulating wights backward in Reg[m − 1] to insert
as many bubbles as possible into the pipeline. While the solution is perfect for simple
frequency estimation sketches, it is not suitable for the algorithm presented in this paper.
This is mainly because, in skewed data streams, the weights of frequent items will likely
keep accumulating in the shift register for long intervals in the case of using a backward
accumulation technique. This is highly undesirable for our sampling algorithm because
updates of frequent items are delayed in the shift register and may fail to stick in any of the
round table buckets when they eventually exit the shift register.

5.2.2. Data Hazard Detection

With forward weight accumulation, we resolve the memory dependency issue asso-
ciated with consecutive items with identical keys in the stream. There is still one minor
issue that needs to be resolved before safely using the “ivdep safelen (m)” pragma in the
kernel’s HLS code. The issue arises from the fact that different keys may generate the same
round table index (IDX). While this is not a problem when the keys are distanced apart in
the stream or when a key is already registered in the indexed bucket, a data hazard occurs
when two keys that are less than m cycles apart generate the same index to an empty bucket.
When the empty bucket is evaluated for the first key update, a memory store operation is
initiated to register the key in the bucket. Due to memory latency, the bucket may still be
interpreted as empty when evaluated for the second key update—initiating an incorrect
memory store operation.

To resolve this data hazard, the table indexes are first pre-processed by an LSQ similar
to the one used for forward weight accumulation. The LSQ consists of a shift register of
size m and some data hazard detection logic (see Figure 6). When passing the indexes to the
shift register, the kernel wraps a Write Enable (WE) variable as well as the same window
tag t used in forward weight accumulation. The data hazard detection logic compares the
index in Reg[m − 1] to all the indexes in the other registers. If any identical index that
belongs to the same window is detected, the WE variable in Reg[m − 1] is reset. In later
stages in the pipeline, any key update with WE = 0 is discarded.
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5.3. Heavy Hitter Summary Load-Store Logic

The next stage in the pipeline is the heavy hitter summary update stage, which
will execute the update_summary() function in Figure 3. This function takes the item key,
summary index (IDXS), the item weight w, and the round count c.

As memory dependencies occur due to identical keys in the stream that are already
resolved by weight accumulation, there is only one minor data hazard that needs to
be resolved before executing the update_summary() function. The data hazard occurs
when two item hits with different keys are less than m cycles apart and generate the same
summary index. In particular, if the indexed bucket stores a round count smaller than the
round count of both items and the round count of the second key is larger than the round
count of the first key. When the bucket is evaluated for the first item, a store operation
will be initiated to replace the stored item with the smaller round count. Due to memory
latency, an incorrect memory store operation may be also initiated for the second item. To
resolve this data hazard, another LSQ is used after the round table update stage. The LSQ
in Figure 7 consists of a shift register of size m and some data hazard detection logic. The
summary indexes for the items are wrapped with the associated round counts as well as
a Write Enable (WES) variable before being passed to the shift register of the LSQ. The
data hazard detection logic compares the index in Reg[m − 1] to all the indexes in the
other registers. If any identical index with a larger round count is present, the WES signal
in Reg[m − 1] is reset. Any item with WES = 0 is discarded before updating the heavy
hitter summary.
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By applying the aforementioned LSQs, a stall-free HLS kernel for the proposed al-
gorithm can be easily implemented. The kernel can be invoked by a host to process as
many rounds as needed. However, an additional minor tweak is needed to safely process
multiple rounds. The shift registers of the LSQs need to be flushed at the end of a round to
ensure that all item hits are processed. To accomplish this, the kernel runs for a number of
extra iterations at the end of the round. During these iterations, the kernel passes dummy
item keys with zero weights to flush the shift registers before the next round.

5.4. Support for Parallel Sub-Streams

Achieving high performance when mapping algorithms into hardware can be per-
formed via deep pipelining and task parallelism. Task parallelism involves vectorizing
the input into distinct sets that are processed using separate kernels. Results from these
separate kernels can then be merged. By applying task parallelism, the throughput can
be significantly increased without the need to operate a kernel hardware at its fmax. Task
parallelism is particularly useful to exploit the high throughputs supported by the on-chip
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High Bandwidth Memory (HBM) available in some of the trending high-end FPGAs [39].
In addition, FPGAs with high-speed transceivers may require several replicas of a kernel to
be able to saturate the available bandwidth.

In order to apply task parallelism, the algorithm should support vectorization. In
general, data stream frequency estimation sketches, such as the count–min sketch, can be
vectorized by splitting the stream into several sub-streams that update separate sketches
with identical geometry. Merging results from distributed count–min sketches with identical
geometry is simple as it only involves the entry-wise summarization of the sketch tables.
In hardware, this can be difficult, as the host needs to access every table entry in the
sketch, which can span most of the embedded RAM on the FPGA chip. Based on the
lack of attempts reported in the literature, there have been few attempts to implement
parallel frequency estimation sketches in a single FPGA chip [19,21]. These parallel systems
only support a general update–query model, where the frequency of individual items is
sequentially acquired by the host. This simple model does not support the top-k item query
as it does not allow the host to access the sketch memory or any priority queue paired with
the sketch.

One of the important advantages of the algorithm proposed in this paper is the ease
of vectorizing the algorithm in hardware. First, the data stream is naturally divided into
rounds that can be processed independently by several kernel replicas (see Figure 8).
Second, the host only needs to access the smaller heavy hitter summary data structure
in each kernel, which is implemented as a slave memory. Third, the merging of heavy
hitter summaries is very simple, especially if the same hash function is used for all the
summaries. The pseudo code in Figure 8 shows how two summaries from two kernel
replicas can be merged when the same hash function and the same round sizes are used in
the different kernel replicas. The merge process can be performed efficiently by the host
as it only has a time complexity of O(n), where (n = K). In addition, if the heavy hitter
summary configuration is changed in the HLS code to grant both read and write access
to the host, the merge process can be performed in-place without the need to copy the
summaries to the host’s memory.
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6. FPGA Implementation

This section reports the FPGA implementation results when compiling the proposed
kernel using Intel HLS compiler and Intel Quartus Prime synthesis tools. The midrange
Arria 10 GX 1150 FPGA was selected as a target device. This is the largest chip from
the Arria 10 family, with 427,200 Adaptive Logic Modules (ALMs), 1518 Digital Signal
Processing (DSP) blocks, and 2713 M20K embedded RAM blocks. As the kernel mainly
consumes embedded RAM for implementing the round table and the heavy hitter summary,
we focus on validating the notion that the throughput of the kernel is sustained even when
scaling the size of the RAM blocks to large portions of the available on-chip memory.

As there are many parameters that can be varied in the kernel’s configuration, we fix
some of these parameters to practical values for simpler analysis. First, the size of the heavy
hitter summary K is fixed to 215 in all configurations. This size should be selected according
to the number of top-k items that needs to be monitored. Making K unnecessarily large
may increase the time for result readout without gaining meaningful improvements in
accuracy. So, if we are aiming to report somewhere near the top-1000 items, a fixed size
of K = 215 is a reasonable choice that should provide a good balance between accuracy
and result readout time. The size of the round count variable c is fixed to 16-bit, the total
accumulate count filed in the heavy hitter summary’s buckets to 32-bit, the item fingerprint
FP to 16-bit, and finally, the round timestamp TS to 8-bit.

As can be seen from Figure 4, there are three hash circuits that need to be implemented
in the kernel. The quality of the hash function used will affect the accuracy of the system.
We opt for using a simple and efficient hash function that can be implemented with the least
amount of FPGA resources. We use the “binary multiplicative” hash function described and
analyzed in [40] for the three hash circuits in the kernel. This hash function only requires
a single multiplier when implemented in hardware. The operation of the hash function
is described as follows: assume we have L-bit integers that need to be mapped to l-bit
integers. Using an odd integer seed a, the hash function is defined as:

ha(x) = (a.x)mod 2L/2L−l

Table 2 reports the FPGA post place-and-route implementation results for nine differ-
ent configurations of the kernel. In these configurations, the size of the round table M and
the size of the item key are varied. Three sizes of M were considered: 217, 218, and 219, and
three key sizes were considered: 32-bit, 64-bit, and 128-bit. In all configurations, the safe
dependence distance m was fixed to 8. Additionally, a target fmax of 400 MHz and a target
II of 1 were specified to the compiler when compiling all configurations.

Table 2. Implementation results on Intel Arria 10 GX 1150 FPGA.

M Key Size (Bits) Fmax (MHz)
Resource Utilization

ALM DSP M20K

217
32 417 1577 6 480 (18%)
64 399 2294 18 544 (20%)

128 379 3493 45 672 (25%)

218
32 351 1719 6 800 (30%)
64 351 2356 18 864 (32%)

128 321 3616 45 992 (37%)

219
32 277 2032 6 1440 (53%)
64 261 2567 18 1504 (55%)

128 265 3890 45 1632 (60%)

With the proposed optimizations, the compiler achieved an II of 1 in all configurations,
meaning that the maximum throughput in items/s is equivalent to the reported fmax. We
can see from Table 2, that the throughput of the kernel can reach up to 417 million items/s in
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the smallest configuration. All configurations achieve throughputs that can be considered
optimal for this mid-range FPGA family. The largest configuration, spanning 60% of the
available embedded RAM on the FPGA chip, achieved a throughput of 265 million items/s.
These significantly high numbers are mainly attributed to the simplicity of the synthe-
sized logic and the proposed memory dependency handling technique that allowed for
efficient pipelining.

It should be noted that the synthesis tools may report slightly different results for the
same configuration when compiled multiple times. The results in Table 2 are obtained from
a single compilation process for each configuration.

7. Evaluation
7.1. Accuracy Validation

As the accuracy of the proposed accelerator will be mainly bounded by the amount of
on-chip memory allocated for the round table, it is important to validate that the available
embedded memory in a typical FPGA chip is sufficient for achieving good accuracy when
processing practical data streams. The same Arria 10 GX 1150 FPGA is used as a baseline for
accuracy analysis. The amount of embedded RAM available on this chip can be considered
in the mid-range of modern FPGA devices. From Table 2, the kernel configurations with the
32-bit key size are selected for accuracy analysis. These configurations are simulated using
both synthetic and real datasets. After each simulation run, the heavy hitter summary is
sorted to extract the top-1000 items, which are compared to exact results. Two metrics are
used in the analysis, as defined below:

Accuracy: The number of correctly identified top-k items divided by k.
Avg. Count Error: The average of relative count errors calculated in all reported items.

Figure 9 reports the accuracy and average error for synthetic data streams. The datasets
were generated as Zipfian distributions [41]. The size of all datasets was fixed to 107 items,
and the Zipfian parameter (α) was varied from 1.0 to 1.6 in intervals of 0.2. The range of α
was selected to cover typical values of data skew in several types of real data streams [42].
There are several factors that would influence the best choice of round size r [8]. For
simplicity, r was fixed to M in all simulation runs (M—size of the round table in the kernel).

From Figure 9 we can see that all kernel configurations achieved near-perfect accu-
racy. The worst-case accuracy exceeded 98%, and the worst-case average count error was
below 4%.

To further verify the kernel’s performance, four different real datasets were also used
for accuracy analysis. The properties of the datasets are summarized in Table 3. All
of these datasets are easily available and widely used in the analysis of itemset mining
algorithms. Retail contains market basket transactions data from an anonymous Belgian
retail store [43]. Kosarak is a collection of click-stream data from a Hungarian online
news portal [44]. Chainstore contains customer transactions from a major grocery store
in California, USA [45]. Finally, BMS2 contains click-stream data from an anonymous
webstore [45]. All of these datasets were originally structured as transactional datasets
consisting of several separated transactions, each containing a number of integer items.
For the purpose of stream item counting, these datasets were pre-processed to merge the
transactions into a serial stream of items. Figure 10 reports the accuracy and average error
count results when processing these real data streams.
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Table 3. Real datasets.

Dataset Distinct Items Size

Retail 16,469 908,399
Kosarak 41,270 8,019,015

Chainstore 46,086 8,042,879
BMS2 3340 358,278

We can see from Figure 10 that the kerel maintained a high level of accuracy when
processing the real datasets. The worst-case accuracy exceeded 95%, and the worst-case
average error count was 2%.
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7.2. Comparison with the State-of-the-Art

This section compares the proposed accelerator kernel to the fastest FPGA accelerators
previously proposed in the academic literature (see Table 4). As discussed in Section 2,
there are a limited number of FPGA accelerators specifically designed for the top-k query
problem in data streams. Therefore, we extend the comparison to include generic data
stream sketches. These sketches are simple and do not monitor any item key as they do not
include a priority queue data structure. Four different metrics are used in the comparison:

Chip utilization: The highest chip utilization percentage of any resource type in the
accelerator implementation (mainly logic resources for systolic array implementations and
embedded memory for sketch implementations).
Monitored items: The number of item keys that are monitored by the accelerator. In
Table 4, the relevant entries are labelled with “none” for generic sketch accelerators without
a priority queue.
Key size: The size of the item key in bits. Smaller key sizes will limit the applications of
the accelerator. For example, monitoring IPv6 addresses requires 128-bit item keys.
Throughput: The accelerator processing speed is measured in million items/s. It should be
noted that, in some of the relevant publications of the accelerators (Table 4), the throughputs
were reported in bits/s and calculated by multiplying the update rate by the item key size
or by the network packet size in sketches targeting networking applications.

We use the largest kernel configuration from Table 1 for comparison (M = 219 K = 215).
Several accelerators in Table 4 are implemented using high-end AMD/Xilinx UltraScale
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and UltraScale+ FPGA devices. Since our work was based on Intel FPGA technology, the
proposed accelerator was re-implemented on a Stratix 10 FPGA for better comparison with
previous implementations on high-end FPGAs. When compiling for a Stratix 10 FPGA
as a target, the target fmax was set to 600 MHz, and the safe dependence distance m was
set to 16.

Table 4. Comparison with published work.

Implementation Chip
Utilization (%) Monitored Items Key Size (bits) Throughput

(M Items/s)

Arria 10 (Proposed) 60 32,768 128 265
Stratix 10 (Proposed) 6 32,768 128 542
Arria 10 [10] 51 300 32 276
Arria 10 [11] 40 1200 32 174
Virtex UltraScale+ [18] 8 none 96 415
Stratix 10 [21] 11 none 32 503
Virtex UltraScale [23] 16 none 128 456
UltraScale+ MPSoC [29] 24 2400 32 354

We can see from Table 4 that the proposed accelerator is far more efficient when
compared to accelerators that support the top-k query [10,11,29], as it allows one to monitor
a significantly larger number of items with larger keys. In fact, the only other accelerator to
support 128-bit keys is the accelerator in [23], which is slower than our proposed accelerator
and does not support the top-k item query. When implemented on a Stratix 10 FPGA, the
proposed accelerator has a 25% higher throughput compared to the average throughout of
competing accelerators implemented on high-end FPGAs. The proposed accelerator is also
8% faster than the fastest competing accelerator.

The presented accelerator was designed using an HLS design flow, which usually
leads to performance penalties in favor of better design productivity compared to Register
Transfer Level (RTL) design flows. Although most of the accelerators in Table 4 were
designed and optimized using RTL, the presented accelerator outperformed all of the other
accelerators. The fact that the proposed accelerator outperformed existing FPGA acceler-
ators was mainly attributed to the simplicity of the synthesized hardware. Introducing
careful modifications to the implemented algorithm facilitated the resolution of several
design complexities. While, in a previous section, we presented an empirical analysis based
on synthetic and real datasets to validate the accuracy of the optimized algorithm, we note
that further mathematical analysis is required to formally define the error bounds and other
metrics, such as the time and memory complexity of the optimized algorithm.

8. Conclusions and Future Work

This paper presented the design and implementation of an FPGA HLS accelerator
kernel for computing the top-k heavy hitters in data streams. The kernel is based on a
novel hardware-optimized algorithm, allowing for an easily achieved pipelined datapath
with an initiation interval of 1. The proposed algorithm incorporates several optimiza-
tions, such as fingerprinting, optimistic counting, re-hashing, and timestamping to address
several hardware-specific complexities that usually limit the performance of data stream
item-counting accelerators. In addition, several FPGA-specific design tweaks that resolve
memory dependency issues when implementing the accelerator kernel on an FPGA have
been presented. These tweaks deploy unique Load-Store Queues (LSQs) that can be easily
implemented using HLS code. When synthesized for Intel FPGA devices using Intel HLS
compiler and targeting the Arria 10 and Stratix 10 FPGA families, the resulting synthesized
hardware was very simple—mainly consuming the embedded memory resources of the
FPGA. Hardware synthesis of several configurations of the kernel showed a variety of
promising results: First, the high throughput of the kernel was sustained, even for configu-
rations consuming up to 60% of the on-chip memory. Second, the high throughput and low
logic footprint were also sustained when scaling the item key size processed by the kernel
from 32-bit to 128-bit. Third, accuracy analysis based on synthetic and real datasets showed
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that near-perfect results are achievable even using the on-chip memory capacities available
in mid-density FPGA families. Finally, compared to existing state-of-the-art accelerators,
the proposed accelerator is the fastest—with throughput exceeding 540 million items/s. It
is also notably superior in terms of features, as it has a larger key size, larger number of
monitored heavy hitters, and supports task parallelism.

Future work will first focus on further validation of the proposed algorithm as well as
formally defining the error bounds, time, and memory complexity. In addition, we will
explore porting the proposed kernel to a cloud application using FPGAs and different types
of accelerators, such as Graphics Processing Units (GPUs).

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Cormode, G.; Hadjieleftheriou, M. Finding frequent items in data streams. VLDB Endow. 2008, 1, 1530–1541. [CrossRef]
2. Manerikar, N.; Palpanas, T. Frequent items in streaming data: An experimental evaluation of the state-of-the-art. Data Knowl. Eng.

2009, 68, 415–430. [CrossRef]
3. Muthukrishnan, S. Data Streams: Algorithms and Applications; Now Publishers Inc.: Norwell, MA, USA, 2005.
4. Harrison, R.; Cai, Q.; Gupta, A.; Rexford, J. Network-wide heavy hitter detection with commodity switches. In Proceedings of the

Symposium on SDN Research, Los Angeles, CA, USA, 28–29 March 2018; pp. 1–7.
5. Liu, B. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data; Springer: Berlin/Heidelberg, Germany, 2011; Volume 1.
6. Shrivastava, N.; Buragohain, C.; Agrawal, D.; Suri, S. Medians and beyond: New aggregation techniques for sensor networks. In

Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5 November
2004; pp. 239–249.

7. Cormode, G.; Yi, K. Small Summaries for Big Data; Cambridge University Press: Cambridge, UK, 2020.
8. Demaine, E.D.; López-Ortiz, A.; Munro, J.I. Frequency estimation of internet packet streams with limited space. In Proceedings of

the European Symposium on Algorithms, Rome, Italy, 17–21 September 2002; pp. 348–360.
9. Bustio-Martínez, L.; Cumplido, R.; Letras, M.; Hernández-León, R.; Feregrino-Uribe, C.; Hernández-Palancar, J. FPGA/GPU-

based acceleration for frequent itemsets mining: A comprehensive review. ACM Comput. Surv. 2021, 54, 179. [CrossRef]
10. Ebrahim, A.; Khalifat, J. Fast approximation of the top-k items in data streams using FPGAs. IET Comput. Digit. Technol. 2023, 17,

60–73. [CrossRef]
11. Ebrahim, A.; Khlaifat, J. An Efficient Hardware Architecture for Finding Frequent Items in Data Streams. In Proceedings of the

IEEE International Conference on Computer Design (ICCD), Hartford, CT, USA, 18–21 October 2020; pp. 113–119.
12. Sun, Y.; Wang, Z.; Huang, S.; Wang, L.; Wang, Y.; Luo, R.; Yang, H. Accelerating frequent item counting with FPGA. In Proceedings

of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, New York, NY, USA, 26–28 February 2014;
pp. 109–112.

13. Teubner, J.; Muller, R.; Alonso, G. Frequent item computation on a chip. IEEE Trans. Knowl. Data Eng. 2010, 23, 1169–1181.
[CrossRef]

14. Metwally, A.; Agrawal, D.; El Abbadi, A. Efficient computation of frequent and top-k elements in data streams. In Proceedings of
the International Conference on Database Theory, Edinburgh, UK, 5–7 January 2005; pp. 398–412.

15. Sha, M.; Guo, Z.; Wang, K.; Zeng, X. A High-Performance and Accurate FPGA-Based Flow Monitor for 100 Gbps Networks.
Electronics 2022, 11, 1976. [CrossRef]

16. Pontarelli, S.; Reviriego, P.; Maestro, J.A. Parallel d-pipeline: A cuckoo hashing implementation for increased throughput. IEEE
Trans. Comput. 2015, 65, 326–331. [CrossRef]

17. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms
2005, 55, 58–75. [CrossRef]

18. Sateesan, A.; Vliegen, J.; Scherrer, S.; Hsiao, H.-C.; Perrig, A.; Mentens, N. Speed records in network flow measurement on
FPGA. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), Dresden,
Germany, 30 August–3 September 2021; pp. 219–224.

19. Chiosa, M.; Preußer, T.B.; Alonso, G. SKT: A One-Pass Multi-Sketch Data Analytics Accelerator. Proc. VLDB Endow. 2021, 14,
2369–2382. [CrossRef]

20. Tang, M.; Wen, M.; Shen, J.; Zhao, X.; Zhang, C. Towards memory-efficient streaming processing with counter-cascading sketching
on FPGA. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), Virtual, 20–24 July 2020; pp. 1–6.

21. Kiefer, M.; Poulakis, I.; Breß, S.; Markl, V. Scotch: Generating fpga-accelerators for sketching at line rate. Proc. VLDB Endow. 2020,
14, 281–293. [CrossRef]

https://doi.org/10.14778/1454159.1454225
https://doi.org/10.1016/j.datak.2008.11.001
https://doi.org/10.1145/3472289
https://doi.org/10.1049/cdt2.12053
https://doi.org/10.1109/TKDE.2010.216
https://doi.org/10.3390/electronics11131976
https://doi.org/10.1109/TC.2015.2417524
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.14778/3476249.3476287
https://doi.org/10.14778/3430915.3430919


Electronics 2023, 12, 2376 21 of 21

22. Saavedra, A.; Hernández, C.; Figueroa, M. Heavy-hitter detection using a hardware sketch with the countmin-cu algorithm. In
Proceedings of the 2018 21st Euromicro Conference on Digital System Design (DSD), Prague, Czech Republic, 29–31 August 2018;
pp. 38–45.

23. Tong, D.; Prasanna, V.K. Sketch acceleration on FPGA and its applications in network anomaly detection. IEEE Trans. Parallel
Distrib. Syst. 2017, 29, 929–942. [CrossRef]

24. Kohutka, L.; Nagy, L.; Stopjaková, V. A novel hardware-accelerated priority queue for real-time systems. In Proceedings of the
2018 21st Euromicro Conference on Digital System Design (DSD), Prague, Czech Republic, 29–31 August 2018; pp. 46–53.

25. Chen, W.; Li, W.; Yu, F. A hybrid pipelined architecture for high performance top-K sorting on FPGA. IEEE Trans. Circuits Syst. II
Express Briefs 2019, 67, 1449–1453. [CrossRef]

26. Yan, D.; Wang, W.-X.; Zuo, L.; Zhang, X.-W. A novel scheme for real-time max/min-set-selection sorters on FPGA. IEEE Trans.
Circuits Syst. II Express Briefs 2021, 68, 2665–2669. [CrossRef]

27. Zazo, J.F.; Lopez-Buedo, S.; Ruiz, M.; Sutter, G. A single-fpga architecture for detecting heavy hitters in 100 gbit/s ethernet links.
In Proceedings of the International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 4–6
December 2017; pp. 1–6.

28. Soto, J.E.; Ubisse, P.; Fernández, Y.; Hernández, C.; Figueroa, M. A high-throughput hardware accelerator for network entropy
estimation using sketches. IEEE Access 2021, 9, 85823–85838. [CrossRef]

29. Soto, J.E.; Ubisse, P.; Hernández, C.; Figueroa, M. A hardware accelerator for entropy estimation using the top-k most frequent
elements. In Proceedings of the Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia, 26–28 August 2020;
pp. 141–148.

30. Gou, X.; Zhang, Y.; Hu, Z.; He, L.; Wang, K.; Liu, X.; Yang, T.; Wang, Y.; Cui, B. A sketch framework for approximate data stream
processing in sliding Windows. IEEE Trans. Knowl. Data Eng. 2022, 35, 4411–4424. [CrossRef]

31. Yang, T.; Zhang, H.; Li, J.; Gong, J.; Uhlig, S.; Chen, S.; Li, X. HeavyKeeper: An accurate algorithm for finding Top-k elephant
flows. IEEE/ACM Trans. Netw. 2019, 27, 1845–1858. [CrossRef]

32. Pagh, R.; Rodler, F.F. Cuckoo hashing. J. Algorithms 2004, 51, 122–144. [CrossRef]
33. Cho, J.M.; Choi, K. An FPGA implementation of high-throughput key-value store using Bloom filter. In Proceedings of the

Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test, Taiwan, China, 28–30 April 2014;
pp. 1–4.

34. Chen, X.; Tan, H.; Chen, Y.; He, B.; Wong, W.-F.; Chen, D. Skew-oblivious data routing for data intensive applications on
FPGAs with HLS. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA,
5–9 December 2021; pp. 937–942.

35. Kiefer, M.; Poulakis, I.; Zacharatou, E.T.; Markl, V. Optimistic Data Parallelism for FPGA-Accelerated Sketching. Proc. VLDB
Endow. 2023, 16, 1113–1125. [CrossRef]

36. Intel®High Level Synthesis Compiler Pro Edition: User Guide. Available online: https://www.intel.com/content/www/us/en/
docs/programmable/683456/21-4/pro-edition-user-guide.html (accessed on 1 March 2023).

37. Ebrahim, A. High-Level Design Optimizations for Implementing Data Stream Sketch Frequency Estimators on FPGAs. Electronics
2022, 11, 2399. [CrossRef]

38. Preußer, T.B.; Chiosa, M.; Weiss, A.; Alonso, G. Using DSP Slices as Content-Addressable Update Queues. In Proceedings of the
2020 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, 31 August–4
September 2020; pp. 121–126.

39. Huang, H.; Wang, Z.; Zhang, J.; He, Z.; Wu, C.; Xiao, J.; Alonso, G. Shuhai: A Tool for Benchmarking High Bandwidth Memory
on FPGAs. IEEE Trans. Comput. 2021, 71, 1133–1144. [CrossRef]

40. Dietzfelbinger, M.; Hagerup, T.; Katajainen, J.; Penttonen, M. A reliable randomized algorithm for the closest-pair problem.
J. Algorithms 1997, 25, 19–51. [CrossRef]

41. Zipf, G.K. Human Behavior and the Principle of Least Effort; Martino Fine Books: Eastford, CT, USA, 1949.
42. Cormode, G.; Muthukrishnan, S. Summarizing and mining skewed data streams. In Proceedings of the the 2005 SIAM Interna-

tional Conference on Data Mining, Newport Beach, CA, USA, 21–23 April 2005; pp. 44–55.
43. Brijs, T.; Swinnen, G.; Vanhoof, K.; Wets, G. Using association rules for product assortment decisions: A case study. In Proceedings

of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August
1999; pp. 254–260.

44. Frequent Itemset Mining Dataset Repository, University of Helsinki. Available online: http://fimi.cs.helsinki.fi/data/ (accessed
on 2 October 2021).

45. Fournier-Viger, P.; Lin, J.C.-W.; Gomariz, A.; Gueniche, T.; Soltani, A.; Deng, Z.; Lam, H.T. The SPMF open-source data mining
library version 2. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
Riva del Garda, Italy, 19–23 September 2016; pp. 36–40.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPDS.2017.2766633
https://doi.org/10.1109/TCSII.2019.2938892
https://doi.org/10.1109/TCSII.2021.3058245
https://doi.org/10.1109/ACCESS.2021.3088500
https://doi.org/10.1109/TKDE.2022.3151140
https://doi.org/10.1109/TNET.2019.2933868
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.14778/3579075.3579085
https://www.intel.com/content/www/us/en/docs/programmable/683456/21-4/pro-edition-user-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683456/21-4/pro-edition-user-guide.html
https://doi.org/10.3390/electronics11152399
https://doi.org/10.1109/TC.2021.3075765
https://doi.org/10.1006/jagm.1997.0873
http://fimi.cs.helsinki.fi/data/

	Introduction 
	Background and Related Work 
	The Top-k Item Query in Data Streams 
	FPGA Implementations of Counter-Based Algorithms 
	FPGA Implementations of Sketch-Based Algorithms 
	Summary of Existing FPGA Implementations 

	Base Algorithm: Probabilistic Sampling 
	Proposed Approach: Optimizations for Efficient Hardware Implementation 
	Updating the Round Table 
	Optimistic Counting 
	Fingerprinting 
	Round Re-Hashing 
	Using a Timestamp for Reduced Latency 

	Updating the Heavy Hitter Summary 

	HLS Kernel Architecture 
	Architecture Overview 
	Round Table Load-Store Logic 
	Pre-Count: Forward Weight Accumulation 
	Data Hazard Detection 

	Heavy Hitter Summary Load-Store Logic 
	Support for Parallel Sub-Streams 

	FPGA Implementation 
	Evaluation 
	Accuracy Validation 
	Comparison with the State-of-the-Art 

	Conclusions and Future Work 
	References

