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Abstract: In the field of autonomous driving, precise spatial positioning and 3D object detection have
become increasingly critical due to advancements in LiDAR technology and its extensive applications.
Traditional detection models for RGB images face challenges in handling the intrinsic disorder present
in LiDAR point clouds. Although point clouds are typically perceived as irregular and disordered,
an implicit order actually exists, owing to laser arrangement and sequential scanning. Therefore, we
propose Frustumformer, a novel framework that leverages the inherent order of LiDAR point clouds,
reducing disorder and enhancing representation. Our approach consists of a frustum-based method
that relies on the results of a 2D image detector, a frustum patch embedding that exploits the new
data representation format, and a single-stride transformer network for original resolution feature
fusion. By incorporating these components, Frustumformer effectively exploits the intrinsic order of
point clouds and models long-range dependencies to further improve performance. Ablation studies
verify the efficacy of the single-stride transformer component and the overall model architecture. We
conduct experiments on the KITTI dataset, and Frustumformer outperforms existing methods.

Keywords: 3D object detection; point cloud; transformer

1. Introduction

The growing demand for accurate spatial positioning has led to 3D object detection be-
coming a crucial task in the field of autonomous driving. The declining cost and increasing
resolution of LiDAR technology have generated interest in various applications requiring
precise environmental perception, such as autonomous driving and simultaneous localiza-
tion and mapping. Many of these applications employ laser sensors mounted on mobile
platforms to capture data and perceive the environment from a fixed viewpoint. However,
due to LiDAR installation location limitations, only portions of the surfaces facing the laser
sensors can be measured, complicating the utilization of point cloud data, particularly for
3D object detection. Estimating oriented 3D bounding boxes that fully enclose targets is an
essential task in point-cloud applications, and 3D object detection is a particularly active
area of research in this domain. In this paper, we propose a workflow primarily focused on
utilizing point cloud data for 3D object detection, aiming to enhance model performance by
embedding frustum partitions and fusing global context information using the transformer
architecture [1].

Although substantial research has been conducted on 3D object detection [2,3], most
approaches assume that point clouds are discrete, unordered, and sparse, making it difficult
for traditional detection models designed for RGB images to directly operate on 3D object
detection tasks. To address this challenge, researchers tried to project point clouds onto
the image plane [4,5] through cross-sensor calibration or transforming 3D expressions to
2D by grid map generation [6,7]. While applying 2D convolutional operations to such
transformed data is feasible, it often results in the loss of valuable 3D information due to the
dimensional reduction. Over the last three years, there has been a development of networks
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that extract features directly from 3D space [8]. To make sparse point clouds continuous,
some methods convert point clouds to new 3D representations, such as VoxelNet [9],
SECOND [10], and Depth Map [11]. Methods commonly employed to process LiDAR raw
data directly include PointNet [12] and PointNet++ [13]. Nonetheless, all the techniques
mentioned earlier presuppose a disorganized point cloud during data manipulation.

In fact, LiDAR point clouds exhibit inherent order, stemming from their operational
mode, although they may still display sparse or discrete characteristics due to equipment
limitations. For instance, the Velodyne-64E LiDAR system features a fixed laser head
arrangement and constant spinning speed, enabling all lasers to naturally sample points
in an orderly fashion. Similarly, 2D images, such as those provided by the KITTI dataset,
possess inherent order due to the regular arrangement of pixels, with all corresponding
points having neighbors and context information. Inspired by this observation, we intro-
duce the novel end-to-end object detection framework Frustumformer with the following
key contributions:

• To address the disorder in point clouds, we adopt a frustum-based approach. This
method relies on the results generated by the 2D image detector, and due to the
constraints imposed by this 2D detector, the disorganization within the point cloud is
effectively mitigated.

• Frustumformer leverages the inherent order of LiDAR point clouds and the trans-
former architecture for modeling long-range dependencies, enhancing 3D object
detection performance. Additionally, the transformer architecture is employed to
facilitate information interaction at a distance and obtain an adequate perceptual field
to complete the semantic information for the incompletely displayed detection target,
addressing the problem of missing information about detection targets due to the
presence of nearby objects that obscure them.

• In this work, we employ a single-stride transformer network throughout the archi-
tecture to maintain the original resolution of the network. With the assistance of
the transformer network, we effectively address the issue of insufficient receptive
fields in single-stride structures. Additionally, this approach aligns well with the
frustum proposal’s characteristic of having a limited number of point clouds, naturally
circumventing expensive computations.

The remainder of this paper is organized as follows: Section 2 discusses related work;
Section 3 presents the details of the proposed Frustumformer model; Section 4 provides
experimental validation of the model’s efficiency; and Section 5 offers conclusions and
future observations.

2. Related Works

Three-dimensional object detection is a highly regarded research objective in the field
of artificial intelligence [14,15] and plays a significant role in pattern recognition [16,17].
Current 3D object detection models are primarily divided into two categories: those that
utilize image inputs and those that rely on LiDAR data. Within the LiDAR-based models,
there are two further subdivisions: those that convert 3D point clouds to images/voxels,
and those that operate directly on raw data. Extensive research has been conducted in
each of these areas, utilizing traditional data-processing methods as well as machine
learning [18], deep learning [19,20], and swarm intelligence-based approaches [21,22].

2.1. Object Detection Based on Images

Three-dimensional object detection based on images is much more challenging than
two-dimensional object detection [23] due to the ambiguities arising from 2D-3D mapping.
In [24], a standard CNN pipeline is employed after generating a set of candidate object
proposals belonging to specific classes on the ground plane to achieve high-quality object
detection. Guo et al. [25] proposed a multi-scale feature fusion technique for 3D object
detection. Mousavian et al. [26] incorporated geometry information to improve 3D object
detection and utilized a multi-bin architecture to accurately generate orientation regression.
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Additionally, this model includes tight correspondence constraints to achieve accurate 3D
translation. Kundu et al. [27] trained a deep CNN to handle all object instances within
the 2D image while simultaneously predicting their corresponding shape and pose in
the 3D space. Xu and Chen [28] proposed using monocular depth estimation to improve
localization accuracy, allowing for the better prediction of object shapes and poses in 3D
space. Additionally, Chabot et al. [29] introduced FQNet, which uses 2D cues to determine
the 3D IoU between the 3D proposals and the object. This is achieved by projecting a large
number of candidates in 3D space onto a 2D image and selecting the best one based on
spatial overlap exploration.

2.2. Object Detection Based on LiDAR Data
2.2.1. Methods Based on Converting to Images/Voxels

Chen et al. [4] described MV3D, which adopts a two-fold approach to 3D object
detection from point clouds. Firstly, it converts the point cloud data into two different
views: a bird’s-eye view and a front view. These views are then used to train a region
proposal network (RPN) that generates positive proposals for further processing. Secondly,
Faster-RCNN [30] is employed for 3D object detection using these two views from the point
cloud as well as RGB input data to generate refined 3D bounding boxes. AVOD [5] builds
upon MV3D by improving both the encoder and decoder components of the network while
also replacing ROI pooling with crop and resize operations, resulting in better detection
performance. AVOD differs from MV3D, as it integrates multi-view features starting from
the RPN phase rather than just in the refinement stage. A study by Asvadi et al. [31]
examined and assessed 3D-LIDAR modalities that incorporate both depth and reflectance
map modalities for identifying vehicles.

Voxel-grid is a different approach for representing LiDAR data in 3D object detection.
In DSS [32], the point clouds are converted into depth images and then encoded as 3D voxels
using the truncated signed distance function (TSDF). This allows for the use of 3D CNNs
to classify objects and estimate their bounding boxes. PIXOR [7] uses occupancy to encode
each voxel grid and employs handcrafted representation methods. VoxelNet [9] utilizes
stacked VFE (voxel feature encoding) layers for feature extraction, which generates machine-
learned representation for each voxel. In terms of processing efficiency, SECOND [10] differs
from VoxelNet by utilizing sparse convolution layers to parse compact representations.
PointPillars [33] is an extension of SECOND that improves upon voxel representation
by implementing pillars, which generate pseudo feature images, enabling the use of 2D
convolutions. However, these methods focus primarily on larger objects and may have
difficulty detecting smaller objects, such as pedestrians and cyclists. In contrast, the SST [34]
model demonstrates superior performance in detecting small objects. As a single-stride
model, it performs sparse operations on non-empty voxels and generates bounding boxes
on sparse point clouds, effectively highlighting the proportion of small objects relative to
the size of the input scene.

2.2.2. Methods Based on Directly Operating on Raw Data

The use of raw data for object detection was first introduced by PointNet and Point-
Net++ [13]. However, these methods primarily target classification and segmentation tasks.
To extend the application of PointNet to 3D object detection, Frustum-PointNet [35] was
developed. This method starts by conducting 2D detection for region proposals, and then
utilizes interior points to estimate oriented boxes. By doing so, Frustum-PointNet enables
accurate predictions of 3D objects within point clouds. Frustum-PointNet uses a simplified
version of PointNet known as T-Net, as its main feature extraction module. To enhance the
precision of object detection, other studies, such as IPOD [36] and PointRCNN [19], have
proposed alternative proposal generation methods. IPOD generates target proposals based
on every point in the object and utilizes PointNet++ as the backbone network for feature
extraction. The proposal features are then generated by fusing these two components before
predicting the box. PointRCNN utilizes the complete point cloud to generate proposals and
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incorporates proposal location information by using the segmentation score of the central
point for classification. F-ConvNet [37] is designed to leverage the geometric structure
of a frustum. By utilizing a sequence of frustum slices along a truncated voxel axis and
integrating them with FCN, the model is capable of effectively handling disordered point
cloud data for 3D object detection.

In this paper, we focus on 3D object detection and incorporate some feature extraction
operations from PointNet++ [13]. The proposed method reorganizes point clouds to
construct contextual information and operates on raw point clouds directly.

3. Frustumformer

In this section, we present Frustumformer, an end-to-end object detection framework
utilizing the Transformer architecture for modeling long-range dependency as shown in
Figure 1. First, we extract a 3D frustum point cloud from the 2D image detection results and
partition it into frustum patches. We then employ PointNet for features extraction, followed
by a single-stride Frustum Transformer network to fuse features across frustum patches.
Building on the multi-resolution sliding frustums approach of [37], we apply this procedure
to different resolution branches and aggregate the results. Finally, the output is passed
through another frustum transformer network and a detection head for box classification
and location prediction. This approach enables Frustumformer to effectively process 3D
data and improve object detection performance.

U

U

U

Head

FT

FT FT

Figure 1. The Frustumformer framework: an end-to-end object detection system utilizing the
Transformer architecture to model long-range dependencies in 3D frustum point clouds extracted
from 2D image detection results. It incorporates PointNet feature extraction, single-stride frustum
transformer networks for feature fusion, and multi-resolution sliding frustums for improved box
classification and location prediction.

3.1. Frustum Patch Embedding

Employing an existing 2D object detector, we identify 2D region proposals in RGB
images. By combining these proposals with the corresponding depth information, we
obtain frustum proposals [35]. By sliding a pair of parallel planes perpendicular to the
frustum axis with equal strides, we generate a series of frustum patches, which may overlap
as illustrated in Figure 2. The stride for sliding along the frustum axis is set to s, and the
height of each frustum patch is set to u. In our experimental section, we set u = 2s. For each
2D object detection region proposal, we generate a series of frustum patches. By employing
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different stride lengths s on the proposed frustum, we create frustum patches with varying
resolutions, forming multiple resolution branches that will be aggregated before being
input into the detection head.

u

y

x

z

s

z

x

u

Figure 2. Frustum patches are generated by combining 2D region proposals from RGB images with
depth information. Frustum patches are formed by sliding parallel planes along the frustum axis
using a stride of s and a patch height of u. The z-direction represents the central axis of the slices,
while the x-direction is parallel to the ground plane and perpendicular to the z-axis. The figure
illustrates the case when u = s, allowing for overlapping between frustum patches.

Within a resolution branch, we use PointNet to process the raw point cloud in each frus-
tum patch, extracting features to generate the frustum patch’s feature encoding. Through
the final max-pooling layer in the PointNet module, we obtain a single frustum patch
feature of length d. Assuming we extract L frustum patches, the original frustum pro-
posal will have a two-dimensional feature of length L, with dimensions L × d. Let the
feature vector of the frustum proposal be represented as { fi}L

i=1, fi ∈ Rd. In subsequent
processes, we further refine the frustum patch encoding using the frustum transformer and
deconvolution techniques. The following section provides a detailed interpretation of the
frustum transformer.

3.2. Single-Stride Frustum Transformer

Initially, the transformer architecture was primarily used in the natural language
processing domain, capturing long-range dependencies in sequences through self-attention
mechanisms. In recent years, it has also demonstrated exceptional capability in the com-
puter vision field [38]. Inspired by [39], we design the frustum transformer for feature
fusion between frustum patches. It plays a crucial role in the fusion of cross-frustum-patch
features within each resolution branch and the final multi-resolution branch aggregation.

Compared to pixel-dense and regularly arranged 2D images, LiDAR point clouds
exhibit variable sparsity: points close to the LiDAR sensor are densely packed, while
those further away are much sparser. However, most existing works do not specifically
consider the sparse point distribution of outdoor LiDAR point clouds, leading to inferior
results for sparse distant points. One possible reason is that the model’s receptive field
cannot simultaneously cover near and far point clouds, as most works still expand their
receptive field around points or voxels through downsampling. We propose that by radially
expanding the receptive field and feeding the features of frustum patches at varying
distances into the frustum transformer, we can leverage the self-attention mechanism to
capture global context information, thus addressing the issue of covering both near and far
point clouds effectively. In the experimental section, we demonstrate that Frustumformer,
relying on the fusion of near and far information, performs well on partially occluded
distant objects.
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As illustrated in Figure 3, the frustum transformer block primarily consists of position
encoding, normalization, multi-head self-attention (MSA) and feed-forward neural net-
work (FFN) components. The following formula depicts this process, where PE(·) stands for
the positional encoding function, MSA(·) denotes the multi-head self-attention, NORM(·)
represents layer normalization, and FFN (·) means the feed-forward neural network:{

f ′ = MSA(NORM((PE(f ) + f )) + (PE(f ) + f )
f̂ = FFN(NORM(f ′)) + f ′

(1)

We directly input the length L frustum patch feature sequence into the frustum trans-
former network. Given that different frustum patches represent different positions within
the point cloud, and object position is critical for object detection tasks, we employ absolute
position encoding for the input frustum patches sequence in the first frustum transformer
block. We utilize standard learnable 1D position embeddings, which are added to the
frustum patch features to preserve positional information.

Multi-Head

Attention

Norm

Input

Embedding

Feed

Forward

Norm

Frustum Patches

Figure 3. The frustum transformer block, designed for feature fusion between frustum patches
or between multi-resolution branches, consisting of position encoding, normalization, multi-head
self-attention, and feed- forward neural network components.

Within a single resolution branch, we employ the frustum transformer to achieve
global context information fusion across frustum patches. Subsequently, we use deconvolu-
tion to upsample the frustum patch features of different resolution branches to the highest
resolution, facilitating the concatenation of multi-resolution features. Then, the frustum
transformer is used again to fuse multi-resolution features, with the final fused features
being input into the detection head for classification and bounding box localization.

Furthermore, previous methods often employ downsampling operations to both
expand the receptive field and reduce computational complexity. However, Frustumformer
effectively reduces unnecessary computations and significantly narrows the point cloud
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quantity by introducing frustum proposals, making it feasible to avoid downsampling
altogether. Additionally, the self-attention mechanism within the frustum transformer
inherently aids in capturing global context information without considering utilizing
downsampling to expand the receptive field. Using downsampling would sacrifice the
performance of high-resolution branches. Considering these factors, we propose the use
of a single-stride frustum transformer, without any downsampling operations. In the
experimental section, we demonstrate the superiority of using only a single-stride frustum
transformer compared to the combined use of frustum transformer and downsampling in
terms of performance.

3.3. Detection Header and Training of Frustumformer

The detection head follows the design employed in Frustum ConvNet, consisting of
two parallel convolutional layers, which serve as the classification branch and regression
branch, respectively. The classification branch adopts focal loss to address the imbalance be-
tween foreground and background samples. The regression branch includes the following
components: the center regression loss is based on the Euclidean distance, while the size
and angle offsets utilize smooth L1 regression loss, and corner loss is applied to regularize
all bounding box regression parameters. The entire Frustumformer is trained using a total
of three loss functions. It is worth noting that, as Frustumformer employs the transformer
architecture, it has a higher model capacity and larger parameters, while optimization issues
gradually emerge. Unlike ViT, which is trained on the large-scale ImageNet dataset [40],
the KITTI dataset is considerably smaller in comparison. At this point, regularization is
beneficial for optimizing the Frustumformer model. We find that regularization techniques
effective in ViT, such as dropout, droppath, and high-value weight decay, all have a certain
impact on improving the optimization of the Frustumformer model.

4. Experiments
4.1. Dataset

We implement the proposed model using Pytorch 1.10 on a graphics workstation
with a Nvidia RTX 3090 GPU, primarily evaluating it on the KITTI-OBJECT dataset. This
dataset contains 7481 training scenes and 7518 test scenes, with over 93,000 depth maps and
corresponding raw LiDAR scans and RGB images. The dataset includes 2D, 3D, and bird’s-
eye views, and a benchmark of three types of view angles with a total of 80,256 labeled
objects for performing target detection tasks. We focus our assessment on three primary
objects: cars, pedestrians, and cyclists. These are evaluated across three difficulty levels:
easy, moderate, and hard. The difficulty levels are determined based on the size of the
target and the level of truncation. In line with the KITTI dataset guidelines, the difficulty
levels (easy, moderate, and hard) are determined based on the target size, occlusion,
and truncation. The definitions for each difficulty level are as follows: Easy—minimum
bounding box height of 40 pixels, fully visible objects (no occlusion), and maximum
truncation of 15%. Moderate—minimum bounding box height of 25 pixels, partly occluded
objects, and maximum truncation of 30%. Hard—minimum bounding box height of
25 pixels, objects that are difficult to see (higher occlusion levels), and maximum truncation
of 50%. Following the method MV3D [4], we use the same split on the original training set
for supervised data. The new training and validation sets contain 3712 and 3769 driving
scenes, respectively. An ablation study is conducted on the new data split, while the final
result comparison with other existing models is based on the KITTI validation set. The IoU
thresholds are set at 0.7, 0.5 and 0.5 for car, pedestrian, and cyclist, respectively.

4.2. Implementation Details

We train two separate networks for car and pedestrian/cyclist categories on the KITTI
dataset due to their distinct differences. During the network training process, we utilize the
RRC model [41] and MSCNN model [42] to generate initial 2D bounding boxes for the car
and pedestrian/cyclist categories, respectively. To augment the data, we scale the size of
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the 2D bounding box, implement random shifts and flips, and employ techniques similar to
the Frustum PointNet method to prevent overfitting. We use a fixed number of 1024 points
to normalize the input points. Positive and negative training samples are generated by
shrinking the ground-truth boxes by 0.5. Anchor boxes with centers inside the shrunken
ground-truth boxes are considered the foreground, while anchor boxes with centers locate
between the shrunken and ground-truth boxes are ignored. The remaining anchor boxes
are tagged as the background.

We employ two frustum transformer blocks within a single resolution branch and
utilize an additional two frustum transformer blocks during the stage of multi-resolution
branch fusion. We train the Frustumformer with a batch size of 96 on one GPU (Nvidia RTX
3090 24 GB) and use the AdamW optimizer with a weight decay of 0.05. The initial learning
rate is set to 0.0005, followed by cosine annealing decay over a maximum of 50 epochs. A
linear warm-up is applied during the first epoch. The valid range is set from 0 to 70 m.
The parameters of Frustumformer for different object categories and different datasets
are provided in Table 1. These parameters include frustum resolutions, strides, frustum
patch feature depths, dimensions and unified feature dimensions after deconvolution. In
the evaluation, NMS is used to reduce redundancy. The final score of a 3D bounding box
equals the average of the 2D detection score and the predicted 3D score.

Table 1. Frustumformer parameters for various object categories and datasets.

Parameter
KITTI

Car Pedestrian/Cyclist

Frustum resolutions (u) [0.5, 1.0, 2.0, 4.0] [0.2, 0.4, 0.8, 1.6]
Strides (s) [0.25, 0.5, 1.0, 2.0] [0.1, 0.2, 0.4, 0.8]
Frustum patch feature depths (d) [128, 128, 256, 512] [128, 128, 256, 512]
Dimensions (L) [280, 140, 70, 35] [700, 350, 175, 88]
Unified feature dimensions after deconvolution 140 350

4.3. Ablation Study

To assess the effectiveness of our proposed method, we evaluate Frustumformer on
the KITTI-OBJECT dataset through an ablation study and efficiency comparison with
state-of-the-art techniques. The ablation study is conducted on the car category, known for
containing rich features, with a train/val split. Table 2 demonstrates the impact of the 2D
proposal accuracy on the Frustumformer results without the refinement stage. We utilize
the RRC model [41] to generate 2D region proposals using RGB images. “GT” in the table
refers to utilizing the 2D detection ground truth as the initial region proposal.

Table 2. Impact of 2D proposal on average precision (AP) (%).

2D Detection 3D Detection

Easy Mod. Hard Easy Mod. Hard

RRC 96.32 95.18 88.94 85.73 76.10 67.49
GT 100 100 100 84.49 84.15 77.18

As per Table 2, using the RRC model for 2D detection on RGB images yields an
accuracy of 76.10% for moderate targets. Replacing RGB 2D detection with ground truth
images significantly increases the precision of the 2D detection results, leading to a dramatic
increase in 3D detection outcomes. The precision of the corresponding 3D detection results
is considerably influenced by the two different sources of 2D proposals. Generally, with the
cooperation of RGB images, Frustumformer achieves higher performance, and better 2D
region proposals significantly contribute to 3D detection.

To verify the effect of single stride and regularization on the proposed model, we
conduct an ablation study on Frustumformer. The results in Table 3 confirm the efficacy of
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each component in the proposed model. Both single-stride and regularization operations
benefit the detection output. According to Table 3, the single-stride frustum transformer
without down-sampling procedures causes a slight decrease in the bird’s-eye view but clear
improvements on the 3D bounding box precision. Regularization further increases model
performance by approximately 0.5 percents points on each item.

Table 3. Effect of single stride and regularization on average precision (AP) (%).

Bird’s-Eye View 3D Bounding Box

Easy Mod. Hard Easy Mod. Hard

w/o Single Stride w/o Regularization 87.86 86.06 77.54 80.65 72.70 64.92
w/o Single Stride 89.45 86.76 77.98 84.92 75.20 66.79
w/o Regularization 88.98 86.52 78.18 85.37 75.49 67.26
Frustumformer 89.35 87.27 78.34 85.73 76.09 67.49

4.4. Main Results

Table 4 shows the performance of the proposed method (Frustumformer) on the KITTI
validation set, compared to other listed methods. According to Table 4, our proposed model
has obvious advantages in car detection compared with other models on the KITTI dataset.
It can be noted that the Frustumformer method is more sensitive to details because of the
single-stride transformer network, and the detection accuracy of moderate and hard targets
is significantly improved compared with other networks. Our method’s high detection
rate for partially occluded distant objects, as demonstrated by the fusion of near and far
information in Frustumformer, is illustrated in Figure 4. However, if the target is too close
and contains too many points, the redundant local details may affect the accuracy of the
3D detection.

Table 4. Comparison of 3D object detection and BEV detection on the KITTI val split set at IoU = 0.7
for cars. (%).

3D Detection BEV Detection

Easy Mod. Hard Easy Mod. Hard

VeloFCN [43] 15.20 13.66 15.98 - - -
MV3D [4] 71.29 62.68 56.56 86.55 78.10 76.67
F-PointNet [35] 83.76 70.92 63.65 88.16 84.02 76.44
AVOD-FPN [5] 84.41 74.44 68.65 - - -
VoxelNet [9] 81.98 65.46 62.85 89.60 84.81 78.57
Frustumformer 85.73 76.09 67.49 89.35 87.27 78.34

5. Conclusions

We present a novel approach for 3D object detection in LiDAR point clouds by lever-
aging the inherent order of the data and employing a frustum-based method to reduce
the inner disorder. Our proposed framework, Frustumformer, utilizes a single-stride
transformer network to maintain the original resolution of the network, while effectively
addressing the insufficient receptive fields issue inherent in single-stride structures. The
proposed model’s efficiency is confirmed by experiments on the KITTI dataset. With regard
to future research, we will explore methods beyond the frustum-based approach to reduce
dependency on high-quality 2D proposals. This will further lower data acquisition costs
and enhance the performance of our model.
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Figure 4. Qualitative results for the car category on KITTI dataset. We present 16 typical scenes,
including images and LiDAR illustrations, to showcase the performance of our proposed method.
Green bounding boxes represent ground truth, while red boxes indicate the proposed model pre-
dictions for car categories. Notably, our method demonstrates a high detection rate for objects,
even in the presence of severe occlusions, by effectively fusing near and far information. This is
particularly impressive, given that the KITTI dataset provides annotations for occluded objects but
not for those with substantial occlusion. This highlights the robustness and generalizability of our
approach in real-world scenarios and underscores its potential for improving the safety and efficiency
of autonomous driving systems.
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