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Abstract: In our life, emotions often have a profound impact on human behavior, especially for
drivers, as negative emotions can increase the risk of traffic accidents. As such, it is imperative to
accurately discern the emotional states of drivers in order to preemptively address and mitigate any
negative emotions that may otherwise manifest and compromise driving behavior. In contrast to
many current studies that rely on complex and deep neural network models to achieve high accuracy,
this research aims to explore the potential of achieving high recognition accuracy using shallow
neural networks through restructuring the structure and dimensions of the data. In this study, we
propose an end-to-end convolutional neural network (CNN) model called simply ameliorated CNN
(SACNN) to address the issue of low accuracy in cross-subject emotion recognition. We extracted
features and converted dimensions of EEG signals from the SEED dataset from the BCMI Laboratory
to construct 62-dimensional data, and obtained the optimal model configuration through ablation
experiments. To further improve recognition accuracy, we selected the top 10 channels with the
highest accuracy by separately training the EEG data of each of the 62 channels. The results showed
that the SACNN model achieved an accuracy of 88.16% based on raw cross-subject data, and an
accuracy of 91.85% based on EEG channel data from the top 10 channels. In addition, we explored
the impact of the position of the BN and dropout layers on the model through experiments, and
found that a targeted shallow CNN model performed better than deeper and larger perceptual field
CNN models. Furthermore, we discuss herein the future issues and challenges of driver emotion
recognition in promising smart city applications.

Keywords: emotion recognition; multi-channels EEG; cross-subject; CNN

1. Introduction

As we continue to experience the era of urbanization and information technology, the
concept of smart cities has become a key stage in urban development. The main goal of
smart cities is to achieve human-centered development through the integration of infor-
mation technology. In this context, intelligent transportation has become an important
area of research, playing a key role in ensuring the efficient and sustainable movement
of people and goods within and between cities. Therefore, the development of intelligent
transportation systems has become an indispensable factor in achieving the ultimate goal
of smart cities [1]. With the continuous improvement of transportation facilities and ve-
hicles, the threshold for drivers is becoming lower. However, the increased number of
cars has led to a rise in traffic accidents, with human factors playing a dominant role in
road traffic safety [2–5]. Negative emotions such as grief, anger, and rage can significantly
affect a driver’s cognition, judgment, and driving behavior, leading to misjudgments and
serious traffic accidents. It is therefore crucial to develop effective and reliable methods for
identifying and regulating negative emotions in drivers to improve traffic safety. Advanced
driver assistance systems (ADAS) [6] have been widely adopted in the market to identify
and warn of dangerous driving behaviors using advanced sensor and information intercon-
nection technology [7]. However, most of the popular driving assistance systems on the
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market ignore the driver’s emotional state during the driving process [8], focusing mainly
on fatigue driving and distracted driving. As relying on the driver to self-regulate their
emotional instability is not practical, developing a negative emotion recognition system
is essential to effectively address the impact of emotional states on driving behavior and
improve traffic safety.

In addition to eliciting activation signals in specific functional areas of the brain,
changes in human emotions also result in various physiological reactions through the
nervous system, leading to alterations in peripheral physiological signals (such as EEG,
skin conductance, ECG, respiration, temperature, etc.) [8] and external expressions (such
as speech, facial expressions, postures, actions, etc.), which may subsequently trigger cer-
tain behaviors. By investigating the relationship between brain functional activity and
the aforementioned physiological signals and external behaviors, and analyzing subse-
quent behavioral performance in situational perception environments, it is possible to
automatically acquire emotional information and compute and recognize emotional states
in practical applications. This can also enable the prediction and regulation of subsequent
behavior, thereby endowing machines with a degree of emotional intelligence. Electroen-
cephalography (EEG) [9] signals are commonly employed in emotional recognition. The
main components of EEG signals are brain rhythmic signals from various brain regions,
which reflect the activity of corresponding areas [10]. The electrical activity of the cerebral
cortex is transmitted to the scalp via the skull–brain structure, and thus, the obtained EEG
signals are mixed signals of brain signals from different brain regions and eye movement
signals, which contain a considerable amount of redundant information and have a low
signal-to-noise ratio [11]. Consequently, the extraction of time-related features from EEG
signals has become a pivotal factor in emotional recognition from EEG signals [12].

The recent advancements in deep learning techniques have led to a surge of interest in
applying such techniques to the field of emotion-based brain–computer interfaces. This has
resulted in the emergence of an increasing number of deep learning methods being utilized
in this area, as evidenced by several studies [13–15]. These studies have demonstrated a
strong correlation between changes in EEG signals and other physiological signals with
changes in human emotions [13,16,17]. Deep learning, with its ability to effectively learn
deep feature representations of samples, has been shown to be a valuable tool for extracting
emotional state information contained in physiological signals. For instance, Kranti S.
Kamble et al. [18] proposed a machine learning approach that achieved an AUC of 95.81%
for single-subject emotions in the SEED dataset from the BCMI Laboratory. Similarly, Smith
K. Khare et al. [19] proposed an eigenvector centrality method (EVCM) that exhibited
the highest accuracy, at 97.24%. These findings underscore the potential of deep learning
techniques for emotion recognition, and further research in this domain is warranted.

With the rapid advancement of deep learning techniques, various deep learning
models have been successfully applied in the field of emotion-based brain–computer
interfaces (BCIs) [20–25]. Studies have shown that changes in EEG signals and other
physiological signals are strongly associated with changes in human emotions, and deep
learning methods are highly effective in extracting emotional state information contained
in physiological signals. For instance, Keelawat [20] trained a multilayer convolutional
neural network (CNN) model with three to seven layers on the DEAP dataset, achieving
accuracies of 81.54% and 86.87% for arousal and valence, respectively. This clearly indicates
that CNNs are capable of extracting relevant emotional features from EEG signals and
accurately classifying them based on these features.

Yang et al. [21] and Wang et al. [22] have also conducted related experiments on the
SEED dataset from the BCMI Laboratory. However, due to differences in experimental
scenarios, it is difficult to draw a straightforward conclusion as to which neural network
architecture is more suitable for EEG-based emotion recognition. It is worth noting that
most spatial and temporal neural network models employ convolutional and recurrent
neural networks, such as C-RNN [23], graph convolution [24], and attention mechanism
models [25], among others.



Electronics 2023, 12, 2359 3 of 13

In the context of EEG signal recognition, such as P300 and SSVEP paradigms, the
features are not strongly correlated with time, but only sensitive to specific brain potentials
induced at a particular instant. Therefore, it is speculated that although there is an induction
time, the overall induction state of the EEG should be instantaneous, with weak temporal
correlations. This observation implies that an improved CNN model is sufficient to extract
feature information, and recurrent neural networks and their derivative models that require
more computation and training time than CNNs may not be as effective as CNNs.

Furthermore, in the realm of cross-modality, transfer learning methods have gained
increasing attention from researchers. For instance, Lin YP et al. [26] proposed a novel
conditional transfer learning (cTL) framework, which facilitated positive transfer by deter-
mining the similarity between the source and target domains. Their approach achieved
promising results in improving the overall classification performance of 26 individuals
by approximately 15% for valence classification and about 12% for arousal classification.
Similarly, Zheng W L et al. [27] utilized transfer learning techniques to construct an emotion
model based on personalized EEG data in the absence of labeled target data. Specifically,
they explored two types of transfer methods: one that shared the structure of the source
and target domains and another that trained multiple individual classifiers on the source
subject, then transferred relevant classifier parameters to the target subject. They demon-
strated the effectiveness of their approach by constructing emotional models for positive,
neutral, and negative emotions, achieving an average accuracy of 76.31%, compared to
56.73% for traditional general classifiers. In a recent study, Luo et al. [28] proposed a novel
Wasserstein generative adversarial network domain adaptation (WGANDA) framework
for building emotion recognition models based on interdisciplinary electroencephalogram
(EEG) data. Their proposed framework consists of GAN-like components and a two-step
training procedure with pre-training and adversarial training. Evaluated on two widely
used public datasets, SEED and DEAP, the framework achieved an average accuracy of
87.07% for cross-subject emotion recognition on SEED datasets from the BCMI Laboratory
and a highest average accuracy of 67.99% on DEAP, outperforming traditional general
classifiers. Thus, a further exploration of constructing end-to-end models for effectively
extracting emotional features using deep learning techniques remains a highly compelling
area of research for many scholars in the field.

This paper presents an innovative end-to-end convolutional model, SACNN, for cross-
subject EEG emotion recognition. The proposed model uses large convolution kernels and
wide pooling attention, enabling faster convergence and improved generalization capacity.
Furthermore, this study conducts ablation experiments to identify the optimal positions
of batch normalization (BN) and dropout layers. The result shows that a targeted shallow
convolutional neural network outperforms deeper convolutional neural network models.
These findings offer valuable insights into optimizing the architecture of CNN models
for EEG emotion recognition, which can potentially facilitate the development of more
effective emotion recognition systems.

The main contributions of this paper include:

1. A novel end-to-end cross-subject EEG model for emotion recognition that automatically
extracts temporal features from raw EEG data through large kernel sizes and attention
pooling, and outperforms other EEG-based models using the proposed features.

2. The paper explores the impact of selecting 10 channels from the frontal and temporal
lobes on the training results of 62-channel EEG data.

3. The paper conducts extensive ablation experiments, mainly focusing on the impact
positions of the BN and dropout layers in CNN and the influence of multilayer
convolution on model training results. These experiments demonstrate the reliability
of the proposed model.

2. Methodology

In this section, we provide a detailed description of the proposed method as illustrated
in Figure 1. First, we describe the EEG data preprocessing approach. Subsequently,
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we introduce our channel selection methodology. Finally, we provide a comprehensive
overview of the SACNN architecture, including its specific algorithm for multi-channel
EEG classification.

Figure 1. Flowchart of the proposed method.

2.1. Preprocessing

The dimensions and meanings of EEG data are crucial for the final results and in-
terpretability of experiments. Different dimensions and input forms represent different
specific meanings of EEG data. In this study, each experiment in the SEED dataset was
from the BCMI Laboratory. Data were collected when fifteen Chinese subjects (7 males
and 8 female) were watching film clips. The film clips were carefully selected to induce
different types of emotion, which were positive, negative, and neutral. There was a total of
15 trials for each experiment. There was a 5 s hint before each clip, 45 s for self-assessment
and 15 s to rest after each clip in one session. The order of presentation was arranged in
such a way that two film clips that targetted the same emotion are not shown consecutively.
For feedback, the participants were told to report their emotional reactions to each film
clip by completing the questionnaire immediately after watching each clip [17]. Data con-
tained 15 sessions (emotional experiments) with each session having a data length range of
37,001–47,601. Therefore, we have proposed a scheme to construct 62-dimensional data by
intercepting all data into the minimum length of 37,000. Due to the extreme differences in
data volume between individual features in the SEED dataset, it is not feasible to construct a
data matrix using the direct truncation or zero-padding preprocessing method employed in
the previous chapter. Therefore, this chapter proposes a dynamic downsampling approach
for the SEED dataset, which exhibits significant differences in data volume. The specific
downsampling algorithm is shown in the table below, which reduces the dimensionality
of the data while preserving the data characteristics, normalizes the overall data, and
constructs a data matrix for easy integration into the model for computation. The feature
session data of each dimension are stacked together to form the data dimension of a single
subject. The data are then transposed, allowing the model to train on each session in the
time dimension rather than the spatial dimension. Finally, all the data are concatenated to
construct a cross-subject structured emotional data belonging to the current modality. The
specific downsampling process is shown in the Algorithm 1.

Based on the constructed data structure of time-feature dimensions, we recursively
traverse down to the minimum feature dataset and perform downsampling with the core
calculation shown in Equation (1):

newSampleData = ∑k+xL/minLen+[xL/minLen+ f lag+[xL/minLen]]
k X (1)

Here, X represents the current data, xL represents the length of the current time data,
minLen represents the minimum data length of all data, k represents the current loop
data, and newSampleData represents the new feature value under the downsampled new
dimension. Subsequently, multiple newSampleData form a column of feature sequences,
representing the feature sequences of a certain experimental session and a subject’s data
collection dimension.
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Algorithm 1 Preprocessing downsampling algorithm

input: SEED Dataset,
input: Data Data array constructed by reading in layer by layer,
input: n Data size
output: The downsampled cross-subject matrix data
1: function DownSample(Data)
2: result← []
3: minLen← The minimum data length for a single time series under a single feature
4: resIndex← 0
5: for <all Data> do
6: dif f = Data length of the current time series/minLen
7: if dif f == 1 then
8: eys← Data of the current time series
9: result[resIndex + +]← eye.T
10: continue
11: end if
12: eye← []
13: eyeIdex← 0
14: for <Time series data under current features> do
15: temp← 0
16: f lag← 0
17: tempT imeList← []
18: tempT imeListIndex← 0
19: while temp < Length of time series under current features do
20: if dif f + f lag − int(dif f ) >= 1 then
21: x = dif f + int(dif f + f lag − int(dif f ))
22: f lag← f lag – 1
23: else
24: x← dif f
25: end if
26: tempT imeList[tempT imeListIndex + +]← sum(The time series k to k+int(x) underthe
current feature)
27: k← k + int(x)
28: if k + 1 + int(dif f ) >= Length of time series under current features then
29: f lag← 1
30: end if
31: f lag← f lag + (dif f − int(dif f ))
32: end while
33: eye[eyeIndex + +]← tempT imeList
34: end for
35: result[resIndex + +]← eye.T
36: end for
37: return result
38: end function

The raw EEG data structure is difficult to apply to cross-subject training. However, the
features extracted through transfer learning and end-to-end learning from a single subject’s
single trial data are ultimately different. Therefore, the raw data were reconstructed
to accommodate all subject information across all experiments, enabling the model to be
trained end-to-end and enhancing its generalization performance and practical applicability.
The cross-subject data reconstruction method is as follows.

First, stack the 62 dimensions of a single subject’s trial session data to represent
a subject’s single trial session. Next, transpose the data (channel, session) to (session,
channel) so that the model trains each session on the time dimension rather than the
spatial dimension. Then, concatenate all experimental subject data to obtain 675 cross-
subject experimental trial data in the form of Figure 2, resulting in a reconstructed SEED
matrix data structure dimension of (675; 37,000; 62). In Figure 2, the different colored lines



Electronics 2023, 12, 2359 6 of 13

represent different EEG channels. Due to space limitations, only six representative channels
are depicted here for illustration purposes. Finally, the reconstructed cross-subject matrix
data can be trained in the model as a whole, replacing segmented training one by one.
The model integrates more cross-subject and cross-experiment information, enhancing its
generalization performance.

Figure 2. EEG data proposing method.

To further refine the emotional features present in the EEG data, we applied filtering
to the transposed and reconstructed data. Human brainwave frequencies typically fall
within the range of 0–35 Hz; some high-frequency feature data may influence the results.
Therefore, we reduced the data frequency by 15 Hz and applied a low-pass filter to filter
the data from 0–50 Hz.

2.2. Channel Choice

To improve computational efficiency, it is not necessary to use all available channels
of EEG data for the model. Therefore, in this study, the SACNN was used to train each of
the 62 channels of data separately, and the results were validated. To ensure the reliability
of the experimental results and reduce errors, the experiments were repeated five times
with different initial random weights for each network model. The channel importance
was determined using the following formula:

R = sort(
1
N ∑n

i=0 Acci) (2)

Here, R represents the sorted channel importance result, N and n represent the number
of repeated trials (5 in this case), Acc represents the mean value after 10-fold cross-validation,
and the sort function sorts the values in descending order. By using this method, the most
important channels for the classification task can be identified and used for the final model,
thus improving the efficiency of the computation.

2.3. SACNN Model

To describe the proposed framework for EEG emotion recognition based on CNN,
there are seven key components, namely ConvRelu-10, BN, AveragePooling, ConvRelu-5,
MaxPooling, dropout, and fully connected neural network (FCN). Figure 3 provides a
detailed illustration of these components.
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Figure 3. The framework of SACNN.

3. Experiments and Result
3.1. Dataset

The SEED dataset contains EEG recordings of three emotional categories, namely
positive, negative, and neutral. The experiment involved 15 subjects who performed three
experiments, with an interval of approximately one week between each session. The
subjects’ emotions were stimulated by watching a film, and each experiment comprised
15 trials. After each trial, subjects were asked to provide feedback. The EEG signals were
recorded using 62 channels at a sampling rate of 1000 Hz, which were then downsampled
to 200 Hz. The EEG data underwent noise removal and artifact removal, followed by
bandpass filtering from 0–75 Hz.

The negative emotions in the SEED dataset can be extrapolated to negative emotions
experienced by drivers during driving.

3.2. Experimental Setup

We train our model on NVIDIA RTX 3090 GPU and 64 GB of memory. For each model,
we set three batch sizes and train 100 epochs. The learning rate is set to 0.001. For each
experiment, we randomly shuffle the samples. The ratio of the training set to test set is 8:2.

3.3. Ablation Studies

To demonstrate the effectiveness of BN, dropout, and multi-Conv blocks at different
layers of the model, ablation experiments were conducted on the SEED dataset. Pre-
experiments showed no significant difference between placing the BN layer in the front,
middle or rear of the conv and pooling layers, so it was placed in the middle in this study.
Table 1 outlines the specific structures of the multi-Conv blocks model, which consists of
nine models with different combinations of convolutional layers and BN layers.

Table 1. The structure of multi-Conv blocks model.

Model a Model b Model c Model d Model e Model f Model g Model h Model i

CNN-1
(MP + BN + DP)

CNN-2
(AP + BN + DP)

CNN-2
(AP_MP + BN + DP)

CNN-2
(MP_AP + BN + DP)

CNN-5
(MP + 1_BN + DP)

CNN-5
(MP + Multi_BN +

DP)

CNN-10
(MP + 1_BN + DP)

CNN-10
(MP + Multi_BN +

DP)

CNN-10
(MP_AP + BN + DP

+ Res)

Input (62 Channels Raw EEG Data)

Conv1D 10–64
BN

Conv1D 10–64
BN

Conv1D 10–64
BN

Conv1D 10–64
BN

Conv1D 10–64
BN

Conv1D 10–64
BN

Conv1D 10–64
BN

Conv1D 10–64
Conv1D 10–64

BN

Conv1D 10–64
Conv1D 10–64

BN

Maxpooling1D
370 Averagepooling1D 370 Maxpooling1D 370

DP 0.2 Conv1D 5–128 Conv1D 5–128 Conv1D 5–128 Conv1D 5–128 Conv1D 5–128
BN Conv1D 5–128

Conv1D 5–128
Conv1D 5–128

BN

Conv1D 5–128
Conv1D 5–128

BN

Averagepooling1D 2 Maxpooling1D 2 Averagepooling1D 2 Maxpooling1D 2

DP 0.2 Conv1D 5–256 Conv1D 5–128
BN

Conv1D 5–256
Conv1D 5–256

Conv1D 5–256
Conv1D 5–256

BN

Conv1D 5–256
Conv1D 5–256
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Table 1. Cont.

Model a Model b Model c Model d Model e Model f Model g Model h Model i

Maxpooling1D 2 Averagepooling1D
2-Residual

Conv1D 5–128 Conv1D 5–128
BN

Conv1D 3–128
Conv1D 3–128

Conv1D 3–128
Conv1D 3–128

BN

Conv1D 3–128
Conv1D 3–128

Maxpooling1D 2 Averagepooling1D 2

Conv1D 5–64 Conv1D 5–64
BN

Conv1D 3–64
Conv1D 3–64

Conv1D 3–64
Conv1D 3–64

BN

Conv1D 3–64
Conv1D 3–64

Maxpooling1D 2 Averagepooling1D
2-Residual

DP 0.2 BN

FC—1024

FC—256

FC—3 (Softmax)

3.4. Results and Analysis

(A) Multi-Conv Blocks Ablation Studies

In this section, we experimented with 1, 2, 5, and 10 layers, respectively, and compared
the effectiveness of AveragePooling and MaxPooling for the two-layer network. For the five-
and ten-layer networks, we also compared adding BN only to the first convolutional layer
and adding BN to each portion of the convolutional layers, as well as adding residual layers
to the ten-layer CNN to enhance the competitiveness and persuasiveness of the results.

Table 2 shows that models a–d achieved an accuracy of over 80%, and the final
SACNN utilizes a two-layer CNN structure as it is more stable and efficient in extracting
data features than a single-layer CNN. Models b–d examined the impact of MaxPooling
and AveragePooling in different positions in the model. Model c achieved the highest
accuracy of 86.71% with MaxPooling in both bilayers, while model c in Table 3 achieved an
accuracy of 88.16% by using AveragePooling first and then MaxPooling. This suggests that
using AveragePooling with a larger pooling window is more effective in feature extraction
from the data while removing irrelevant features.

Table 2. Multi-Conv blocks ablation studies results.

Model a Model b Model c Model d Model e Model f Model g Model h Model i

Loss 0.472 ± 0.056 0.486 ± 0.016 0.363 ± 0.029 0.431 ± 0.028 1.477 ± 0.056 0.814 ± 0.085 1.1 ± 0.005 1.428 ± 0.045 0.793 ± 0.091
Accuracy 0.874 ± 0.043 0.837 ± 0.008 0.881 ± 0.022 0.867 ± 0.013 0.578 ± 0.013 0.667 ± 0.067 0.333 ± 0.001 0.667 ± 0.052 0.667 ± 0.027

Table 3. BN layers ablation studies results.

Model c1 Model c2 Model c3 Model c4 Model c5 Model c6 Model c7 Model c8

Block1-BN
√ √ √ √

Block2-BN
√ √ √ √

Block3-BN
√ √ √ √

Loss 0.461 ± 0.007 0.506 ± 0.01 1.082 ± 0.018 0.437 ± 0.068 0.543 ± 0.032 0.729 ± 0.126 0.822 ± 0.074 1.107 ± 0.006
Accuracy 0.852 ± 0.029 0.867 ± 0.056 0.563 ± 0.107 0.852 ± 0.127 0.849 ± 0.096 0.731 ± 0.176 0.652 ± 0.211 0.333 ± 0.007

(B) BN Layers Ablation Studies

Based on the results from the previous section, we found that Model c performed the
best. Therefore, we conducted an ablation experiment on Model c by removing the Batch
normalization (BN) layer. Table 3 presents the BN layers ablation experiment results on
each model. Different blocks indicate the different positions of BN layers. In this table, the
checkmarks indicate the addition of the corresponding BN layer in that particular layer.
The absence of a checkmark indicates that no BN layer was added in that layer. Here, we
choose eight models, meaning BN is set in the first layer, second layer, third layer, both in
first and second layers, both in first and third layers, both in second and third layers, in all
layers, and no BN layer in the model.
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Table 3 clearly demonstrates that adding a BN layer as seen in model c8 greatly
improves the accuracy of the model. When comparing models c1–c3, the benefits of adding
BN to the Conv block are greater than the FCN region. Similarly, when comparing models
c1–c7, the benefits of a multilayer BN are no better than a single-layer BN. This indicates
that for EEG emotion recognition, an excessive normalization of the data is not beneficial to
model learning.

(C) Dropout Layers Ablation Studies

Table 4 presents the dropout layers ablation experiment results on each model. Differ-
ent blocks mean the position of dropout layers set. In this table, the checkmarks indicate
the addition of the corresponding DP (Dropout) layer in that particular layer. The absence
of a checkmark indicates that no Dropout layer was added in that layer. Here, we choose
nine models, meaning that 20% of dropout data is featured respectively in the first layer,
second layer, third layer, both in first and second layers, both in first and third layers, both
in second and third layers, in all layers, no dropout layer in model c9, and 50% dropout
data features in third layer in model c8.

Table 4. Dropout layers ablation studies results.

Model c1 Model c2 Model c3 Model c4 Model c5 Model c6 Model c7 Model c8 Model c9

Block1-DP 0.2
√ √ √ √

Block2-DP 0.2
√ √ √ √

Block3-DP 0.2
√ √ √ √

Block3-DP 0.5
√

Loss 1.12 ± 0.0083 1.164 ± 0.02 1.081 ± 0.023 1.11 ± 0.017 1.1 ± 0.01 1.107 ± 0.006 1.114 ± 0.02 1.10 ± 0.02 1.107 ± 0.006
Accuracy 0.326 ± 0.005 0.33 ± 0.016 0.437 ± 0.015 0.34 ± 0.016 0.33 ± 0.005 0.333 ± 0.001 0.348 ± 0.019 0.36 ± 0.015 0.33 ± 0.007

Table 4 shows that adding a dropout layer to model c9 and others can improve the
model’s accuracy by 10%. Comparing models c1–c3, adding dropout to the FCN block is
more effective than adding it to the Conv block. However, comparing models c1–c7, the
gain of multilayer dropout is not as good as that of single-layer dropout. This suggests
that dropping out some data are beneficial for improving the model’s generalization, but
dropping out too much data hinders the model’s ability to learn data features. In addition,
dropping 0.2 data is more stable than dropping 0.5 data in terms of loss, indicating that
dropping too much data is not good for feature discrimination.

(D) Multi-Channels Results

After single-channel training, Figure 4a indicates that the blue region exhibits a higher
accuracy, primarily in the prefrontal and bilateral temporal regions.

Figure 4. 62-channels training result.

Table 5 shows the results for the top 10 channels (F8, T7, FT7, FC6, FPZ, FT8, FP2, F6,
C5, and FP1), with accuracies ranging from 59.9% to 72.4% and a stable mean standard
deviation of 0.02. Figure 4b illustrates that the top 10 potentials are primarily concentrated
in the front half of the brain, with FT7, T7, C5, and F6 showing oblique symmetry rather
than exact left–right symmetry, and F8, FC6, and FT8 also exhibiting oblique symmetry.
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Table 5. Top 10 channels result.

Channel Mean-acc Channel Mean-acc Channel Mean-acc

1 F8 0.724 ± 0.015 5 FPZ 0.644 ± 0.022 8 F6 0.620 ± 0.022
2 T7 0.691 ± 0.012 6 FT8 0.641 ± 0.016 9 C5 0.610 ± 0.017
3 FT7 0.689 ± 0.021 7 FP2 0.624 ± 0.025 10 FP1 0.599 ± 0.023
4 FC6 0.652 ± 0.012

(E) Compared Models Results

Here, we choose four models, SVM, DBN, LSTM, and CNN-LSTM, as the compari-
son models.

Table 6 displays the accuracy (acc/std) of the five models using single-channel, multi-
channels, and all channels. The single channel represents the highest accuracy, F8, in the
top 10 chosen as the input to the model, while multi means that the 10 channels in Table 5
are selected as the model input. It can be observed from Table 6 that training the models
with raw EEG data using multi-channels improved the accuracy of all models to varying
degrees, indicating that filtering effective channel data positively impacts model learning.
The SACNN achieves an accuracy of 88.16% with all channels trained, and 91.85% with
multi-channels, with a maximum accuracy of 94.81%. These results demonstrate that a
simple CNN network can achieve high accuracy after model improvement and valid data
channel selection.

Table 6. The comparison models results on SEED dataset for different channels.

Model Single Multi All

SVM 0.748 ± 0.001 0.763 ± 0.001 0.333 ± 0.001
DBN 0.726 ± 0.013 0.826 ± 0.017 0.392 ± 0.027
LSTM 0.541 ± 0.021 0.444 ± 0.031 0.348 ± 0.058

CNN-LSTM 0.6593 ± 0.018 0.844 ± 0.014 0.444 ± 0.043
Ours 0.724 ± 0.015 0.918 ± 0.012 0.881 ± 0.022

Finally, this section compared the SACNN model with other existing cross-modal models,
including the transfer learning [27], Wasserstein generative adversarial network domain adap-
tation (WGANDA) [28], the deep subdomain associate adaptation network (DSAAN) [29], the
multi-modal domain adaptive variational autoencoder (MMDA-VAE) [30], and the dynamic
domain adaptation (DDA) [31]. Although these models were not trained end-to-end, they are
all cross-subject models based on the SEED dataset and therefore have certain comparability.
As shown in Table 7, the SACNN model achieved the best accuracy of 91.82% on the SEED
dataset, which is higher than the other compared models.

Table 7. The comparison models result on SEED dataset.

Model Transfer Learning WGANDA DSAAN MMDA-VAE DDA Ours

Res 76.31% 87.07% 88.25% 89.64% 91.08% 91.82%

4. Conclusions

In the field of cognitive neuroscience, the analysis of brain activity has been recognized
as a valuable tool for investigating the mechanisms underlying emotional and behavioral
responses in humans. Specifically, electroencephalography (EEG) has been used to study
the brain’s typical patterns of activation and their corresponding levels under various
contextual stimuli during driving. Studies have revealed that negative emotional changes in
humans are often associated with specific activation signals in distinct brain regions, thereby
enabling a deeper understanding of the underlying mechanisms of human emotional
responses. Consequently, machine learning models that are trained using relevant EEG
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channels have shown to effectively improve the accuracy of model recognition for emotional
state identification. These findings highlight the potential utility of EEG and cognitive
neuroscience techniques in enabling an automatic acquisition of emotional information,
which can facilitate the prediction and regulation of subsequent behavior and enhance the
machine’s emotional intelligence.

In this paper, we propose a novel method called the SACNN for recognizing emotions
from raw SEED EEG data, which is capable of recognizing EEG emotion cross different
subjects. Through ablation experiments, we compared the effectiveness of BN, dropout
layers, and multilayer CNNs for EEG emotion recognition with CNN networks. Our results
indicate that the BN layer is more suitable in Conv blocks, while the dropout layer is
more suitable in FCN blocks, and both are better to add in single locations rather than
multiple locations. We also found that too many dropouts will hinder the model’s ability
to learn corresponding features. For multilayer CNNs, fewer layers with large perceptual
fields and large pooling is better than deeper layers for EEG emotion recognition. In many
practical situations, deep neural networks perform better than shallow neural networks.
However, in certain cases, shallow neural networks can lead to better results. In the field of
EEG emotion recognition, it has been found that shallow neural networks perform better
than deep neural networks, with better interpretability, possibly due to the closed form
under linear combinations in limited data [32]. Similarly, experiments conducted in Kim D
E’s work [33] have demonstrated that shallow neural networks can successfully identify
malicious network traffic more effectively than complex deep neural networks, with the
former achieving an average detection rate of 98.50% compared to the latter’s average high
level of 48.30%. Furthermore, David Anderson presented “A Two-Stage Deep Learning
Approach to Chest X-Ray Analysis” at the Denver Medical Imaging Informatics Conference
in 2019, demonstrating that using two “shallow” neural networks in building diagnostic
models can achieve faster, more accurate, and more interpretable AI in radiology and
other imaging technologies. This indicates that under specific conditions, shallow neural
networks can outperform deep neural networks.

We used raw SEED EEG data-trained SACNN, with the top 10 channels for accuracy
being F8, T7, FT7, FC6, FPZ, FT8, FP2, F6, C5, and FP1. Among them, FT7, T7, C5, and
F6, as well as F8, FC6, and FT8 exhibit oblique symmetry, which allows for the further
exploration of functional connectivity in the brain during emotionally evoked states.

We compared SACNN with three other competitive models, namely DBN, SVM, and
LSTM, which were trained using the same inputs as SACNN. Our results demonstrate
that SACNN outperformed the other models, achieving a higher accuracy rate of 88.16%
and 91.85% in all channel data and multichannel data, respectively. In contrast, the tem-
poral feature dimension extraction of DBN and SVM models was not as high as that of
SACNN, and the CNN-LSTM model’s reconstruction of data to fit the characteristics of its
spatiotemporal network model yielded lower results than SACNN.

There is still a lot to explore regarding CNN feature extraction in relation to EEG
emotion temporal aspects, and more efficient applications of neural network learning based
on the theoretical meaning of itself. As the same model may yield different results after
data reconstruction and processing, it is worth exploring further.

There are still many areas for improvement in the experiment. For example, the
current model construction is based solely on the SEED dataset, and in future work, we will
validate the conclusions on the generality of the BN layer and dropout layer positions for
the model on more datasets. Additionally, the current data can only distinguish whether
negative emotions are present, without differentiating their degree. Therefore, in future
work, we will further explore the differentiation of the degree of negative emotions and
their correlation with the level of human behavioral danger, with the aim of finding a
benchmark between normal and dangerous states.

By exploring the intricate relationship between functional brain activity and emo-
tion, it is possible to combine this knowledge with a subsequent behavior analysis within
context-aware environments to automatically acquire emotional information and calculate
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and recognize emotional states in practical application settings. This approach can enable
the prediction and regulation of subsequent behavior, thereby endowing machines with a
certain degree of emotional intelligence. Going forward, there is a promising avenue for
further development by utilizing multi-channel and multi-modal signal-fusion recognition
methods, which can enable the achievement of a higher accuracy in emotion recognition
tasks. Thus, this area of research has significant potential for advancing our understand-
ing of the interaction between the brain and emotions, as well as for developing novel
applications in various domains, including human–machine interactions and mental health.
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