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Abstract: The purpose of this paper is to design and implement a complete system for monitoring
and detecting attacks and anomalies in 5G wireless local area networks. Regrettably, the development
of most open source systems has been stopped, making them unable to detect emerging forms of
threats. The system provides a modular framework to create and add new detection rules as new
attacks emerge. The system is based on packet analysis modules and rules and incorporates machine
learning models to enhance its efficiency. The use of rule-based detection establishes a strong basis for
the identification of recognized threats, whereas the additional implementation of machine learning
models enables the detection of new and emerging attacks at an early stage. Therefore, the ultimate
aim is to create a tool that constantly evolves by integrating novel attack detection techniques. The
efficiency of the system is proven experimentally with accuracy levels up to 98.57% and precision as
well as recall scores as high as 92%.

Keywords: 5G Wi-Fi security; MAC layer threats; network traffic analysis; threat detection; machine
learning

1. Introduction

Wireless networking is a fundamental aspect of modern society, fostering connectivity
and communication that spur economic development and social interaction. The demand
for mobile devices and the widespread use of the Internet are among the factors driving
the growth of wireless networks. Additionally, advancements such as 5G technology have
greatly enhanced the throughput and capacity of these networks, allowing for more data
and users to be accommodated. A recent study by IoT Analytics Research 2022 [1] showed
significant growth in wireless networks. Overall, 5G connectivity is the fastest growing,
with a predicted growth of 159%, followed by Low-Power Wide Area Networks (LPWANs)
designed for low power consumption. Wireless Local Area Networks (WLANs) are an
important component of 5G networks. In general, 5G cellular networks are designed to
deliver high-speed wireless connectivity over a wide area, while 5G WLANs are designed
to provide local wireless connectivity within a limited area. One of the key features of 5G
networks is the ability to offload data traffic from cellular networks to Wi-Fi networks,
which can help to reduce network congestion and improve overall performance. WLANs
can also be considered part of 5G networks because they fulfill the spectral efficiency
requirements that are a key component of 5G technology. They can play a key role in 5G
networks by providing a reliable and secure Wi-Fi connection. In fact, 5G networks are
expected to incorporate Wi-Fi 6 technology, which is the latest and most advanced version
of the Wi-Fi standard. This means that 5G networks will be able to support both cellular
and Wi-Fi connections and will be able to seamlessly switch between the two depending on
the network conditions and the user’s location. Overall, 5G WLANs and cellular networks
are complementary technologies that are expected to work together to provide seamless
and reliable wireless connectivity in both local and wide area networks.
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Wireless networks, like any other technology, are susceptible to numerous threats that
can jeopardize security and integrity. Despite the convenience of wireless networks, they
remain vulnerable to security threats, largely due to the radio waves that transmit the data,
which offer opportunities for unauthorized network access. These threats can come in
various forms, such as hacker operations that disrupt network availability or unauthorized
access to the system. Another weakness may be the architecture of wireless communication
itself. Unlike wired networks that use physical cables to transmit data, wireless networks
transmit data through radio waves, making them more vulnerable to physical attacks, such
as interference, jamming, or eavesdropping. WLANs are also vulnerable to various types
of MAC layer threats, such as flooding, injection, and impersonation attacks. All these
attacks can disturb data transmission. Therefore, securing 5G wireless networks is a crucial
concern for individuals, businesses, and organizations to protect against potential threats
and preserve the reliability and integrity of the network.

Wireless Intrusion Detection Systems (WIDS) are designed to detect and prevent
unauthorized access to WLANs. They typically operate by monitoring network traffic
for suspicious activity and alerting administrators to potential security threats. With the
emergence of 5G and 6G technologies, the role of WIDS in network security has become
increasingly important [2,3]. To this end, 5G networks offer significant improvements in
data rates, and latency, making them a promising technology for many industries. The high
bandwidth and low latency of 5G networks require the deployment of more advanced
WIDS systems. This enables WIDS to analyze network traffic in real time and provide
faster responses to potential threats. WLANs, on the other hand, are becoming increasingly
common in both residential and commercial settings. However, they present significant
security challenges due to their wireless nature. By integrating WIDS with 5G WLANs
technology, network administrators can significantly improve network security, preventing
unauthorized access and protecting sensitive data. WIDS can monitor network traffic and
detect anomalies that could indicate a security breach. With the use of advanced WIDS,
network administrators can more effectively defend against cyber-attacks. This can help
organizations to protect sensitive data and maintain business continuity.

In this paper, we propose an enhanced WIDS that uses rule-based approaches sup-
ported by machine learning techniques to detect different networking threats. This system
was inspired by the OpenWIPS-ng [4] project and papers like [5], but upon further inves-
tigation, it became apparent that they lacked sufficient functionalities we decided to fill
these in. IDS systems are engineered to detect and notify administrators of any potential
security risks to a wireless network. They can be used to identify unauthorized access
points (APs), recognize attempts to breach the network, and monitor traffic for malicious
behavior. Despite the numerous scientific publications on this technology, there are only a
limited number of tools that concentrate on wireless data link layer security, and most of
them have become unsupported. WIDS can be an efficient way to identify potential threats
in wireless networks, but it is crucial to regularly review and update them to ensure their
effectiveness against newly discovered threats. Therefore, an intelligent WIDS platform was
proposed and implemented to manage the performance correctly. The platform is beneficial
because while one attack may be easily detected through a recognizable signature, such as
an unusual frame, others may require more data, making it ideal for machine learning.

To fully implement the system, the following challenges were addressed:

1. Develop a module that can effectively monitor and analyze network frames. The
module is our own achievement presented originally in this study.

2. Enhance the processing capability of the module to support efficient data analysis.
The quality of the module is high since we are able to operate with more than 90%
efficiency. In particular, we achieved precision as well as recall scores as high as 92%
and accuracy levels up to 98%.

3. Research and implement detection for common Wi-Fi attacks.



Electronics 2023, 12, 2355 3 of 28

4. Create an effective machine learning module and overcome the challenge of collecting
and preparing relevant data for optimal performance. This aspect is a useful add-on
to the whole system.

The main research contributions of this paper are manifold:

• We conducted many research experiments on existing systems to detect new attacks;
• We proposed and implemented the attack detection methods implemented as rules;
• We investigated the effectiveness of our methods in various real-world environments

and optimized them to avoid false positives to ensure high efficiency;
• We proposed a new method for feature selection based on the three criteria: universal-

ity, independence, and connection to the attack;
• We evaluated the performance of five machine learning models and compared results

for precision, recall, and accuracy metrics;
• We proposed a unique approach that evaluated algorithms based on accuracy from

training and testing data and on specific datasets;
• We determined the most appropriate algorithm based on two datasets with Beacon

Flood and deauthentication attacks;
• We verified that the proposed system is efficient, assuring very good performance

metric results.

The structure of this paper is as follows. Section 2.1 provides a brief overview of
works related to intrusion detection in wireless networks, including studies on selected
attacks. Section 2.2 discusses various attacker techniques used in WLANs, categorizes
them, and provides a detailed description of the relevant attacks selected and the tools
used to carry out these attacks. Section 3 presents the features of a proposed WIDS and the
key elements that have been considered in its development. It briefly describes rule-based
detection methods and their implementations, referencing different approaches proposed in
the cited literature. Then, it focuses on the use of machine learning for attack classification,
including the description of various methods, the selected dataset, and its preparation for
supervised machine learning. In Section 4, we present the results of the tests conducted on
models trained using various methods. This includes details on the hardware and software
environment and the libraries utilized for building intrusion detection tools. Additionally,
the section highlights the metrics emphasized and the comparison between testing the
models on training data and real-world data. The entire contribution is critically discussed
in Section 5. Finally, Section 6 summarizes the work with the conclusions and describes
future work.

2. Background
2.1. Related Work

Intrusion Detection Systems (IDS) are widely used in the field of attack monitoring,
analysis, and detection and play a crucial role in the security infrastructure of wireless
networks. Moreover, the recently popular application of machine learning in anomaly
detection can greatly enhance their performance, especially in detecting wide-area network
spoofing attacks [6]. However, basing IDS only on machine-learning methods appeared to
be insufficient [7]. This is especially the case when they can detect only one type of attack.

IDS collects network traffic data and alerts the system of any possible unauthorized
intrusion attempts. These systems constantly monitor network flow and compare it to pre-
defined signatures or threat detection functions. Authors of [8] differentiate between the
three main types of detection systems: host-based, network-based, and hybrid. Depending
on IDS placement in the system, the system collects network traffic data and generates
alerts of any possible unauthorized intrusion attempts. The WPA2 encryption standard is
currently the most widely used security for wireless networks. Despite being available since
2006, new vulnerabilities associated with this standard continue to be discovered. The most
recent popular discoveries related to WPA2 include KRACK, discovered by Mathy Vanhoef
in 2017 [9] and the Kr00k vulnerability based on KRACK, discovered by researchers from
ESET in 2019 [10]. Both the attack and exploitation of the vulnerability involve the attacker
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gaining a man-in-the-middle position, intercepting and/or altering a frame with a changed
cryptographic key. Despite efforts by suppliers to enhance security, many devices remain
vulnerable to this type of attack due to users/companies and institutions being hesitant
to replace their hardware. These findings reveal significant gaps in the field of Wi-Fi
IDS systems, which our system addresses, since other IDS systems do not prioritize the
detection of such vulnerabilities.

Industry trends show that organizations of all sizes, from small businesses to large
corporations, are gradually transitioning from wired to wireless infrastructure to enhance
mobility and improve the quality of service delivery [11]. There are numerous papers
that outline various methods for detecting anomalies in wireless networks, some of which
utilize the machine learning algorithms [12,13] we base our research on in this work.
Interestingly, some research studies also involve the development of techniques that allows
for cleaning anomalies in traffic flow data [14]. The paper [15] presents an IDS comprised
of several modules: a data capture module, a packet analysis module, a filtering module,
and a suspicious packet detection module. The authors propose several methods for
detecting suspicious frames, the first being network anomaly detection. This is a technique
that identifies network events that deviate from a known, well-analyzed behavior. If a
set of behavioral parameters diverges from the established pattern and exceeds certain
threshold values, it is classified as an anomaly-based intrusion detection. Another proposed
method is abuse detection, which is critical as the system may produce a high number of
false alarms based solely on anomalies. This type of detection utilizes rules that can be
easily added, removed, or modified by the user, thereby enhancing the system’s flexibility
and scalability. The last module, the statistical module, proves useful for analysts who
need to collect data, such as the number of control frames, management frames, data
frames, control and broadcast frames, packet call speed, number of intercepted packets,
most common attack types, and their frequency of occurrence [6,15]. However, they do
not address machine-learning methods in their work. It is worth noting that statistical
analysis of data is an important research tool also in other research works, e.g., evaluation
of energy sources [16]. The authors of [17] introduced a semi-supervised neural network
solution known as a ‘ladder network’. The two-layer model (with 80 neurons in each
layer) showed better performance than traditional machine-learning methods. The results
demonstrated the network’s advantage in detecting flooding attacks while still maintaining
high accuracy in classifying normal network traffic. However, the ladder network had lower
efficacy in identifying ‘injection’ and ‘impersonation’ attacks, with an average decrease
of 10% compared to other neural networks. In paper [5], the authors present a solution
that combines rule-based and machine-learning methods for detecting security threats
in wireless networks. The proposed architecture leverages edge computing to achieve
a balance between high security and low latency. The system was designed to detect
four types of WLAN attacks: WEP secret cracking, WPA/WPA2 dictionary attack, DoS,
and KRACK. Using 630,000 frames containing attacks, the authors found that the accuracy
of both the rule-based and machine-learning methods was over 90% for each type of attack.
However, despite its promising results, the solution is not publicly available. Moreover,
there are still some more common types of attacks that need to be addressed. In [18], a
two-stage ML-based Wi-Fi Network Intrusion Detection System (WNIDS) is proposed to
enhance detection accuracy. An ML model was developed for each stage to classify the
network records into normal or one of the specific attack classes. The proposed system
achieves an accuracy of 99.42% for multi-class classification with a reduced set of features.
Unfortunately, in the proposed WNIDS, many flooding attack records in the test dataset
have been identified as normal records. This may affect the availability of the network in
the case of a flooding attack. The authors of [6] successfully designed the Deep-Feature
Extraction and Selection (D-FES) algorithm based on Artificial Neural Network (ANN)
classification, which achieved an impressive success rate of 99.91% in detecting spoofing
attacks. This is a significant improvement compared to previous methods, which had an
efficiency of only 22% on the AWID dataset [6]. In work [19], a deep learning algorithm



Electronics 2023, 12, 2355 5 of 28

was proposed to effectively detect anomalies and classify attacks. The authors used a
Stacked Auto-Encoder (SAE), which is a neural network composed of multiple layers
of auto-encoders, with the output of each layer serving as the input to the next layer.
The proposed frameworks consisted of two or three hidden layers, each learning different
features from the raw input. The first layer learned first-order features, the second learned
pattern-matching features from the first-order features, and the third learned features
by matching patterns from second-order features. Although some results are very good,
no architecture has achieved an accuracy of at least 60% for different configurations of
neural networks.

Currently, commonly used datasets for research in wireless network security are the
NSL-KDD dataset, the UNSW-NB15 dataset, the ADFA-LD dataset, the KDDCUP99 dataset,
and the AWID dataset. However, NSL-KDD and KDDCUP99, which were created over a
decade ago, are no longer used in recent research [20]. The popularity of the AWID dataset,
specifically the AWID3 [21], has increased in recent years. The AWID dataset categorizes
attacks into three types: impersonation, flooding, injection, and normal traffic. A total of six
classification methods were used in the study: CNN, Naïve Bayes, Random Forest, Random
Tree, J48, Laddernetowork+NSVM. The results showed that the Random Forest and J48
methods had the best performance for normal traffic, while the CNN method showed its
advantages for all other attacks [20]. Despite the excellent results, no information was
provided on the specific distribution of the classified data, and the features used were
not specified.

The analyzed papers indicate that there are numerous methods for creating a system
to detect attacks in IEEE 802.11 networks. Unfortunately, most open-source systems are no
longer being developed, and many of the latest types of attacks, such as Key reinstallation
attacks, are not detected by them. The use of machine learning in this field is highly
promising, as shown in the cited works. However, these scientific papers rarely demonstrate
the practical application of such models in real-world environments. Hence, the goal of this
work is to merge signature-based classification methods with machine learning to make
the best use of the resources of the log-analyzing machine. The developed tool should
continually be improved by incorporating new attack detection techniques.

2.2. Attacks on 5G Wi-Fi Infrastructures

To construct WIDS, the most prevalent and hazardous attacks were selected; we fo-
cused on detecting them. The effectiveness, impact, detection, and mitigation methods
of the listed attacks were thoroughly analyzed and evaluated. Based on the methods of
attack execution, their detection was developed and implemented. A general classification
of the attacks is presented below, with the description of the most critical ones highlighted.
The most important and popular attacks can be summarized in Table 1, which presents the
four most common types: Denial-of-Service (DoS), Man-in-The-Middle (MiTM), Reconnais-
sance and Information Gathering, and Keystream and Key Cracking. Some of the attacks’
acronyms are explained in more detail later on the next page.

Table 1. Attacks categorization by their purpose.

DoS MiTM
Reconnaissance and

Information
Gathering

Keystream and Key
Cracking

Jamming Rogue AP 1 War driving IV attack 2

deauthentication Evil Twin Packet sniffing WEP attacks

RTS/CTS flood 3 Karma-Manna Near field
communication WPA attacks

Beacon Flood Replay attacks WPS attacks
Reassociation KRACK 4

1 Access Point. 2 Initialization Vector attack. 3 Request to Send/Clear to Send flood. 4 Key Reinstallation Attack.
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IEEE 802.11 networks are less secure than wired networks and are vulnerable to attacks
by adversaries who aim to access data transmitted over the network. For instance, an open
Wi-Fi network is a network without a password, which means that the communication
between the Access Point (AP) and clients is not encrypted and can be easily monitored
by anyone, a behavior commonly known as a Man-in-the-Middle (MiTM) attack. Some
APs support MAC Address filtering, which allows only legitimate MAC addresses to
join the network. However, adversaries with packet-injection-enabled network cards
can craft packets with fake MAC addresses and bypass this security measure. There are
also password-protected networks, known as Pre-Shared Key (PSK) networks, which are
protected by the Wi-Fi Protected Access (WPA) protocol. If an attacker gains access to a PSK
network, they can monitor the packets and attempt to crack the password, although this
is a resource-intensive and time-consuming process. Tools such as Aircrack-ng [22] are
available to help crack Wi-Fi passwords. Both open Wi-Fi and password-protected networks
are vulnerable to certain attacks, which will be described below.

2.2.1. Denial-of-Service Attacks

• Jamming is a technique that creates interference in a local wireless network, resulting
in a Denial-of-Service (DoS) attack. In this scenario, users and devices cannot transmit
data because the access points are jammed. This mode of operation is obviously
illegal and involves the creation of interference within radio channels to prevent
communication across the local area network (LAN).

• Deauthentication: Denial of Service (DoS) is one of the most prevalent types of at-
tacks. Management and control frames are transmitted in plain text, making them
vulnerable to spoofing. Upon receiving a deauthentication frame, the client is no
longer authenticated and associated. Since the deauthentication frame is a manage-
ment type of frame, it is sent in plain text, and the AP cannot verify its authenticity.
This vulnerability allows an attacker to repeatedly send deauthentication frames to
disconnect the victim [23]. In [24], the authors listed three ways in which an attacker
can launch a deauthentication attack: spoofed AP to client frame, where the attacker
forges a frame that appears to be originating from the AP to the client; spoofed client
to AP frame, which is similar to the previous approach but with reversed source and
destination MAC addresses; and broadcast spoofed frame, where the attacker sets
the source MAC address as the AP MAC address and the destination as broadcast
(FF:FF:FF:FF:FF:FF). By using the last method, the attacker can disconnect all clients
associated with the Access Point.

• RTS/CTS flood: flooding attacks are also a type of Denial of Service (DoS) attack that
involve overwhelming a network with redundant and unnecessary data frames [25].
Management and control frames are used for communication and management be-
tween wireless devices. However, the former are not encrypted [26]. On the other
hand, control frames may be encrypted. The method involves utilizing the Request-to-
Send (RTS)/Clear-to-Send (CTS) mechanism and entails dispatching numerous CTS
frames while setting the duration to its maximum value. The outcome is that the STA
is made to await a non-existent transmission, thereby obstructing other clients’ access
to the medium [27].

• Beacon Flood: the technique entails transmitting several beacon frames containing
distinct SSIDs, which can result in confusion for end-users who may find it challenging
to connect to the intended network [28].

• Reassociation: is a type of wireless security exploit where an attacker intercepts and
modifies the communication between a client device and an Access Point (AP). In this
attack, the attacker tricks the client device into disassociating from its legitimate AP
and then reassociating with the attacker’s rogue AP instead. Once the client device
is connected to the attacker’s AP, the attacker can eavesdrop on the wireless traffic,
steal sensitive information, or launch other types of attacks. This type of attack can be
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carried out by exploiting weaknesses in the authentication and encryption protocols
used in Wi-Fi networks.

2.2.2. Man-in-the-Middle Attacks

• A rogue access point is an unauthorized access point that is set up within a network,
not known to the network administrator or any other user. This type of access point
can potentially compromise user privacy and security as it operates outside of the
network’s established security protocols.

• The Evil Twin is a type of attack where the attacker creates a rogue access point that
appears as a legitimate one. This access point typically has a stronger signal than
other available APs in the network, making it more appealing to users who may not
suspect its malicious intent. It is an inexpensive way to carry out an attack, as the
only requirement is a basic access point device. This type of attack is often carried out
on open Wi-Fi networks, as the attacker does not need to provide any passwords or
credentials. Evil Twin is a copy of a legitimate AP used by a hacker for intercepting
wireless communication. By combining this with other techniques, such as DNS
spoofing, the attacker can gain sensitive information, such as passwords or credit card
information, from unsuspecting users. Evil Twin APs are often positioned closer to the
victims or have stronger signals than legitimate APs. According to [29], most wireless
device operating systems will automatically connect to the AP with the strongest
Received Signal Strength Indication (RSSI) when given a choice between multiple APs
with the same SSID. To perform this attack, the attacker only needs to determine the
SSID of the network to be replicated. Then, using tools such as Airbase-ng (part of the
Aircrack toolset [22]) and a wireless adapter that supports master mode, the attacker
can start an Evil Twin AP. The level of legitimacy of the malicious network can be
increased depending on the hacker’s knowledge of the victim’s AP and their social
engineering skills.

• The Karma attack is a type of Evil Twin attack aimed at stealing victims’ confidential
information. It uses the Probe Request/Response subtype of Management frames
in IEEE 802.11. Devices have a list of trusted Wi-Fi network names (SSIDs), known
as the Preferred Network List (PNL), and the Karma attack leverages this. When a
mobile device sends a probe request, the attacker intercepts it and sends a crafted
probe response impersonating the requested SSID to trick the device into connecting
to the rogue AP. However, current Android and iOS devices no longer send direct
probe requests with the SSID name to the PNL. Instead, they only send broadcast
probe requests, making it difficult for the Karma attack to be successful. The security
standard has been upgraded, causing most devices to compare the received SSID
from a probe response with their up-to-date PNL list. A new type of attack called
Manna, has emerged as a new approach to conducting the Karma attack by bypass-
ing these security upgrades. Manna responds to broadcast probe requests from a
device with directed probe responses for the network. If a device is seen sending
direct probe responses for the same network, Manna sends a probe response to it.
Additionally, Manna sends probe responses to all clients across the network in a loud
mode, considering all mobile devices to have the same PNL.

• A replay attack is a type of man-in-the-middle attack where an adversary intercepts
and retransmits data. The attacker intercepts an authentication key and can then
impersonate the person whose key was intercepted.

• The Key Reinstallation Attack (KRACK): Today, most Wi-Fi networks are secured
using encryption mechanisms such as Wi-Fi Protected Access (WPA/WPA2/WPA3).
When a client wants to connect to a Wi-Fi network, it authenticates and associates with
the Access Point (AP) through a process called the “4-way handshake”. As the name
implies, this involves exchanging four messages between the supplicant (client) and
the authenticator (AP). The authentication is based on the Pairwise Master Key (PMK),
and a session key Pairwise Transient Key (PTK) is created. In [9], it was demonstrated
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that the 4-way handshake is susceptible to KRACK. To comprehend this attack, it is
necessary to examine the 4-way handshake process more closely. The client installs the
session key after receiving Message 3. However, due to potential frame loss during
transmission, if the AP does not receive a response after sending Message 3, it will
retransmit the message with a reset nonce. An attacker can exploit this by collecting
and replaying the retransmissions, which can result in nonce resets. By utilizing this
technique, the attacker can decrypt or forge packets transmitted during the session.

2.2.3. Reconnaissance and Information Gathering Attacks

• War driving refers to the act of searching for publicly accessible Wi-Fi networks. At-
tackers often use a moving vehicle and a mobile device equipped with war driving
software, such as Aircrack, along with GPS. This type of attack aims to locate unse-
cured Wi-Fi networks and steal personal user information. However, with the advent
of more secure WEP, WPA, WPA2, and WPA3 wireless networks, war driving has
become less common in recent years.

• Packet sniffing in wireless networks is a common threat due to the lack of encryption
for a large part of transmitted information. It is easy to capture and view all the
data over the wireless network, but it is crucial to remain undetected. The persons
performing packet sniffing must ensure that their device is not transmitting any
information to the network.

• The Near Field Communication (NFC) attack: the NFC attack is a type of wireless
security exploit where an attacker uses an NFC-enabled device to gain unauthorized
access to a Wi-Fi network. This type of attack works by tricking the victim into
touching their NFC-enabled device to an attacker’s device that is configured as an
NFC reader. Once the connection is established, the attacker can use the victim’s
device to gain access to the Wi-Fi network. NFC attacks can be prevented by disabling
NFC functionality on devices when it is not needed and by implementing secure Wi-Fi
authentication protocols such as WPA2-Enterprise.

2.2.4. Keystream and Key Cracking Attacks

• The Initialization Vector (IV) attack takes advantage of vulnerabilities in the WEP
protocol, a protocol that was once commonly exploited but is no longer supported on
wireless devices due to its unreliable nature. The 24-bit IV vector makes it susceptible
to attacks and easy to recover. The attack involves capturing packets with the IV in
plain text, and in a busy network, the IV will soon repeat. After collecting a large
number of packets, a statistical attack can be performed to determine the key, allowing
the attacker to read the encrypted information.

• WEP attacks: the Wired Equivalent Privacy (WEP) protocol, which is no longer
supported on wireless devices due to its proven insecurity, was once a popular target
of attacks. The attack on WEP involves capturing packets with the Initialization
Vector (IV) in plain text, which soon starts repeating in a busy network. After a
sufficient number of packets have been collected, a statistical attack can be conducted
to determine the encryption key. Once the key is obtained, the encrypted information
can be accessed.

• WPA attacks: the Wi-Fi Protected Access (WPA) protocol is similar to WEP, but with
a key that is unique or temporary for each message. This means that collecting
a large number of packets will not help in cracking the protocol. Only the four
handshake packets, sent each time a new device tries to connect to the wireless
network, contain information that can be used to determine the key. To crack the
password, the handshake must be captured, and a word list containing passwords
must be used.

• WPS attacks: the Wi-Fi Protected Setup (WPS) protocol was designed to simplify
connecting devices to a Wi-Fi network. To connect, a device must enter an 8-digit
PIN code. However, this method is easily exploitable as there are only 11,000 possible
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codes. The last digit of the PIN code is a checksum calculated from the first seven
digits, which limits the number of combinations to 10,000. The first 4 digits are verified
by the base station, while the next 3 digits provide another 1000 possible combinations.
In total, there are 11,000 possible PIN codes.

3. Design and Functioning of the Proposed WIDS

Here, we present the idea of the Wireless Intrusion Detection System (WIDS) promoted
in this paper.

3.1. System Design

When creating tools for network monitoring and anomaly detection, it is important to
consider the level of operation. In wired environments, intrusion detection and prevention
systems are typically placed at devices where data from various sources converge, such
as firewalls, routers, or access points. However, this is not the case in wireless networks,
as data transmitted through the air can be intercepted. This characteristic of wireless
networks makes them ready for wider use of WIDS. As illustrated in Figure 1, such a
tool can monitor traffic and detect anomalies across multiple WLANs without disrupting
their infrastructure.

Figure 1. Example wireless environment monitored by WIDS.

As outlined in Section 2.2, networks are susceptible to a variety of attacks today. Some
attacks share similarities, such as those in the Denial-of-Service group, while others are
more complex, for example, by exploiting specific and non-obvious protocol weaknesses.
Without a thorough understanding of each type of attack, it can be challenging to determine
the most effective means of detection in real-world networks. This study focuses on creating
a hybrid solution that combines rule-based and machine-learning detection. This approach
increases the chances of successfully identifying anomalies.
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Network protection systems must be easily scalable from the security viewpoint,
as new vulnerabilities are continuously being discovered with advancing technology.
With this in mind, the implementation of detections began by creating a class that holds all
common information, such as the detection result, array of suspicious frames, detection
lifecycle, and a wrapper that starts detection on another thread. This solution allows for
the development of new rules in a modular manner simply by writing new detection logic
based on the provided base class. The developed tool has implemented a multi-threading
feature—each detection in the ‘live’ mode works on a separate thread, which allows for
parallel analysis of frames. In addition, the buffer (a common table storing ‘frames’) stores
only the necessary information (Dot11, EAPOL fields—according to the operation of the
scapy library). The use of multi-threading also enhances performance by allowing different
methods to run concurrently without blocking the queue. The classification using machine
learning is based on pre-trained models, as described in Section 3.2.2 below.

To minimize false positives and conserve computational resources, a network architec-
ture data enrichment mechanism, referred to as ‘Access Point Info’, was implemented in
WIDS. When creating the WIDS project, there was a problem regarding false positives—for
example, unusual network configurations, often used by ISP for providing ‘Free Wi-Fi’
services. In real environments, some of these cases are well known; however, no work
has addressed this problem in data collection or network monitoring. In order to ensure
the best transparency of the system, it should be somehow described using ‘everyday’
behavior—which the mechanism described above is responsible for. This module is respon-
sible for storing information about the network status, such as the correlation between SSID,
BSSID, average antenna signal, and additional flags sent in Beacon frames by access points.

3.2. Detection of Attacks

Rule-based detection and machine learning detection are two complementary ap-
proaches to detecting wireless network attacks. Rule-based detection relies on predeter-
mined rules and patterns to identify specific types of attacks, while machine learning uses
statistical algorithms and models to learn patterns and detect anomalies.

By combining these two detection methods, wireless network security can be strength-
ened, as rule-based detection provides a solid foundation for identifying known threats,
while machine learning detection can provide early warning for new and emerging attacks.
Ultimately, the importance of rule-based detection lies in its role in supporting machine
learning detection and improving the overall security of wireless networks.

3.2.1. Rule-Based Detection

Rule-based detection is a fundamental approach to network security that plays a
critical role in defending against known threats. Creating a framework for identifying
already analyzed attacks allows for quick detection and response to well-known attacks,
reducing the risk of damage to the network. Here, we present the attack detection methods
implemented as rules. All codes are presented in Appendix A in the form of listings. To
assist with understanding the code examples provided, frequently used expressions are
described in Table A1 presented in Appendix B.

The presented codes present our original contribution to enable the implementation
of the detection based on general attack logic, block schemes, and pseudo codes collected
from various sources. The rules have been appropriately adjusted by conducting various
tests of attacks within the testing environment, as well as utilizing publicly available data
sets. When implementing the detection, the presumption was to react early; hence the
thresholds were set to be highly restrictive.

Deauthentication Attack

This type of attack is simple to execute; however, manual detection can be difficult
to implement. In several previous works that describe algorithms for detecting deauthen-
tication attacks [30,31], authors use fixed thresholds for the number of deauthentication
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frames as an indicator of an ongoing attack. Drawing from existing solutions and through
observations, the authors of this work developed a novel detection rule, which is based on
the number of deauthentication frames and the number of frames transmitted by the client,
as presented in Listing A1. The first step in detecting this type of attack is to create a list of
unique users in a specified time interval where the detection system is running. Next, two
counters are established: one for the number of frames sent by the client and another for the
number of deauthentication frames sent to the client. Then, the two counters are compared,
and if the number of deauthentication frames is greater than the number of frames sent by
the client plus a predefined threshold to eliminate false positives, an alarm can be triggered.
The threshold is necessary to account for small data sets where the communication between
the AP and the client may be minimal.

RTS/CTS Flood

This detection has a threshold that is triggered when the number of frames divided by
the time between two consecutive frames is greater than the threshold value. The detection
has been tested for both normal and malicious traffic and has been found to accurately
report anomalies. The first step is to determine if the frame is of type CTS or RTS. If so,
the CTS or RTS counter value is incremented, and the time value of the frame is recorded.
The threshold value has been set to 5. The procedures are presented in Listing A2. This
detection utilizes a threshold that is triggered when the ratio of the number of frames to the
time between two consecutive frames exceeds the specified threshold value. The detection
has been tested and found to be effective in reporting anomalies, both for normal and
malicious traffic.

Beacon Flood

Experiments and frame density measurements conducted in [32] are summarized in
Table 2. It shows the full set of Beacon frames that were collected in various locations.
Since the values are averaged, it is necessary to set a value that will not generate excessive
noise, as this would result in a high number of false positives and reduce the value of the
detections. However, the value should not be set too high, as this would result in missed
detections. This has been compared with results from our research environment to show
what value it generates. An additional test performed by the authors led to the threshold
being set at 55%. Thanks to this, we can safely set the threshold at a level that will not
generate false positives, and we will also be sure that in larger networks, local will still
be effective.

Table 2. Beacons frames density.

Small Office Cafeteria Shopping
Complex

Own
Environment

Attack 66.7% 65.2% 61.3% 75.5%
No attack 9% 5.6% 7.7% 43%

The procedure for detecting Beacon Flood is presented in Appendix A as Listing A3.

Other Class 3 Frame Attacks

During tests conducted with publicly available tools for wireless network penetration
testing, it was found that in most cases where deauthentication attacks are used, a specific
reason code can be seen in the spoofed frames. The reason code for deauthentication is 7,
which indicates that a class 3 frame was received from a non-associated station (refer to
Listing A4). Although this method of detection may result in some false-positive responses,
as the same frame may be seen when a client attempts to send data before association, tests
showed that this simple detection method could detect many attack techniques in their
early stages.
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Rogue Access Point

There are several methods for detecting fake access points (APs), with the most popular
and commercially used methods based on detecting signal strength. However, the method
described in this section, as presented by the authors in [33], is also widely used and
has been implemented in the WID tool (according to Listing A5). To detect a fake AP,
management frames with a subtype of 8 (Beacon) must be captured. The timestamp field
value in these frames is particularly important for this detection, as fake APs can send fake
beacons with randomly generated timestamps. This method collects Beacon frames and
the timestamp values into a dictionary, where each BSSID is a key, and the timestamps are
the values. After collecting this information, the timestamps are checked to see if they are
in ascending order. If there is any anomaly, the counter value is incremented, and if the
value exceeds the threshold, a detection is triggered. The threshold value can be set to 5
in low-traffic environments, while the authors of this paper recommend increasing the
threshold value in more heavily trafficked networks, such as corporate networks, to reduce
the number of false positives.

Evil Twin

As mentioned before, the objective of this attack is to impersonate a legitimate access
point. The ‘Access Point Info’ module (described further in Section 4.1) is utilized for detec-
tion. Two different methods were developed to detect evil access points. The first approach
compares the signal strength of access points with the same SSID, and the information
about the current environment (obtained from the ‘Access Point Info’ module) is used to
determine which one is the legitimate access point. The second approach triggers an alert if
the MAC address in the beacon frame does not match the MAC address/es for the same
SSID in the information provided by the ‘Access Point Info’ module. They are presented in
Listing A6. The algorithm processes a list of frames, and for each beacon frame, it checks if
an entry with the same SSID as extracted from the frame already exists in the ‘Access Point
Info’ module, which represents the normal environment. If a match is found, the antenna
signal is compared for the same SSID and BSSID. If the signal exceeds the threshold (20 dBm
in the provided example), an alarm is raised. If the BSSID is different, and it is new to the
tool, there is a high probability that the beacon frame originates from an Evil Twin.

Karma–Manna Attack

This detection rule is based on a mechanism referred to as DARMA, as proposed in
paper [32]. The detection implementation described in the paper consists of two stages:

• Detection: in the first step, the frames need to be divided into encrypted and non-
encrypted ones. To achieve this, the capability field, which has privacy properties, is
checked. This information is contained within Beacon frames, which are identified
by a frame subtype equal to 8. All non-encrypted frames are considered potentially
malicious, and their BSSIDs are recorded in the dictionary ‘no_enc_beacons’. Similarly,
all probe response frames are stored in the ‘probe_responselist’, which is created
in a similar manner, but instead of beacon frames, this time frames with a subtype
equal to 5 are considered. Listing A8 presents the related operation. Next, it is
necessary to check if there are any BSSIDs with multiple SSIDs. To do this, both lists
1. ‘no_enc_beacons’ and 2. ‘probe_responselist’ must be checked. If a BSSID appears
in both lists, the frame is added to BKL2. These dictionaries contain BSSID and SSID
values from frames that are suspected to be malicious, and on this basis, it is possible
to suspect that a Karma–Manna attack is being carried out.

• Verification: In the event that the live detection mode is utilized, there may be a
confirmation step. This step involves setting up a honeypot and sending forged probe
requests. If a fake access point responds to our request, it confirms that an active
Karma–Manna attack has been detected. The related code is shown in Listing A7.
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KRACK Attack

According to the [9], the key elements of executing this attack are the third message
of EAPOL retransmission and an attacker establishing a ‘man in the middle’ position by
creating a fake AP. This section will only focus on detecting the retransmission of message
3, as the detection of fake APs will be discussed in a separate point. The detection is
performed as presented in Listing A9. The primary aim of this detection is to identify pairs
of APs and clients that undergo a 4-way handshake and then wait for the retransmission of
message 3. According to the 802.11 standard [34] regarding EAPOL-KEY frames, the type
of message being sent during the handshake can be determined by examining 4 bytes of
the raw frame. When message 3 is detected, it should be verified if it has already been sent
in the same connection establishment attempt.

3.2.2. Machine Learning-Based Detection

Over the past few decades, advancements in computing power and storage capabili-
ties have driven numerous innovations in the field of artificial intelligence, including chess
engines, self-driving cars, and many other tools that enhance people’s daily lives. Machine
learning (ML) has also found its place in networks. A comprehensive overview of the dif-
ferent methods, categories, challenges, and use cases of ML in anomaly detection in rapidly
developing networks can be found in [35]. When examining IEEE 802.11 network data flow,
it can be fragmented into sets of frames, with each frame represented as a structure of data
with similar features. As a result, every IEEE 802.11 traffic can be represented as a set of
data, which can be used to train machine learning models.

Dataset Description

Our objective was to develop a system that is suitable for current operating envi-
ronments. To achieve this, the authors needed to find a dataset that was created using
recent technology and still relevant attacks on wireless devices. The most appropriate
dataset for this purpose was the University of the Aegean’s AWID3 dataset created in
2021 [21]. The data was collected in a physical lab that consisted of 16 different physical
devices and virtual machines running multiple operating systems. The dataset includes
19.3 GB of data, which can be accessed by requesting it. The data consists of multiple .csv
files, which are extracted frame data from .pcap files captured by Wireshark. The files are
organized into folders that represent the attacks used to create the dataset. Each folder
contains multiple .csv files, each of which contains 50 000 records categorized as ‘Normal’
or ‘< Attack_type >’.

Feature Selection

The selected dataset contains entries with 254 features, including 253 generic features
and a label. However, not all features are useful for model training. Some features, such
as source and destination addresses and SSIDs, are highly dependent on the environment,
while others do not provide useful information for identifying normal and attack traffic.
Based on the research reported in [13,36], sixteen features were selected that can distinguish
between normal and abnormal traffic.

When selecting features, three criteria were considered. Firstly, the features had to be
directly related to the properties of the 802.11 protocol. Secondly, the features should be
independent of each other, for example, time-related fields were not considered. Lastly,
the features should be directly related to the attack, rather than the network structure (such
as MAC addresses or SSIDs), and should theoretically indicate properties of the attack.

The selection of features in the dataset was based on the following criteria: universality,
independence, and connection to the attack. Universal fields directly relate to the properties
of IEEE 802.11 and do not reveal the network structure. Independent fields do not depend
on other frame fields, such as time-related fields. The remaining features are flags that,
when combined with other parameters, can aid in the classification of various types of
attacks. The use of such a reduced dataset helps to improve the training time of machine
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learning models. The selected features are described in Table 3, with the first seven being
universal fields for IEEE 802.11, and the rest serving as flags for attack classification.

Table 3. Features selected for learning.

No. Feature Description

1 frame.len Total frame length
2 radiotap.length Length of the radiotap data
3 radiotap.dbm_antsignal Antenna radio frequency signal power (in dBm)
4 radiotap.channel.freq Channel frequency in MHz
5 wlan.fc.type Frame type
6 wlan.fc.subtype Frame subtype

7 wlan.duration

Total duration of the aggregate in
microseconds—might be used as there might be

difference in distance between attacker or legitimate
station and AP

8 radiotap.present.tsft
Presence of Time Synchronization Function Timer in

radiotap, combined with frame.len might be used for
detecting impersonation

9 radiotap.channel.flags.cck
Complementary Code Keying flag—possible multiple

channel flooding or impersonation recognition

10 radiotap.channel.flags.ofdm
Orthogonal Frequency-Division Multiplexing flag,

indicator of attacks that use multiple channels

11 wlan.fc.ds
Distribution System flag value—might indicate

impersonation attack
12 wlan.fc.frag Previous frame is being sent in more fragments
13 wlan.fc.retry Retry frame, may indicate flooding attacks

14 wlan.fc.pwrmgt
Power management—in some cases might be used for

identification of attacker impersonating idle station

15 wlan.fc.moredata
More Data buffered—some rogue APs might have this

flag enabled

16 wlan.fc.protected
MSDU payload encryption—useful when detecting

impersonation and flooding type of attacks

Dataset Normalization

The analysis of the AWID3 dataset revealed a significant imbalance between normal
and attack traffic data. Such an imbalance would result in unreliable outcomes if left
unaddressed. For instance, if the training data ratio was 20:1 (normal to attack traffic),
the model would be overly trained to favor normal traffic. To mitigate this, frames were
selected from the dataset .pcaps in a roughly equal ratio. For example, if there were 19,738
Re(Assoc) attack frames, an equivalent number of Normal traffic frames was selected from
the same files. The number of frames for each type of attack varies, so it was necessary to
consider that those models might be biased towards attacks with more individual frame
appearances in the dataset.

Before selecting records for the final .csv file, any records where more than 30% of
the selected columns were empty were dropped. To prepare the data for training, missing
or ‘?’ entries were changed to the ‘NaN’ data type. Data normalization was then ap-
plied to several fields, including frame.len, radiotap.length, radiotap.dbm_antsignal,
wlan.duration, and radiotap.channel.freq, using min–max normalization.

The radiotap.present.tsft and wlan.fc.ds fields were transformed into categor-
ical data types, and all columns except for categorical ones were converted to floating-
point numbers.

Custom Datasets

Custom datasets for machine learning can be prepared by utilizing testing envi-
ronments (more specifically described in Section 4.1.1). This involves preparing attack
scenarios, tools used to perform attacks, setting up collectors, and collecting and processing
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the data. Two attacks—deauthentication and Beacon Flood were executed; in all, 4708
and 6513 frames have been collected, respectively. Frame gathering was performed using
the developed WIDS system, then the data underwent processing. They were processed
using the tshark tool to obtain a .csv file—16 fields were selected as in the case of the
AWID3 dataset. Using a personal environment for dataset preparation makes it possible to
test models on an additional data source not directly related to the source on which the
models were trained. By adopting custom datasets testing methods, it becomes possible to
demonstrate that the models have not been overfitted.

Selected Algorithms

The state-of-the-art in machine learning for anomaly detection in wireless networks
overviewed in Section 2.1 presents multiple approaches with high accuracy rates, often
exceeding 90%. However, it is challenging to determine the best method for our needs.
As a result, a decision was made to conduct tests to determine the best algorithm. Unlike
previous studies, the authors employed a unique approach that evaluated algorithms
based on accuracy from training and testing data on specific datasets. This approach
can help identify potential limitations of the algorithms that may not be apparent from
standard testing datasets. Custom datasets were used to test and validate the machine
learning models by providing a more realistic evaluation of the models’ performance.
The algorithm’s ability to handle different types of data and scenarios was proven by using
those tailored datasets.

• The Decision Tree is a commonly used algorithm in machine learning and is known
for its ease of implementation and understanding. As its name suggests, the algorithm
builds a tree-like structure to categorize data. The tree has a root node that represents
the most common features, while the leaf nodes represent the class labels. The process
of training the Decision Tree, also known as ‘growing a tree,‘ involves deciding which
features and conditions to use in order to make accurate class predictions. In this study,
Gini impurity was used as a measure of the quality of the split, and the minimum
number of samples required at a leaf node was set to 2.

• Gaussian Naïve Bayes classifiers are widely used in machine learning. As the name
suggests, this family of algorithms is based on Bayes’ theorem, which describes the
probability of an event occurring based on related conditions. The main advantage
of Naïve Bayes methods is their high scalability. The Gaussian Naïve Bayes classifier
assumes that the data for each class is evenly distributed.

• Random Forest is a widely used classification algorithm in machine learning. It is
used for solving both classification and regression problems and is a type of supervised
learning. Unlike the Decision Tree algorithm, which models the entire dataset, Random
Forest is constructed from multiple Decision Trees, each built on randomly selected
parameters. This approach provides a higher chance of avoiding overfitting compared
to using just a single Decision Tree.

• MultiLayer Perceptron (MLP): This is a classification algorithm based on an artificial
neural network (ANN). It has a layer-like structure, where a set of outputs is generated
based on a provided set of inputs, and there can be multiple hidden layers with a
chosen number of neurons. The training process of MLP involves forwarding the
data from the input layer to the output layer, then calculating the error between the
prediction and the actual class, propagating the error back, and adjusting the weights
for different features. This process is repeated multiple times, referred to as epochs.
In this work, the activation function used is ‘ReLU’, and the maximum number of
iterations is set to 200.

Although other ANN algorithms (e.g., convolutional neural networks, CNN) have
been reported to achieve impressive results, they were not employed in this research.
The main reason for their exclusion is the utilization of only one dataset (AWID3) during
the learning stage. CNNs typically require large amounts of training data to learn relevant
features accurately. Although AWID3 is a relatively large dataset, the distribution of
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individual attacks is not uniform. Although neural networks can be very efficient in
classification tasks, simpler models, including Gaussian Naïve Bayes classifier and Decision
Trees, can provide a better performance, which was the main focus of the WIDS project.

The scalability of the WIDS system is also a concern. Selected models are often faster
to train and run than neural networks. This can be an advantage when dealing with large
datasets, as it can reduce training time and computational resources.

Last but not least: an additional advantage of the models used is their
interpretability; with elements such as ‘feature importance’, it is easier to understand,
how classification decisions are made, correct errors, and understand the final classifica-
tion results.

4. Results

In this section, the testing environment, including the main hardware components, is
presented. The proposed WIDS project and software used to execute the attacks are also
briefly described. Next, the performance of analyzed machine learning models is shown.

A very important result is related to the accuracy of the rule-based threat detection
modules. Namely, we have achieved 100% effectiveness of their operation in the test
environment. Each of the attacks was performed 30 times, and each time the attack was
correctly detected. During 24 h of network operation, no false alarms related to detecting
any attacks were observed either.

4.1. Methods to Test Attacks
4.1.1. Testing Environment

In order to make the measurements as reliable as possible, lots of testing needs to
be performed. To avoid being restricted solely to information associated with commonly
accessible datasets, testing can take place in a real environment. By creating such a system,
it was possible to execute as well as intercept and analyze any attacks, additionally knowing
all network parameters, which enables even better detection tuning.

Setting up a testing environment can be time-consuming and difficult to reproduce.
To enhance time management efficiency, two similar environments were created to enable
asynchronous development and testing of detection modules. The development stack is
depicted in Figure 2.

Figure 2. Development setup schema.

The main hardware components include wireless cards that are used for monitoring
and conducting attacks. After researching various chipset and driver options, the decision
was made to use two models of cards manufactured by TP-Link: the TL-WN821N version 6
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and the TL-WN721N version 1. Both adapters connect via USB and operate on the 2.4 GHz
band. The TL-WN721N is used for frame collection as it supports Monitor Mode, which
allows monitoring of all wireless traffic. It uses the Atheros AR9002U chipset [37] and
can be fully utilized with the rtl8192eu [38] driver. The second adapter is used primarily
for testing by running attacks from different tools. The TL-WN821N v6 uses the Realtek
8192EU chipset [39] that is capable of packet injection, which was used to perform attacks.

To minimize the number of physical devices, the environment was set up by using
virtual machines. The virtualization manager software, Oracle VM VirtualBox Manager,
was used on a host machine running Windows 10. Two virtual machines were configured,
with the first running Parrot OS version 5.10, used for developing and running the WID
system and for data collection and manipulation tasks (e.g., running Wireshark or convert-
ing .pcap files to .csv). A USB bridging mechanism was used to connect the wireless USB
adapters to the virtual machines, allowing the VMs to see the Wi-Fi cards as if they were
physically connected. As previously mentioned, the wireless cards were connected to the
respective virtual machines: the TL-WN821N to the Ubuntu machine and the TL-WN721N
to the Parrot OS.

4.1.2. Software Development for WIDS

The source code for the WIDS project can be found in [40]. The intrusion detection
system for wireless networks must be fast and scalable to handle large amounts of data
analysis and future detections. The system was developed in Python 3, as it offers a
variety of libraries and frameworks for computer networking and artificial intelligence.
The main focus of the system is frame collection and processing, and the Scapy library [41]
is used to optimize performance. The system is designed as a standalone application and
features a graphical user interface created with the Kivy library [42]. Kivy is an open-source,
cross-platform framework that leverages Cython and OpenGL hardware acceleration for
optimal performance.

4.1.3. Software to Execute Attacks

To execute the Karma–Manna attack, the following tools are required: Aircrack-ng [22]
and hostapd-mana [43]. It is also important to verify if the network card supports ‘master
mode’, as this enables the use of the card as an access point (AP).

The Wi-Fi testing tool MDK4 [44] is utilized to carry out the attack. This tool supports
ten different attack modes, which can be used to simulate and demonstrate various types
of attacks.

4.2. Detection of Attacks with Machine Learning Models

In machine learning, various metrics are used to evaluate the performance of models.
Common metrics include accuracy, precision score, recall, F1-score, mean squared error
(MSE), and many others. The most widely used metric is accuracy, which is defined as the
ratio of correct predictions made by the model to the total number of predictions made.
Accuracy can be calculated using the formula:

TP + TN
TP + TN + FP + FN

, (1)

where TP stands for True Positive, TN for True Negative, FP for False Positive, and FN for
False Negative.

The initial evaluation compared the overall accuracy of different models. The results
are presented in Figure 3. As depicted, the best performing models are Decision Tree with
98.57% accuracy and Random Forest with a depth of 4, achieving 97.46% accuracy. Other
models achieved lower accuracy scores, with Gaussian Naïve Bayes scoring the lowest
at 61.9%.
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Figure 3. Different models accuracy on validation data.

To gain deeper insights into the results, confusion matrices were created for each
model. This representation of data enables us to determine how each model performs for
different types of attacks. In the confusion matrix, the rows represent the actual classes, and
the columns are the predictions made by the model. Ideally, the fields resulting from the
intersection between the true classes and predicted classes should be maximized, with the
other fields equal to zero. Figure 4 displays the confusion matrices (showing values of TP,
TN, FP, FN) for each of the trained models.

Another parameter used to evaluate the performance of machine learning models is
the Precision Score. Precision refers to the proportion of positive predictions made by the
model that are actually true. It can be calculated using the following formula:

TP
TP + FP

. (2)

Precision is often referred to as a measure of quality, but there is another metric that
pertains to the quantity—Recall. It is calculated as the number of true positive predictions
made by the model divided by the total number of actual positive examples in the dataset.
The formula for this metric is:

TP
TP + FN

. (3)

By combining precision and recall, a comprehensive understanding of the model’s perfor-
mance on a classification task can be obtained.

The results for each model and frame classification label are presented in Tables 4 and 5,
respectively.

Table 4. Precision score by model and attack types.

Decision Tree GNB Random
Forest (2)

Random
Forest (4) MLP

Reassoc 99.81% 88.08% 0% 100% 98.48%
Deauth 97.36% 38.36% 0% 92.61% 81.05%
Disas 92.67% 42.72% 0% 79.79% 49.73%

Evil Twin 99.93% 57.97% 99.99% 98.83% 97.10%
Kr00k 98.02% 68.62% 61.71% 97.36% 85.77%

KRACK 100% 95.26% 100% 100% 96.31%
Normal 99.96% 76.66% 95.56% 99.17% 96.31%

Rogue AP 100% 35.09% 0% 0% 86.23%
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As indicated in the tables, the values of interest are zero in the same fields in all
the tables. The formulas for the previously mentioned metrics reveal that this is due to
the absence of true positive classified frames, which are all zeros for the shown attacks
and models (as can be seen from the confusion matrices). Another notable observation is
the significant differences between the different metrics in the same fields. For instance,
the precision score for the Gaussian Naïve Bayes model for the deauthentication attack
is 38.36%, while its recall score for the same model and attack is 85.54%. This means that
out of all the frames labeled as deauthentication attacks, 85.54% were correctly classified,
but only 38.36% of all frames classified as ‘Deauth’ by the model actually belonged to the
attack frames.

Table 5. Recall score by model and attack types.

Decision Tree GNB Random Forest (2) Random Forest (4) MLP

Reassoc 99.81% 91.35% 0% 45.28% 91.17%
Deauth 96.99% 85.54% 0% 99.60% 99.89%
Disas 93.61% 58.13% 0% 89.89% 67.41%

Evil Twin 99.92% 90.60% 95.94% 99.55% 96.26%
Kr00k 97.71% 72.50% 100% 92.51% 73.82%

KRACK 100% 34.60% 85.58% 97.59% 96.23%
Normal 99.96% 43.90% 99.87% 99.86% 96.35%

Rogue AP 99.73% 100% 0% 0% 99.47%

Although high overall accuracy scores are impressive, it is important to consider the
effectiveness of each model, specifically in detecting different attacks when selecting the
best one. To facilitate this analysis process, accuracy has been categorized by attack and
model, and the results are displayed in Table 6.

Table 6. Accuracy by model and attack types.

Decision Tree GNB Random Forest (2) Random Forest (4) MLP

Reassoc 99.76% 91.36% 0% 90.93% 93.85%
Deauth 97.02% 85.53% 0% 99.87% 85.28%
Disas 93.65% 57.56% 0% 79.15% 85.03%

Evil Twin 99.92% 89.58% 95.92% 99.51% 95.69%
Kr00k 97.72% 72.51% 100% 99.79% 65.46%

KRACK 100% 33.26% 84.18% 99.99% 94.74%
Normal 99.97% 45.91% 97.60% 99.86% 97.81%

Rogue AP 99.74% 100% 0% 0% 94.18%

Weighted averages have been calculated using the following formula:

8

∑
i=1

frames[i]
total_frames

× accuracy[i] (4)

where i corresponds to one of the eight labels.
Values of the weighted accuracy for different models are presented in Table 7.

Table 7. Weighted accuracy by model.

Model Weighted Accuracy

Decision Tree 99.57%
GNB 61.88%

Random Forest (2) 97.44%
Random Forest (4) 81.07%

MLP 86.87%
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(a) Decision Tree (b) Gaussian Naïve Bayes classifier

(c) Random Forest (depth = 2) (d) Random Forest (depth = 4)

(e) MultiLayer Perceptron

Figure 4. Confusion matrices with results for various attack detectors.

5. Discussion

One significant issue that is commonly encountered in many publications is model
overfitting. This occurs when the algorithm has too many parameters relative to the size of
the dataset, leading to very high accuracy on the training data but poor performance on



Electronics 2023, 12, 2355 21 of 28

completely new data. This problem was taken into consideration during the preparation of
the models for this work.

The authors in [13] reported impressive results for various classification methods,
with an accuracy of 99.88% for the Decision Tree, 99.76% for the Random Forest, and 99.73%
for the MLP (among other models, though they are not relevant to this paper and all had
an average accuracy of over 99%). However, the above work did not include testing on
additional datasets, making it challenging to determine if the models are not overfitting.
On the other hand, in [20], the authors reported the following results: for the Naïve Bayes
model, there was 95.82% accuracy in classifying ‘Normal’ frames, 0% for the ‘Impersonation’
category, 72.97% for flooding attacks, and 1.69% accurately classified ‘Injection’ frames.
For the Random Forest model (with no specified depth given), the results were 99.99%,
6.43%, 49.65%, and 85.19%. Although it is not possible to compare these results directly with
those achieved in our work (since different datasets were used for training and validation,
and there is no information on the other parameters used for training), it is worth noting
that, despite an overall average accuracy, the Naïve Bayes method performs better than the
Random Forest.

To determine the most appropriate algorithm for real-world applications, we con-
ducted testing in a controlled environment using two datasets with Beacon Flood and
deauthentication attacks. Each model was evaluated, and the results were compared and
presented in Table 8.

Table 8. Results on custom prepared datasets. Detection ratios are given for two attack scenarios.
(a) Beacon Flood (Reassoc). (b) Deauth.

(a)

Method Reassoc + Normal
All FP Notes

Decision Tree 96.79% 3.21%
GNB 96.42% 3.58%

Random Forest (2) 0% 100% 0 Reassoc detected/rest classified as
Normal/KRACK/Kr00k

Random Forest (4) 0% 100% 0 Reassoc detected/rest classified as Normal/KRACK
MLP 0% 100% 0 Reassoc detected/rest classified as KRACK/Normal

(b)

Method Deauth + Normal
All FP Notes

Decision Tree 97.03% 2.97%
GNB 94.60% 5.40%

Random Forest (2) 0% 100% No single Deauth classification/almost all data classified
as Normal

Random Forest (4) 0.06% 99.94% Almost all data classified as KRACK
MLP 2.51% 97.49%

As indicated in the table, only the Decision Tree and Gaussian Naïve Bayes models
produced positive results on the test data prepared by the authors of this work. For the
Beacon Flood attack, the main distinguished classification was ‘Reassoc’, as both attacks
have similar characteristics (more details can be found in Section 3.2.1). The results for
the Random Forest with various parameters and the MultiLayer Perceptron were worse
than random classification. An interesting pattern was observed for these models—most
data were classified as the KRACK attack, even though the two attacks have different
specifications. For the deauthentication attack, the situation was similar, but a tendency to
classify as the KRACK attack was only observed for the Random Forest with a depth of 4,
and no significant patterns were noticed for the other poorly performing models.

Mitigation strategies for identified anomalies involve implementing various security
measures to prevent or minimize the impact of these attacks. In the case of wireless
networks, intercepting and blocking traffic is practically impossible; only the appropriate
architecture and configuration of the system could increase its security. For DoS attack types,
traffic shaping and rate limiting are suggested. To address MiTM attacks, it is advisable
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to verify the vulnerability status of the firmware installed on the devices being utilized.
Moreover, employing robust encryption algorithms plays a crucial role in safeguarding
the confidentiality of data. In isolated environments, access control measures assume
significance by permitting network connectivity only to authorized devices. It is important
to note that these are general mitigation strategies, and the specific actions required may
vary depending on the network infrastructure, devices, and technologies being used.

6. Conclusions

This paper encompasses the following topics: the idea of detecting threats in 5G
Wi-Fi networks, the available intrusion detection solutions, the most prevalent attacks,
and methods for detecting these attacks. Additionally, a review of the application of
machine learning in identifying anomalies in wireless networks, as well as the practical
utilization of these techniques in WIDS, was conducted. Finally, the gathered information
was utilized to develop comprehensive software for detecting both attacks and anomalies
in wireless networks. The unique feature of our system is that it combines packet analysis
modules, rules, and machine learning models to optimize its performance. The rule-based
detection provides a solid foundation for identifying known threats, while the incorporation
of machine learning detection allows for the early detection of new and emerging attacks.

We also conducted extensive research experiments on existing systems to uncover
novel attacks. As a result, we developed and implemented a set of attack detection methods
in the form of rules. These methods were thoroughly tested in diverse environments
to gauge their effectiveness and tuned. In addition, we put forth a novel approach to
feature selection, which adhered to three fundamental criteria. Firstly, we ensured that
the selected features were directly associated with the properties of the 802.11 protocol.
Secondly, we placed emphasis on selecting independent features, disregarding those with
time-related aspects. Lastly, we focused on features that directly pertained to the attack
itself rather than being linked to the network structure, such as MAC addresses or SSIDs.
This deliberate approach aimed to identify features that theoretically conveyed meaningful
properties of the attack under scrutiny. By applying these criteria, we ensured that our
feature selection process remained targeted, relevant, and aligned with the goals of our
research. We meticulously evaluated the performance of five different machine learning
models, comparing typical performance metrics. To further distinguish our work, we
introduced a unique methodology for assessing algorithms based on accuracy metrics
derived from both training and testing data, specifically tailored to certain datasets.

A testing and development environment was set up with the appropriate wireless
network cards for capturing and transmitting packets. The environment was established
for two objectives. Next, various attacks were categorized, and based on that, detection
modules were designed. We outlined the rule-based detection modules, while the second
section detailed the data preprocessing carried out for utilizing machine learning models.
Finally, the results were collected, and the performance of the models was compared across
various datasets. Issues with classifying frames from the environment created by the
authors and the one used in AWID3 were also identified for different methods.

After testing, the two best machine-learning methods were determined to be the
Decision Tree and the Gaussian Naïve Bayes classifier. Care was taken to avoid overfitting
the models, so the aim was not to achieve the highest possible metric scores. The Decision
Tree model achieved 98.57% accuracy on validation data from AWID3 and 96.79% and
97.03% accuracy on custom datasets containing Beacon Flood and deauthentication attacks,
respectively. The Gaussian Naïve Bayes method produced the following results: 61.90%
accuracy on validation data, 96.42% accuracy for the Beacon Flood attack, and 94.60%
accuracy for the deauthentication attack.

The objective of an effective intrusion detection system is to detect all potential attacks
while ensuring that attacks are not overlooked. In machine learning, these properties are
represented by true positives and false negatives, respectively. In this paper, precision and
recall scores of over 92% were achieved for each attack type. The methods were optimized
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for real-world environments, so it is challenging to compare these results with those of
other studies. Many publications on intrusion detection in 5G 802.11 networks present
impressive results on testing data; however, these models are often not tested on data from
environments that differ from those used for training.

All of the planned objectives have been successfully accomplished. However, some
limitations of the research should also be mentioned. So far, we have been unable to test
the functionality of our system in detecting attacks performed at the physical layer. We
plan to analyze the behavior of the system under various attacks of this type, e.g., when
the carrier sensing mechanism is disabled or when there are misbehaving users. However,
there is still room for improvement and further development of the proposed tool. In the
future, the authors plan to add more detection methods and update the system in case of
any new attacks. As more data are collected, the plan is to improve the machine learning
algorithms to make them more versatile. We would also like to apply reinforcement learning
algorithms in our system to deal with the changing and unpredictable behavior of the
attackers. Another objective is to create a service with multiple endpoints, enabling users
to install WIDS agents in their local networks and monitor wireless traffic, even remotely.
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The following abbreviations are used in this manuscript:

5G Fifth Generations systems
ANN Artificial Neural Network
AP Access Point
BSSID Basic Service Set Identifier
CNN Convolutional Neural Networks
CTS Clear-to-Send
DNS Domain Name System
DoS Denial of Service
D-FES Deep-Feature Extraction and Selection
GNB Gaussian Naïve Bayes (classifier)
IDS Intrusion Detection System
IoT Internet of Things
IV Initialization Vector
KRACK Key Reinstallation Attack
LAN Local Area Network
LPWAN Low-Power Wide Area Network
MAC Medium Access Control
MiTM Man-in-the-Middle
ML Machine Learning
MLP MultiLayer Perceptron
NFC Near Field Communication
PMK Pairwise Master Key
PNL Preferred Network List
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PSK Pre-Shared Key
PTK Pairwise Transient Key
RSSI Received Signal Strength Indication
RTS Request-to-Send
SAE Stacked Auto-Encoder
SSID Service Set IDentifier
WEP Wired Equivalent Privacy
WIDS Wireless Intrusion and Detection System
Wi-Fi Wireless Fidelity
WLAN Wireless Local Area Network
WNIDS Wi-Fi Network Intrusion Detection System
WPA Wi-Fi Protected Access
WPS Wi-Fi Protected Setup

Appendix A. Listings of Codes for Rule-Based Detection

Listing A1. Deauthentication attack detection code.

for frame in s e l f . frame_array : #
i f frame . type == 0 and frame . subtype == 1 2 : # add e a c h u n a u t h e n t i c a t e d c l i e n t t o a r r a y

i f frame . addr1 not in s e l f . unique_deauthed_cl ients : #
s e l f . unique_deauthed_cl ients . append ( frame . addr1 ) #

for c l i e n t _ a d d r e s s in s e l f . unique_deauthed_cl ients :
for i in range ( 0 , c e i l ( len ( s e l f . frame_array )/ chunk_size ) ) : #

deauth_frames_counter = 0 #
f rames_sent_by_c l i ent_counter = 0 #
s t a r t = i * chunk_size # d i v i d e f r a m e s i n t o chunks , compare de au th f r a m e s t o o t h e r s in one chunk
end = 0 #
i f i * chunk_size+chunk_size > len ( s e l f . frame_array ) : #

end = len ( s e l f . frame_array ) #
e lse :

end = i * chunk_size+chunk_size
for frame in s e l f . frame_array [ i * 1 0 0 : end ] :

t r y :
i f frame . type == 0 and frame . subtype == 12 and frame . addr1 == c l i e n t _ a d d r e s s :

deauth_frames_counter += 1
e l i f frame . addr2 == c l i e n t _ a d d r e s s :

f rames_sent_by_c l i ent_counter += 1
except Exception as e :

pass # some c o n t r o l f r a m e s do not have t h e s e n d e r
i f deauth_frames_counter > frames_sent_by_c l i ent_counter and deauth_frames_counter >2 and f rames_sent_by_c l ient_counter >2:
# v a l u e s be low 2 may be f a l s e p o s i t i v e s

for frame in s e l f . frame_array :
i f frame . type == 0 and frame . subtype == 12 and frame . addr1 == c l i e n t _ a d d r e s s :

s e l f . d e t e c t i o n _ r e s u l t = True
s e l f . suspected_frames_array . append ( frame )

Listing A2. RTS/CTS flood detection code.

for frame in s e l f . packet_array :
i f frame . type == 1 and frame . subtype == 1 2 :

ctsCNT += 1
stamp = frame . time
x1 = stamp
t i m e _ d i f f = x1 − x0
x0 = x1
i f ctsCNT/ t i m e _ d i f f > THRESH:

print ( " Detected CTS Flood a t t a c k . \n" )
print ( ctsCNT/ t i m e _ d i f f )
s e l f . d e t e c t i o n _ r e s u l t = True
s e l f . suspected_packets_array . append ( frame )

e lse :
print ( " Not detec ted " )
print ( ctsCNT/ t i m e _ d i f f )
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Listing A3. Beacon flood detection code.

for frame in s e l f . packet_array :
i f frame . type == 0 and frame . subtype == 8 :

s s i d = frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ )
bss id = frame . addr2
stamp = frame [ Dot11Beacon ] . timestamp # s t r ( p . g e t l a y e r ( Dot11 ) . t imes tamp )
i f bss id not in s s i d D i c t :

s s i d D i c t [ bss id ] = [ ]
ssidCnt [ bss id ]=0

e l i f ( i n t ( stamp ) < i n t ( s s i d D i c t [ bss id ] [ len ( s s i d D i c t [ bss id ] ) − 1 ] ) ) :
ss idCnt [ bss id ]= ssidCnt [ bss id ]+1
i f ( ss idCnt [ bss id ] > THRESH ) :

print ( ‘ ‘ [ * ] − Detected fakeAP for : ’ ’+ s s i d )
s e l f . d e t e c t i o n _ r e s u l t = True
s e l f . suspected_packets_array . append ( frame )

Listing A4. Other class 3 frame attacks detection code.

for frame in s e l f . frame_array :
i f frame . type == 0 and frame . subtype == 1 2 : # Deauth f rame

i f frame [ Dot11Deauth ] . reason == 7 : # c l a s s 3 f rame r e c e i v e d from n o n a s s o c i a t e d STA
s e l f . d e t e c t i o n _ r e s u l t = True
s e l f . suspected_frames_array . append ( frame )

Listing A5. Rogue Access Point attack detection code.

for frame in s e l f . packet_array :
i f frame . type == 0 and frame . subtype == 8 :

s s i d = frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ )
bss id = frame . addr2
stamp = frame [ Dot11Beacon ] . timestamp
i f bss id not in s s i d D i c t :

s s i d D i c t [ bss id ] = [ ]
s s i d D i c t [ bss id ] . append ( stamp )
ssidCnt [ bss id ]=0

e lse :
s s i d D i c t [ bss id ] . append ( stamp )

i f ( i n t ( stamp ) < i n t ( s s i d D i c t [ bss id ] [ len ( s s i d D i c t [ bss id ] ) − 1 ] ) ) :
ss idCnt [ bss id ]= ssidCnt [ bss id ]+1
print ( ‘ ‘ This i s working ’ ’ , ss idCnt )
i f ( ss idCnt [ bss id ] > THRESH ) :

print ( ‘ ‘ [ * ] − Detected fakeAP i s : ’ ’+bss id )

Listing A6. Evil Twin detection code.

for frame in s e l f . frame_array :
i f frame . type == 0 and frame . subtype == 8 :

i f frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) in s e l f . ap_info . ap_names :
i f frame . addr2 in s e l f . ap_info . a p _ i n f o _ l i s t [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] :
# same mac a d d r e s s , d i f f e r e n t s i g n a l s t r e n g t h +/− 20 dBm

o r i g i n a l _ s i g n a l _ s t r e n g t h = i n t ( s e l f . ap_info . a p _ i n f o _ l i s t [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] [ frame . addr2 ] [ 0 ] )
i f not o r i g i n a l _ s i g n a l _ s t r e n g t h − 20 <= i n t ( frame [ RadioTap ] . dBm_AntSignal ) <= o r i g i n a l _ s i g n a l _ s t r e n g t h + 2 0 :

print ( ‘ ‘ P o s s i b l e e v i l twin a t t a c k for SSID : ‘ ‘+ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) + ’ ’ , MAC: ’ ’ + s t r ( frame . addr2 ) )
print ( ‘ ‘ o r i g i n a l i n f o : ‘ ‘ + s t r ( s e l f . ap_info . a p _ i n f o _ l i s t [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] [ frame . addr2 ] ) )
print ( ‘ ‘ p o s s i b l e e v i l twin : ‘ ‘ + ’ ’ , ‘ ‘ . j o i n ( [ s t r ( frame [ RadioTap ] . dBm_AntSignal ) ,
s t r ( frame [ RadioTap ] . ChannelFrequency ) , s t r ( frame [ RadioTap ] . ChannelFlags ) ] ) )
s e l f . d e t e c t i o n _ r e s u l t = True
s e l f . suspected_frames_array . append ( frame )

e lse :
# d i f f e r e n t mac a d d r e s s

print ( ‘ ‘ P o s s i b l e e v i l twin a t t a c k for SSID : ’ ’+ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) )
print ( ‘ ‘ o r i g i n a l i n f o : ’ ’ + s t r ( s e l f . ap_info . a p _ i n f o _ l i s t [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] ) )
print ( ‘ ‘ p o s s i b l e e v i l twin : ’ ’ + ‘ ‘ , ’ ’ . j o i n ( [ s t r ( frame . addr2 ) , s t r ( frame [ RadioTap ] . dBm_AntSignal ) ,
s t r ( frame [ RadioTap ] . ChannelFrequency ) , s t r ( frame [ RadioTap ] . ChannelFlags ) ] ) )
s e l f . d e t e c t i o n _ r e s u l t = True
s e l f . suspected_frames_array . append ( frame )
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Listing A7. Karma–Manna Attack verification code.

def detection_BKL4 ( s e l f ) :
s s i d = ‘ ‘ random1234 ’ ’
packet = RadioTap ( ) / Dot11 ( type =0 , subtype =4 , addr1 = ‘ ‘ f f : f f : f f : f f : f f : f f ’ ’ , addr2 = ‘ ‘ 0 0 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5 ’ ’ ,
addr3 = ‘ ‘ f f : f f : f f : f f : f f : f f ’ ’ )/ Dot11Elt ( ID = ‘ ‘ SSID ’ ’ , i n f o = ‘ ‘ ’ ’ )
response = s r ( packet )
i f response . type == 0 and response . type == 5 :

i f response . s s i d == s s i d :
BKL4 . append ( frame ( BSSID ) )

Listing A8. Karma–Manna Attack detection code.

for frame in s e l f . packet_array :
i f frame . type == 0 and frame . subtype == 8 :

i f frame [ Dot11Beacon ] . cap . privacy == True :
i f frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) not in s e l f . enc_beacons :

s e l f . enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] = [ ]
s e l f . enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] . append ( frame . addr2 )

e lse :
i f frame . addr2 not in s e l f . enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] :

s e l f . enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] . append ( frame . addr2 )
e l i f frame [ Dot11Beacon ] . cap . privacy == Fa lse :

i f frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) not in s e l f . no_enc_beacons :
s e l f . no_enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] = [ ]
s e l f . no_enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] . append ( frame . addr2 )

e lse :
i f frame . addr2 not in s e l f . no_enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] :

s e l f . no_enc_beacons [ frame . i n f o . decode ( ‘ ‘ utf −8 ’ ’ ) ] . append ( frame . addr2 )

Listing A9. KRACK attack detection code.

for frame in s e l f . frame_array :
i f frame . type == 2 and frame . subtype == 8 : # QoS Data , c o n t a i n s EAPOL

t r y :
i f s t r ( frame [EAPOL ] . type ) == ‘ ‘3 ’ ’ : # EAPOL key

i f b i n a s c i i . h e x l i f y ( bytes ( frame [Raw ] ) ) [ 2 : 6 ] == b ’ 13 ca ’ : # message 3 , Key ACK s e t , Key MIC s e t ,
Encrypted Key Data s e t )

i f s t r ( frame . addr2 ) + ‘ ‘ _ ’ ’ + s t r ( frame . addr1 ) not in s e l f . message_3_sent_pairs :
s e l f . message_3_sent_pairs . append ( s t r ( frame . addr2 ) + ‘ ‘ _ ’ ’ + s t r ( frame . addr1 ) )

e lse :
s e l f . suspected_frames_array . append ( frame )
s e l f . d e t e c t i o n _ r e s u l t = True

e l i f b i n a s c i i . h e x l i f y ( bytes ( frame [Raw ] ) ) [ 2 : 6 ] == b ’ 010a ’ : # message 2 ,
4 way handshake i n i t i a t e d again , c l e a r t a b l e data

i f s t r ( frame . addr2 ) + ‘ ‘ _ ’ ’ + s t r ( frame . addr1 ) in s e l f . message_3_sent_pairs :
s e l f . message_3_sent_pairs . remove ( s t r ( frame . addr2 ) + ‘ ‘ _ ’ ’ + s t r ( frame . addr1 ) )

Appendix B. Table with Common Code Expressions

Table A1. Common code expressions.

Expression Description

self.frame_array Array of frames provided for object detection
self.suspected_frames_array Array with frames which may indicate attack

self.detection_result Flag that indicates if an attack was detected

self.ap_info Object of ‘Access Point Info’ module described in
Section 3.1
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