
Citation: Wu, S.; Xue, J.; Wang, Y.;

Kong, Z. Black-Box Evasion Attack

Method Based on Confidence Score

of Benign Samples. Electronics 2023,

12, 2346. https://doi.org/10.3390/

electronics12112346

Academic Editor: Aryya

Gangopadhyay

Received: 7 April 2023

Revised: 12 May 2023

Accepted: 15 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Black-Box Evasion Attack Method Based on Confidence Score
of Benign Samples
Shaohan Wu , Jingfeng Xue, Yong Wang * and Zixiao Kong

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
3120201083@bit.edu.cn (S.W.); xuejf@bit.edu.cn (J.X.); 3120185534@bit.edu.cn (Z.K.)
* Correspondence: wangyong@bit.edu.cn

Abstract: Recently, malware detection models based on deep learning have gradually replaced
manual analysis as the first line of defense for anti-malware systems. However, it has been shown
that these models are vulnerable to a specific class of inputs called adversarial examples. It is possible
to evade the detection model by adding some carefully crafted tiny perturbations to the malicious
samples without changing the sample functions. Most of the adversarial example generation methods
ignore the information contained in the detection results of benign samples from detection models.
Our method extracts sequence fragments called benign payload from benign samples based on
detection results and uses an RNN generative model to learn benign features embedded in these
sequences. Then, we use the end of the original malicious sample as input to generate an adversarial
perturbation that reduces the malicious probability of the sample and append it to the end of the
sample to generate an adversarial sample. According to different adversarial scenarios, we propose
two different generation strategies, which are the one-time generation method and the iterative
generation method. Under different query times and append scale constraints, the maximum evasion
success rate can reach 90.8%.

Keywords: adversarial examples; evasion attack; malware detection; artificial intelligence security

1. Introduction

Deep learning has shown great potential in several fields. In recent years, with the
continuous deepening of its research, deep learning models have been introduced in many
fields, and have achieved quite good results. However, it has been shown that deep
learning models can be attacked by a specific class of inputs called adversarial examples [1].
Adversarial examples first appeared in the field of image classification. It is generated
by adding some small perturbations to the original samples, which can deceive deep
learning models and make them misclassified. With the development of research, the
existence of adversarial examples has also been found in other fields. At present, the
research on adversarial attack and defense has become a domain task, jointly promoting
the development of deep learning models.

In the field of malware detection, traditional manual analysis methods require a lot of
time and professional domain knowledge, which is difficult to cope with the ever-growing
malware and a large number of variants. Additionally, deep learning—especially end-to-
end deep learning models have excellent performance in the face of these problems. The
most typical one is a convolutional neural network model called Malconv [2]. This model
is a malware detection model for PE files jointly proposed by the Laboratory of Physical
Sciences (LPS) and NVIDIA. It takes the first 2 M bytes of PE samples as input and has
become one of the better detection models recognized in the field.

It is more difficult to generate adversarial examples in the malware detection adversar-
ial field because it is necessary to ensure that the functions of the samples are not affected
when adding adversarial perturbations and that the adversarial examples whose original

Electronics 2023, 12, 2346. https://doi.org/10.3390/electronics12112346 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112346
https://doi.org/10.3390/electronics12112346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0009-6428-8545
https://orcid.org/0000-0002-1572-068X
https://orcid.org/0000-0002-5596-3782
https://doi.org/10.3390/electronics12112346
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112346?type=check_update&version=1

Electronics 2023, 12, 2346 2 of 17

functions are affected are meaningless. Therefore, the most commonly used method of
adding perturbation is to append several bytes at the end of the sample, which can ensure
the structural integrity of the PE file and minimize the probability that the function of
the sample will be affected. Currently, many effective adversarial attack methods have
been proposed based on this strategy, but most of them ignore the information contained
in the feedback of the detection model to benign samples. Our method starts with the
confidence score of a benign sample and extracts sequence fragments called benign payload
from the benign sample. These sequence fragments will be used as training data for our
RNN generation model after processing, helping the RNN generation model learn how to
generate sequences that reduce the confidence score of the detection model. Finally, we use
the end-byte sequence of the original malicious sample as an input to the RNN generation
model to generate adversarial perturbations and append them to the end of the malicious
sample, thereby generating adversarial examples.

Our study shows that it is possible to successfully craft adversarial examples that
evade detection models with only some model feedback on benign examples. Furthermore,
our method is not designed to help intruders evade detection models but to potentially help
detection model researchers improve the robustness of models against adversarial attacks.
At present, some methods have been proposed to improve the defense performance of
detection models in the presence of adversarial examples, and all these methods require a
large number of adversarial examples. We compare our method with several other methods,
and the results show that our method has certain advantages in both evasion performance
and perturbation scale.

2. Background and Related Work
2.1. Malware Detection Method Based on Machine Learning

Malware detection is gradually shifting from traditional rule-based methods to machine-
learning-based and deep learning methods, which are heavily introduced to improve the
detection capabilities of models. In this paper, we mainly focus on PE files [3] for the Win-
dows platform. These methods can be divided into three categories, depending on how they
process the input. The first category is image-based methods, which treat bytes as pixels,
convert the entire software sample into a color or grayscale image, and apply image classifi-
cation methods for detection. Nataraj et al. [4] first adopted this idea to convert software
samples into grayscale images and used the K-nearest neighbor method to classify using the
texture features of the image. Since then, more excellent image classification models have
been introduced based on this idea, including VGGNet [5], ResNet [6], Inception-V3 [7], etc.
The second category is disassembly-based methods. Such methods usually disassemble
software samples first, then extract features such as control flow graph and function call
graph from the assembly code, and finally use related methods of graph classification to
detect and classify [8–11]. Some people also directly extract features from the disassembled
assembly opcode sequence for detection [12,13]. The third category is to use raw binary byte
sequences directly. Jain et al. [14] directly extract n-gram features from byte sequences and
use traditional machine learning methods for detection. Raff et al. [15] proposed a detection
model that only selects a few bytes of the header of the PE file as input, which can use less
domain knowledge to achieve better results. Raff et al. [2] also proposed the first end-to-end
shallow CNN model that allows almost the entire malware byte sequence (first 2 M bytes)
as input, called Malconv. It can achieve 94.0% accuracy and 98.1% AUC after training on
a dataset including 2 million PE files, so we choose this model as the target model for our
adversarial attack.

2.2. Adversarial Attack

Adversarial attacks (also known as evasion attacks) are a popular research topic
recently, and the goal of this task is to generate effective adversarial examples. For a certain
sample x that the model can detect correctly, add an imperceptible small perturbation η to
it to obtain the perturbed sample x̃, if x̃ can successfully evade the detection model, then x̃

Electronics 2023, 12, 2346 3 of 17

is an effective adversarial sample. According to the different information mastered by the
attacker, the types of attacks can be simply divided into white-box attacks and black-box
attacks. In a white-box attack, the attacker can obtain information, such as the model
structure, parameters, training set, etc.; in a black-box attack, the attacker can only obtain
the classification results of some samples by the model. Early research mainly focused on
the field of image classification. Szegedy et al. [1] first proposed the concept of adversarial
examples in 2014 and proved the existence of adversarial examples. They construct an
adversarial perturbation based on the gradient information when the model classifies a
certain sample, so that the classification result moves in the wrong direction as much as
possible, thereby generating an adversarial sample. Subsequently, Goodfellow et al. [16]
proposed the famous FGSM algorithm, which maximizes the prediction error of the model
while ensuring that the input l0 norm remains unchanged after the perturbation, and
can find adversarial examples with low-performance overhead. In the field of black-box
attacks, the intuitive idea is to transform unknown black-box attack problems into known
white-box attacks. Papernot et al. [17] introduced this idea. They collect the prediction
output of the target model for some samples and use these input and output to train a
surrogate model, and then use the method of white-box attack on the surrogate model to
generate adversarial examples. Xu et al. [18] introduced the idea of a genetic algorithm, they
generate random perturbation samples and then make the samples evolve continuously
based on the confidence scores of the model on these samples, and finally generate effective
adversarial examples. Su et al. [19] adopted similar ideas to implement adversarial attacks
that only change a few or even a single pixel.

In the field of malware detection, many methods have also been proposed to generate
adversarial examples. Kreuk et al. [20] first migrated the FGSM method to the field of
adversarial malware. They mapped discrete bytes into a continuous space to solve the prob-
lem that the gradient of the objective function cannot be obtained and introduced domain
knowledge to ensure that the function of the adversarial sample remains unchanged. Kolos-
njaji et al. [21] and Demetrio et al. [22] also proposed gradient-based white-box methods,
where they added perturbations to the tail and head of PE files, respectively. Hu et al. [23]
proposed a GAN-based black-box attack method where they trained a GAN with a sur-
rogate model to indirectly generate adversarial examples that minimize the confidence
score predicted by the detection model. Rosenberg et al. [24] focused on attacking malware
classification models based on API calls. They still used alternative models plus white-box
attacks to implement black-box attacks and proved the transferability of these attacks on
different models. In order not to rely on the surrogate model and achieve a true black-box
attack, genetic algorithms are introduced to solve this problem [25,26]. They use genetic
algorithms to optimize random perturbations until the perturbed samples successfully
evade the detector. Demetrio et al. [27] made further optimizations based on this idea. The
perturbation they generated came from benign samples, and hyperparameters that control
the scale of perturbation and the number of queries were introduced into the loss function.
Another widely studied strategy is reinforcement learning [28–32]. This strategy is feasible
when generating a small number of samples, but it is difficult to solve the problem of
generating effective adversarial examples in large numbers. Park et al. [33] worked on
attacking image-based malware classification models. They convert malware samples
into images and employ FGSM or C&W methods to generate standard adversarial sample
images, and then use dynamic programming algorithm to generate adversarial examples
closest to standard samples. Ebrahimi et al. [34] proposed a black-box attack method based
on the RNN model. They train the RNN model to learn the semantic features of benign
samples, then generate adversarial perturbations with malicious samples as input and
append them to the end to imitate benign samples, thereby evading the detection model.
Chen et al. [35] proposed two methods for CNN-based detection models in white-box and
black-box cases, respectively. In the white box case, the saliency vector is generated by
the Grad-CAM method to divide the benign and malignant regions in the file, and the
benign features are appended to the end of the malicious sample. In the case of a black

Electronics 2023, 12, 2346 4 of 17

box, the method of optimizing random perturbation is first used to attack, the successful
attack trajectory is recorded, and the contribution of each data block to the success of the
attack is calculated, which is used as a guide for subsequent attacks. After collating these
studies, we find that most black-box attacks focus on the detection model’s feedback on
malicious samples, whether hard or soft labels, but ignore the confidence score feedback of
the detection model on benign samples. Our method is able to collect this information and
extract the features of benign samples contained in it, to train our RNN generation model,
which will play a crucial role in subsequent adversarial attacks.

2.3. Generative RNN Model

Recurrent Neural Networks are a class of neural networks specialized for processing
sequential data. Its basic structure is similar to that of a normal neural network, but at
each moment t, a single node accepts a hidden state ht affected by the previous moment
in addition to the input xt at the current moment and generates an output from it. These
characteristics of RNN mean that it can record the historical information of the input, so it
is especially suitable for data processing with sequential nature, including natural language
processing [36], speech recognition, video analysis, etc. Considering the similarity between
software data sequences and text sequences, the model can also be used in malware-
related domains. There have been studies that have demonstrated the feasibility of using
RNN models in the malware domain, whether for detection, classification, or adversarial
attack [34,37–40]. The target model of our adversarial attack, Malconv, takes byte sequences
as input, so we directly build the RNN model at the byte level. To control the scale of
the input and output, we introduce the idea of a seq2seq model [41] with encoding and
decoding layers between the input and output.

3. Proposed Method

The overall processing flow of our method is shown in Figure 1. Similar to other
malware adversarial attack methods, we first introduce our threat model, followed by the
benign payload we defined, and then the architecture design of the RNN model. Finally,
based on the trained RNN model, according to the number of times the detection model is
queried, we propose two different adversarial example generation methods, the one-time
generation method, and the iterative generation method.

3.1. Threat Model

Our method focuses on the information obtained from the confidence scores of benign
samples, and we focus on how to generate adversarial examples in batches with little
impact on the original samples. The following is our threat model:

• Adversary’s Goal: Generating batches of adversarial examples that can evade a deep
learning-based malware detection model (the Malconv model in this paper), making
the perturbation scale as small as possible under the premise of successful evasion.

• Adversary’s Knowledge: The adversary cannot know the structure and parameters
of the malware detection model, nor can it know the model’s data set, training hyper-
parameters, and other information, but it can obtain the confidence score feedback
of some models for samples. Furthermore, in the one-time generation method, the
adversary does not need to query the detection model, but in the iterative generation
method, the adversary needs to conduct several confidence score queries to optimize
adversarial perturbations.

• Adversary’s Capabilities: Appending adversarial perturbations to the end of malware
without changing sample functionality.

Electronics 2023, 12, 2346 5 of 17
Electronics 2023, 12, x FOR PEER REVIEW 5 of 18

(a)

(b)

Figure 1. The overall processing flow chart of our method. (a) Flow of RNN generation model train-
ing; (b) flow of two adversarial example generation methods.

3.2. Benign Payload Extraction
Before introducing the definition of benign payload, we first illustrate our observa-

tions and thoughts on the deep learning-based end-to-end malware detection model and
its adversarial examples. According to previous research on deep neural networks [1], the
mapping from input space to output is discontinuous due to the use of a large number of
nonlinear functions in neural networks. It is this discontinuity that leads to small pertur-
bations that can change the results predicted by the model. We conducted experiments
and observations on the Malconv model. The Malconv model can accept input of any
length up to 2 M bytes. Therefore, we consider taking the first n bytes of the sample as
input and observe the change trend of the confidence score of the Malconv model when n
increases from small to large with a certain step size. Note that since the confidence score
finally output by Malconv comes through the sigmoid layer, the sigmoid layer is sensitive
to values near 0 but not to values at both ends, so we observe the original confidence score
before the sigmoid layer. We found that there is indeed a sudden change in the confidence
score with a small change in the value of n, as shown in Figure 2. These mutations may
serve as an opening to attack the Malconv model. Our goal is to train an RNN model that
generates perturbation sequences that reduce the confidence score of the Malconv model,
and it is the sequence of bytes after the mutation point that makes the confidence score of
the Malconv model significantly lower. From the effect point of view, this sequence is the
key factor for the Malconv model to predict that the entire sample is benign, that is, the
benign payload. Its detailed definition is as follows:

Figure 1. The overall processing flow chart of our method. (a) Flow of RNN generation model
training; (b) flow of two adversarial example generation methods.

3.2. Benign Payload Extraction

Before introducing the definition of benign payload, we first illustrate our observations
and thoughts on the deep learning-based end-to-end malware detection model and its
adversarial examples. According to previous research on deep neural networks [1], the
mapping from input space to output is discontinuous due to the use of a large number of
nonlinear functions in neural networks. It is this discontinuity that leads to small pertur-
bations that can change the results predicted by the model. We conducted experiments
and observations on the Malconv model. The Malconv model can accept input of any
length up to 2 M bytes. Therefore, we consider taking the first n bytes of the sample as
input and observe the change trend of the confidence score of the Malconv model when n
increases from small to large with a certain step size. Note that since the confidence score
finally output by Malconv comes through the sigmoid layer, the sigmoid layer is sensitive
to values near 0 but not to values at both ends, so we observe the original confidence score
before the sigmoid layer. We found that there is indeed a sudden change in the confidence
score with a small change in the value of n, as shown in Figure 2. These mutations may
serve as an opening to attack the Malconv model. Our goal is to train an RNN model that
generates perturbation sequences that reduce the confidence score of the Malconv model,
and it is the sequence of bytes after the mutation point that makes the confidence score of
the Malconv model significantly lower. From the effect point of view, this sequence is the
key factor for the Malconv model to predict that the entire sample is benign, that is, the
benign payload. Its detailed definition is as follows:

Electronics 2023, 12, 2346 6 of 17

Let the target detection model be F, and we mainly focus on its original confidence
score, which is the output of the model before passing through the sigmoid layer. If the
output is less than 0, the model predicts it as a benign sample, and the smaller the output,
the higher the probability that the model thinks it is a benign sample, and vice versa. As
shown in Figure 3, select a split point c in the entire benign sample to obtain sequence a of
arbitrary length and sequence b of fixed length. If the difference between F(a) and F(a + b)
is greater than a certain threshold ε, the sequence b appended to sequence a is considered
to be a benign payload that reduces its confidence score. We also record the difference by
which the benign payload reduces the confidence score of the sample.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18

Let the target detection model be 𝐹, and we mainly focus on its original confidence
score, which is the output of the model before passing through the sigmoid layer. If the
output is less than 0, the model predicts it as a benign sample, and the smaller the output,
the higher the probability that the model thinks it is a benign sample, and vice versa. As
shown in Figure 3, select a split point c in the entire benign sample to obtain sequence a
of arbitrary length and sequence b of fixed length. If the difference between 𝐹(𝑎) and 𝐹(𝑎 + 𝑏) is greater than a certain threshold 𝜀, the sequence b appended to sequence a is
considered to be a benign payload that reduces its confidence score. We also record the
difference by which the benign payload reduces the confidence score of the sample.

Figure 2. Two typical examples of sudden changes (in blue circle) in sample confidence scores for
Malconv models.

Figure 3. Extract training data from sequences of benign samples.

In order for the RNN model to learn how to generate perturbed sequences that de-
grade the model’s confidence score, we take the benign payload and a fixed-length se-
quence before the benign payload as a training data sample of the RNN model and take
several training data samples from several benign samples as the training set of the RNN
model.

3.3. RNN Generation Model
The RNN model is especially suitable for dealing with sequence problems because

the sequence is continuous, and the processing of the input of a certain node must not
only use the information of the current node, but also combine the information of the

Figure 2. Two typical examples of sudden changes (in blue circle) in sample confidence scores for
Malconv models.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18

Let the target detection model be 𝐹, and we mainly focus on its original confidence
score, which is the output of the model before passing through the sigmoid layer. If the
output is less than 0, the model predicts it as a benign sample, and the smaller the output,
the higher the probability that the model thinks it is a benign sample, and vice versa. As
shown in Figure 3, select a split point c in the entire benign sample to obtain sequence a
of arbitrary length and sequence b of fixed length. If the difference between 𝐹(𝑎) and 𝐹(𝑎 + 𝑏) is greater than a certain threshold 𝜀, the sequence b appended to sequence a is
considered to be a benign payload that reduces its confidence score. We also record the
difference by which the benign payload reduces the confidence score of the sample.

Figure 2. Two typical examples of sudden changes (in blue circle) in sample confidence scores for
Malconv models.

Figure 3. Extract training data from sequences of benign samples.

In order for the RNN model to learn how to generate perturbed sequences that de-
grade the model’s confidence score, we take the benign payload and a fixed-length se-
quence before the benign payload as a training data sample of the RNN model and take
several training data samples from several benign samples as the training set of the RNN
model.

3.3. RNN Generation Model
The RNN model is especially suitable for dealing with sequence problems because

the sequence is continuous, and the processing of the input of a certain node must not
only use the information of the current node, but also combine the information of the

Figure 3. Extract training data from sequences of benign samples.

In order for the RNN model to learn how to generate perturbed sequences that degrade
the model’s confidence score, we take the benign payload and a fixed-length sequence
before the benign payload as a training data sample of the RNN model and take several
training data samples from several benign samples as the training set of the RNN model.

3.3. RNN Generation Model

The RNN model is especially suitable for dealing with sequence problems because the
sequence is continuous, and the processing of the input of a certain node must not only
use the information of the current node, but also combine the information of the previous
sequence. In RNN, the information of the previous sequence is saved by the hidden state.
Specifically, the hidden state ht at each moment is given by the following formula:

ht = f (Wht−1 + Uxt) (1)

Electronics 2023, 12, 2346 7 of 17

where ht−1 is the hidden state at the previous moment, W is the parameter matrix related
to it, xt is the input at the current moment, U is the parameter matrix related to the input,
and f is the nonlinear activation function. That is, the hidden state is affected by the hidden
state of the previous moment and the current input, and the output ŷt at each moment is
given by the following formula:

ŷt = f (Vht) (2)

where ht is the hidden state at the current moment, V is the parameter matrix associated
with it, and f is the nonlinear activation function. In the above formula, W, U, and V are
all parameters that the model needs to learn.

Similar to MalRNN [34], we also adopt the GRU model to learn the knowledge of
benign payload. GRU is an improved RNN model proposed by Chung et al. [42], which
can alleviate the problem of gradient disappearance when processing long sequences. Our
model accomplishes the task of generating perturbed byte sequences from malware byte
sequences, so we employ an encoder-decoder type of architecture. The encoder first embeds
the original byte sequence into a low-dimensional feature vector, then the GRU also predicts
the next possible output in the form of a feature vector, and finally, the decoder converts
it into the corresponding byte sequence output. During model learning, the optimizer
optimizes the following loss:

loss = ∑
t
L(ŷt, yt) (3)

where ŷt is the predicted value of the model at position t, yt is the real value of the sample
sequence at position t, and L represents the function for calculating cross-entropy.

After the training is completed, the model accepts the input of a certain length of
byte sequence at the end of the malicious sample and gives an adversarial perturbation
sequence that may reduce the confidence score of the detection model. Our model adopts a
random sampling strategy according to the probability distribution when giving prediction
results, so the model may give different results for the same input.

During the experiment, we found that the perturbation sequence that can successfully
reduce the confidence score of the model usually needs to have a certain complexity, that
is, a large entropy value. Due to our random sampling strategy, the model occasionally
outputs sequences with low entropy, such as sequences with a large number of repetitions
of the same pattern or sequences with a large proportion of zero bytes. In order to further
improve the evasion rate, we will calculate the entropy value of the perturbed sequence
generated by the model, and the sequence with an entropy value lower than a certain
threshold will be discarded and regenerated.

3.4. Adversarial Example Generation Method

After the RNN generation model training is completed, the generation model can
be used to make adversarial examples. We have two different strategies for generating
adversarial examples, the one-time generation method and the iterative generation method.

3.4.1. One-Time Generation Method

One-time generation methods do not need to query the detection model for feedback
at generation time. Our generative RNN model employs an encoder-decoder architec-
ture with variable-length inputs and outputs. Therefore, this method directly takes the
byte sequence of a certain length at the end of the original malicious sample to be gen-
erated as an adversarial sample as the input of the RNN generation model, and directly
adds the generated perturbation sequence of a certain length to the end of the original
malicious sample.

This method is a straightforward use of a trained RNN generative model. It does
not need to query the detection model when generating it, nor does it have any other
complicated operations, which is especially suitable for occasions where there are not many
restrictions on the perturbation scale and a large number of adversarial examples need to
be produced.

Electronics 2023, 12, 2346 8 of 17

We test the method’s performance under different perturbation scales, respectively,
and the results are detailed in Section 4.

3.4.2. Iterative Generation Method

In more practical scenarios, the perturbation scale of adversarial examples is usually
limited. To reduce the perturbation scale, we propose the iterative generation method. The
iterative generation method adopts the strategy of generating small perturbations multiple
times. When generating adversarial examples, instead of generating large-scale adversarial
perturbations at one time, a small-scale (such as 1 KB) perturbation is generated each time,
and the guidance of the confidence score of the current perturbed sample is introduced
during the generation process. If a single perturbation makes the model’s confidence score
of the perturbed sample drop beyond a certain threshold, the perturbation is retained;
otherwise, the perturbation is discarded and regenerated. At the same time, due to the
small scale of a single perturbation, there may be several consecutive failed perturbations.
Our approach to this is to define an upper limit for the number of consecutive failures. If
the number of consecutive failures reaches the upper limit, the last failure will be retained,
and the generation will continue on this basis. The pseudocode of the iterative generation
method is shown in Algorithm 1.

Algorithm 1: Iterative Generation Method

x: original malicious sample
x̃: adversarial example
s: confidence score of the detection model for current sample
Q: maximum number of queries
P: maximum perturbation size
S: confidence score difference threshold for a single perturbation
F: maximum number of consecutive failures
countptb: current perturbation count
countqry: current query count
count f ail : current consecutive failure count
linput: input length for RNN model
loutput: output length for RNN model

Input: x, P, Q, S, F
Output: x̃
1 s← Model.predict(x)
2 countptb ← 0, countqry ← 0, count f ail ← 0
3 x̃ ← x
4 while countptb ∗ loutput < P and countqry < Q do
5 if s < 0
6 return x̃
7 end if
8 ptb← RNN.generate

(
x̃
[
−linput :

])
9 if (s−Model.predict(x.append(ptb))) > S or count f ail ≥ F then
10 x̃ ← x̃.append(ptb)
11 s← Model.predict(x̃)
12 count f ail ← 0
13 countptb ← countptb + 1
14 else
15 count f ail ← count f ail + 1
16 end if
17 countqry ← countqry + 1
18 end while
19 return False

Electronics 2023, 12, 2346 9 of 17

Generally speaking, when generating adversarial examples, the number of queries and
the perturbation scale are mutually restrictive. On the premise of ensuring the successful
generation of adversarial examples, limiting the number of queries will increase the scale
of the perturbation, and limiting the scale of the perturbation requires more queries. Our
approach allows users to flexibly define upper bounds on the perturbation scale and the
number of queries and generate adversarial examples that successfully evade the detection
model as much as possible while meeting these upper bounds. We have evaluated the
performance of our method under a variety of different constraints, and the experimental
results are detailed in Section 4.

4. Experiments Evaluation
4.1. Dataset

Our dataset contains both malware samples and benign software samples. The mal-
ware samples are a total of 6171 malicious PE files collected from VirusShare [43] websites
in recent years. Benign samples are about 6000 benign PE files extracted from Windows
10 system files and commercial software from dozens of different software companies.
Considering that the maximum input length of the Malconv model is 2 MB, we eliminated
all files whose size exceeds 1.95 MB to avoid perturbed adversarial examples exceeding
the maximum input length of Malconv. These excluded files accounted for a very small
percentage of all files.

4.2. Detection Model Evaluation

We choose the Malconv model [2] as the target detection model we want to attack.
The Malconv model is currently one of the most successful end-to-end malware detection
models based on deep learning. Many adversarial attack methods use this model as the
target detection model to attack. We reproduced the model using the Pytorch [44] library
with a maximum input sequence length of 2,000,000, a 1D convolution filter size of 500,
and a stride of 500. The data set is divided into training set, validation set, and test set
according to 6:1:1. We conducted four experiments under different dataset partitions, with
an average accuracy of 93.1% and an average AUC of 97.7%, similar to the results described
in the paper.

4.3. Benign Payload Extraction and RNN Generation Model Training

Extracting the benign payload requires the help of the trained Malconv model. Our
Malconv model can directly output its raw confidence score for a sample (that is, the score
before passing through the sigmoid layer). A score less than 0 indicates benign, and greater
than 0 indicates malicious, and the greater the absolute value, the higher the probability.
We extract benign payloads on all benign samples with confidence scores less than −8.0.
The size of the benign payload is fixed at 1 KB, and the entropy value of the sequence is
first calculated before being sent to the detection model query. A sequence with too small
entropy value will be considered to carry too little information to affect the prediction of
the Malconv model and the query will be abandoned. If a benign payload is successfully
found, it and its previous 1 KB sequence will be saved as the training data for our RNN
generation model. We successfully extracted 2000 such sequences from the validation and
training sets of the Malconv model.

The RNN generation model is trained on these training data sets, and its input and
output sizes are fixed at 1 KB. After training, the RNN generation model will be used to
generate perturbation sequences.

4.4. Evasion Performance Evaluation

Similar to other adversarial attack methods, we also use the evasion rate as the main
indicator to evaluate the effect of our method. The evasion rate is the percentage of adver-
sarial examples that successfully evade the detection model for all adversarial examples.

Electronics 2023, 12, 2346 10 of 17

In order to ensure the invariance of the function of the adversarial examples, we will
put the original malicious samples and the generated adversarial examples in the sandbox
for behavioral analysis and comparison, and the samples that cannot run or whose behavior
changes will be marked as failed to generate.

We randomly selected 500 malicious samples from the malicious samples that did not
participate in Malconv training and were correctly classified by the Malconv model as the
original malicious samples to evaluate the performance of our method. The average size of
these samples is 282.3 KB.

4.4.1. One-Time Generation Method

The one-time generation method can generate the adversarial perturbation to be
appended at one time. This method only uses the RNN generation model trained by
the benign payload before and does not need to obtain any confidence scores during the
generation process. This method takes several bytes at the end of the malicious sample as
the input of the RNN generation model and appends the generated fixed-size perturbation
bytes to the end of the original malicious sample, in order to try to make an adversarial
example that evades the Malconv detection model.

We conduct experiments with perturbation sizes of 0.5 KB, 1 KB, 2 KB, 5 KB, 10 KB, and
20 KB, and record the evasion rate as well as the average confidence score of the generated
adversarial examples on the detection model (these confidence scores are not disclosed to
the generative model, they are only used for result analysis). The experimental results are
shown in Table 1 and Figure 4.

Table 1. Results of the one-time generation method at different perturbation sizes.

Perturbation Size/KB 0 0.5 1 2 5 10 20

Evasion Rate / 1.0% 3.8% 13.8% 35.4% 54.2% 66.8%

Mean Confidence Score 7.09 6.87 6.17 4.81 2.00 −0.29 −1.99
Electronics 2023, 12, x FOR PEER REVIEW 11 of 18

Figure 4. Evasion rate and average confidence score as a function of append size (KB) using the one-
time generation method.

It can be seen from the figure that the evasion rate increases with the increase of the
appended size, and the average confidence score decreases accordingly. The rising or fall-
ing trends of the two are basically the same, and they are gradually slowing down. This
shows that as the appended size grows, the perturbation per KB is less effective. When
the appended size reaches the maximum value of 20 KB set in our experiment, 66.8% of
the adversarial examples successfully evade the target detection model, which can pose a
certain threat to the target detection model as a black-box method.

4.4.2. Iterative Generation Method
The iterative generation method adopts the strategy of generating small perturba-

tions multiple times. In our experiments, we use the RNN generative model to generate
an adversarial perturbation with a fixed size of 1 KB each time and attach this perturbation
to malicious samples. Then, we query the confidence score of the Malconv model for the
current malicious sample and decide whether to keep this adversarial perturbation ac-
cording to the difference between the confidence scores before and after adding this per-
turbation. Here, we set the threshold of the confidence score difference as 0.2, i.e., only
adversarial perturbations that successfully reduce the confidence score by more than 0.2
will be retained. In addition, we made some restrictions in the experiment. The upper limit
of the number of times to query the confidence score of the Malconv model is set to 50,
and the upper limit of the total size of the adversarial perturbation is set to 20 KB. Our
iterative generation method consumes the number of queries to optimize each adversarial
perturbation until an adversarial example that can evade the detection model is success-
fully generated. If the number of queries or the size of the perturbation reaches the upper
limit before then, the generation fails.

Under these conditions, 454 adversarial examples were successfully generated, and
the evasion rate reached 90.8%. We counted the distribution of the number of queries and
perturbation sizes required to successfully generate adversarial examples, as shown in
Figure 5.

Figure 4. Evasion rate and average confidence score as a function of append size (KB) using the
one-time generation method.

It can be seen from the figure that the evasion rate increases with the increase of the
appended size, and the average confidence score decreases accordingly. The rising or
falling trends of the two are basically the same, and they are gradually slowing down. This
shows that as the appended size grows, the perturbation per KB is less effective. When

Electronics 2023, 12, 2346 11 of 17

the appended size reaches the maximum value of 20 KB set in our experiment, 66.8% of
the adversarial examples successfully evade the target detection model, which can pose a
certain threat to the target detection model as a black-box method.

4.4.2. Iterative Generation Method

The iterative generation method adopts the strategy of generating small perturbations
multiple times. In our experiments, we use the RNN generative model to generate an
adversarial perturbation with a fixed size of 1 KB each time and attach this perturbation
to malicious samples. Then, we query the confidence score of the Malconv model for
the current malicious sample and decide whether to keep this adversarial perturbation
according to the difference between the confidence scores before and after adding this
perturbation. Here, we set the threshold of the confidence score difference as 0.2, i.e., only
adversarial perturbations that successfully reduce the confidence score by more than 0.2
will be retained. In addition, we made some restrictions in the experiment. The upper limit
of the number of times to query the confidence score of the Malconv model is set to 50,
and the upper limit of the total size of the adversarial perturbation is set to 20 KB. Our
iterative generation method consumes the number of queries to optimize each adversarial
perturbation until an adversarial example that can evade the detection model is successfully
generated. If the number of queries or the size of the perturbation reaches the upper limit
before then, the generation fails.

Under these conditions, 454 adversarial examples were successfully generated, and
the evasion rate reached 90.8%. We counted the distribution of the number of queries
and perturbation sizes required to successfully generate adversarial examples, as shown
in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

(a) (b)

(c)

Figure 5. The distribution of conditions required to successfully generate adversarial examples. (a)
The distribution of query times; (b) The distribution of perturbation sizes (KB); (c) The distribution
of perturbation sizes (relative ratio).

It can be seen that the number of queries is mostly distributed within 1–20 times. The
append size is mostly concentrated in 1–10 KB, and the peak value is around 3 KB. To
reduce the influence of the size of the malicious sample itself on the perturbation scale,
we also counted the relative ratio (%) of the perturbation scale and the malicious sample
itself. It can be seen that the vast majority of perturbations only account for less than 10%
of the original malicious samples, and those with an append size percentage of less than
5% account for more than 60% of all samples.

According to our statistics, among all the samples that successfully generate adver-
sarial examples, the average number of queries is 13.87, the average size of the perturba-
tion is 5541 bytes, and the average ratio of the perturbation size to the original sample size
is 6.16%.

Since the evasion rate is affected by two factors, the number of queries and the ap-
pended size, we also counted and studied how the evasion rate is affected by these two
factors, as shown in Figures 6 and 7.

Figure 5. The distribution of conditions required to successfully generate adversarial examples.
(a) The distribution of query times; (b) The distribution of perturbation sizes (KB); (c) The distribution
of perturbation sizes (relative ratio).

Electronics 2023, 12, 2346 12 of 17

It can be seen that the number of queries is mostly distributed within 1–20 times. The
append size is mostly concentrated in 1–10 KB, and the peak value is around 3 KB. To
reduce the influence of the size of the malicious sample itself on the perturbation scale,
we also counted the relative ratio (%) of the perturbation scale and the malicious sample
itself. It can be seen that the vast majority of perturbations only account for less than 10%
of the original malicious samples, and those with an append size percentage of less than
5% account for more than 60% of all samples.

According to our statistics, among all the samples that successfully generate adversar-
ial examples, the average number of queries is 13.87, the average size of the perturbation
is 5541 bytes, and the average ratio of the perturbation size to the original sample size
is 6.16%.

Since the evasion rate is affected by two factors, the number of queries and the
appended size, we also counted and studied how the evasion rate is affected by these two
factors, as shown in Figures 6 and 7.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18

(a) (b)

Figure 6. (a) Evasion rates under different append sizes (KB) and query times; (b) Evasion rates
under different append percent (%) and query times.

(a) (b)

(c) (d)

Figure 7. (a) Changes of evasion rate with query times under different append sizes (KB); (b)
Changes of evasion rate with query times under different append percent (%); (c) Changes of eva-
sion rate with append size (KB) under different query times; (d) Changes of evasion rate with ap-
pend percent (%) under different query times.

Figure 6. (a) Evasion rates under different append sizes (KB) and query times; (b) Evasion rates
under different append percent (%) and query times.

From the comprehensive analysis and comparison of Figures 6 and 7, it can be seen
that both the number of queries and the appended size have a significant marginal effect
on the evasion rate. That is to say, with the improvement of these two abilities, the effect
on the increase of evasion rate is getting weaker and weaker. Roughly speaking, when
the number of queries reaches 30, increasing the number of queries has little effect on
improving the evasion rate. Similarly, for the appended size, the improvement of the
evasion rate is significantly weakened by adding the appended size after reaching 10 KB
or 10% of the original sample size. In addition, the number of queries and the appended
size will also interact with each other on the evasion rate results. Due to the settings of our
method, each iteration of the query will generate at most 1 KB of adversarial perturbation.
When the upper limit of the number of queries is much smaller than the upper limit of
the perturbation size (KB), the generated adversarial perturbation will not reach the upper
limit of the perturbation size, that is, the full ability of appending perturbation will not be
exerted, and vice versa. Therefore, according to the experimental data and our experience,
when the number of queries is about 3–4 times of the appended size (KB), better results can
be obtained under the current conditions. Moreover, when the two increase simultaneously,
the effect of increasing the evasion rate is more obvious, and the effect of improving a
certain ability alone is limited.

Electronics 2023, 12, 2346 13 of 17

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18

(a) (b)

Figure 6. (a) Evasion rates under different append sizes (KB) and query times; (b) Evasion rates
under different append percent (%) and query times.

(a) (b)

(c) (d)

Figure 7. (a) Changes of evasion rate with query times under different append sizes (KB); (b)
Changes of evasion rate with query times under different append percent (%); (c) Changes of eva-
sion rate with append size (KB) under different query times; (d) Changes of evasion rate with ap-
pend percent (%) under different query times.

Figure 7. (a) Changes of evasion rate with query times under different append sizes (KB); (b) Changes
of evasion rate with query times under different append percent (%); (c) Changes of evasion rate with
append size (KB) under different query times; (d) Changes of evasion rate with append percent (%)
under different query times.

In conclusion, our iterative generation method can achieve a 90.8% evasion rate under
the maximum capacity condition we set (20 KB perturbation, 50 queries). Even if the ability
is reduced by about half (10 KB perturbation, 20 queries), the evasion rate of 70.6% can still
be achieved. Although each query needs to obtain the confidence score result given by the
detection model, compared with the one-time generation method, the iterative method can
more accurately find out the adversarial perturbation and can obtain a better evasion rate
result at the lowest possible cost.

4.4.3. Comparison with Other Methods

We also compared it with other attack methods that employ the append strategies. We
choose two white-box methods and two black-box methods to compare with our method.

• Benign Features Append (BFA): It is a white box method proposed by Chen et al. [35],
which introduces the Grad-CAM method proposed by Selvaraju et al. [45] to generate
a saliency vector for the sample. A saliency vector, which contains features of a series
of data blocks in an input binary file, can roughly show the benign and malicious
regions of the file. Based on the saliency vector, they continuously select data blocks
with benign features as perturbations to append to the end of the sample until the
detection model is successfully evaded.

Electronics 2023, 12, 2346 14 of 17

• Enhanced BFA: It is an improved version of the BFA method. This method [35] uses
the important benign feature data blocks obtained from the BFA method as the initial
perturbation of the FGSM method, which can more efficiently and quickly attract the
attention of the model to obtain the backpropagation gradient. Compared with BFA
method, it can significantly improve the success rate of evasion.

• Random Append: It is a relatively simple black-box adversarial method, which ap-
pends randomly generated perturbation bytes at the end of the sample to try to evade
the detection model.

• Experience Based Method: It is a black box method proposed by Chen et al. [35].
This method first divides the benign sample into several data blocks and randomly
appends the data blocks to the end of the malicious sample until the detection model
is successfully evaded. Then, these attacks are repeated, and the contribution of
each data block is calculated based on the trajectory of the successful attack. This
contribution information replaces the saliency vector in the BFA method, and the
subsequent attack process is the same as the BFA method.

Figure 8 shows the comparison results of evasion rates of several methods under
different perturbation scales. First, our method achieves an evasion rate much higher than
that of the random append method at any append size, indicating that the adversarial
perturbation bytes generated by our method are targeted and the effect is relatively ideal.
Furthermore, for the one-time generation method, it tends to vary with the perturbation
size roughly the same as the experience-based method, but the evasion rate is slightly
lower than that of the experience-based method. For the iterative generation method,
when the perturbation size is less than 5 KB, its evasion rate is not as good as that of the
experience-based method, but its evasion rate increases rapidly with the increase of the
perturbation size. After it is greater than 5 KB, it has surpassed all other black-box methods,
and gradually approaches the best white-box method in the figure, the enhanced BFA.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

Figure 8 shows the comparison results of evasion rates of several methods under dif-
ferent perturbation scales. First, our method achieves an evasion rate much higher than
that of the random append method at any append size, indicating that the adversarial
perturbation bytes generated by our method are targeted and the effect is relatively ideal.
Furthermore, for the one-time generation method, it tends to vary with the perturbation
size roughly the same as the experience-based method, but the evasion rate is slightly
lower than that of the experience-based method. For the iterative generation method,
when the perturbation size is less than 5 KB, its evasion rate is not as good as that of the
experience-based method, but its evasion rate increases rapidly with the increase of the
perturbation size. After it is greater than 5 KB, it has surpassed all other black-box meth-
ods, and gradually approaches the best white-box method in the figure, the enhanced
BFA.

Figure 8. The evasion rate of each method under different append sizes.

In short, the one-time generation method is a basic method to directly use the RNN
generation model to generate adversarial perturbation. The method is relatively simple
and direct, and the information required is relatively small. Its evasion rate increases rel-
atively steadily with the change in the perturbation scale. For the iterative generation
method, since the perturbation size of our iteration is set to 1 KB, it is difficult to take
advantage of iteration when the perturbation size is small (less than 5 KB), and the evasion
rate at this time is not high. However, as the perturbation size grows, the evasion rate
increases rapidly, surpassing the experience-based black-box method and gradually ap-
proaching the enhanced BFA white-box method.

5. Conclusions and Future Work
In this paper, we investigate the problem of insufficient robustness of current end-to-

end malware detection models based on deep learning, especially the Malconv model. In
recent years, these models, which do not require feature engineering and expert
knowledge, are increasingly being used in automated anti-malware systems. Our research
shows that under the condition of only obtaining the scores of some benign sample from
the detection model, adversaries can train RNN generation models based on this infor-
mation to generate adversarial perturbations, thereby making adversarial examples on a
large scale. This is our one-time generation method, which achieves the highest evasion
rate of 66.8%. If the score of the model on the intermediate samples can be obtained during

Figure 8. The evasion rate of each method under different append sizes.

In short, the one-time generation method is a basic method to directly use the RNN
generation model to generate adversarial perturbation. The method is relatively simple and
direct, and the information required is relatively small. Its evasion rate increases relatively
steadily with the change in the perturbation scale. For the iterative generation method,
since the perturbation size of our iteration is set to 1 KB, it is difficult to take advantage
of iteration when the perturbation size is small (less than 5 KB), and the evasion rate at
this time is not high. However, as the perturbation size grows, the evasion rate increases

Electronics 2023, 12, 2346 15 of 17

rapidly, surpassing the experience-based black-box method and gradually approaching the
enhanced BFA white-box method.

5. Conclusions and Future Work

In this paper, we investigate the problem of insufficient robustness of current end-to-
end malware detection models based on deep learning, especially the Malconv model. In
recent years, these models, which do not require feature engineering and expert knowledge,
are increasingly being used in automated anti-malware systems. Our research shows that
under the condition of only obtaining the scores of some benign sample from the detection
model, adversaries can train RNN generation models based on this information to generate
adversarial perturbations, thereby making adversarial examples on a large scale. This is
our one-time generation method, which achieves the highest evasion rate of 66.8%. If the
score of the model on the intermediate samples can be obtained during the generation, the
scale of additional perturbations can be further reduced and the success rate of evasion can
be improved, that is, the iterative generation method, which achieves a maximum evasion
rate of 90.8%. These results prove the vulnerability of the current deep learning-based
malware detection model. Anti-malware systems usually do not pay enough attention
to the detection and scoring information of benign samples, which may give adversaries
an opportunity.

In the future, in terms of attack direction, due to the generality of our method, we will
consider extending it to other models of the same type. While for other types of models,
such as non-end-to-end, based on opcodes or other features, we still consider treating them
as sequences and further transfer our method. In the direction of defense, we will consider
the most basic adversarial training to improve the robustness of the model. Furthermore,
in the introduction to the benign payload, we plot the model confidence score versus the
first n bytes of the sample (Figure 2). Our research may imply that models with a smoother
and less abrupt curve are more robust and harder to attack. In the future, we may start
from this point to study how to improve the defense ability of detection models against
adversarial attacks.

Author Contributions: Conceptualization, S.W.; Methodology, S.W.; Software, S.W.; Formal analysis,
S.W.; Data curation, S.W. and Z.K.; Writing—original draft, S.W.; Writing—review & editing, S.W.,
Y.W. and Z.K.; Supervision, J.X. and Y.W.; Project administration, J.X. and Y.W.; Funding acquisition,
J.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research and the APC was funded by Major Scientific and Technological Innovation
Projects of Shandong Province (2020CXGC010116), the National Natural Science Foundation of China
(No. 62172042), and the National Key Research & Development Program of China (2020YFB1712104).

Data Availability Statement: Previously published articles were used to support this study and
these prior studies and datasets are cited at relevant places within this article. The link to the datasets
is https://virusshare.com/ (accessed on 26 March 2022).

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.
2. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C. Malware detection by eating a whole EXE. In Proceedings

of the 32nd AAAI Workshops, New Orleans, LA, USA, 2–3 February 2018; pp. 268–276.
3. Pietrek, M. Peering Inside the PE: A Tour of the win32 (R) Portable Executable File Format. Microsoft Syst. J. 1994, 9, 15–38.
4. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B. Malware images: Visualization and automatic classification. In Proceedings

of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011; pp. 1–7. [CrossRef]
5. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
6. Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

https://virusshare.com/
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1109/CVPR.2016.90

Electronics 2023, 12, 2346 16 of 17

7. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

8. Hassen, M.; Chan, P. Scalable Function Call Graph-based Malware Classification. In Proceedings of the Seventh ACM Conference
on Data and Application Security and Privacy(CODASPY), Scottsdale, AZ, USA, 22–24 March 2017; ACM: New York, NY, USA,
2017; pp. 239–248. [CrossRef]

9. Kinable, J.; Kostakis, O. Malware classification based on call graph clustering. J. Comput. Virol. 2011, 7, 233–245. [CrossRef]
10. Kong, D.; Yan, G. Discriminant malware distance learning on structural information for automated malware classification. In

Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA,
11–14 August 2013; pp. 1357–1365. [CrossRef]

11. Yan, J.; Yan, G.; Jin, D. Classifying malware represented as control flow graphs using deep graph convolutional neural network. In
Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland,
OR, USA, 24–27 June 2019; pp. 52–63. [CrossRef]

12. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

13. Awad, Y.; Nassar, M.; Safa, H. Modeling malware as a language. In Proceedings of the 2018 IEEE International Conference on
Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

14. Jain, S.; Meena, Y.K. Byte level n–gram analysis for malware detection. In Proceedings of the International Conference on
Information Processing, Shanghai, China, 13–17 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 51–59.
[CrossRef]

15. Raff, E.; Sylvester, J.; Nicholas, C. Learning the pe header, malware detection with minimal domain knowledge. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 121–132. [CrossRef]

16. Goodfellow, I.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
17. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.; Swami, A. Practical Black-Box Attacks against Machine Learning.

In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security (ASIACCS ′17), Abu Dhabi,
United Arab Emirates, 2–6 April 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 506–519. [CrossRef]

18. Xu, W.; Qi, Y.; Evans, D. Automatically evading classifiers. In Proceedings of the 2016 Network and Distributed Systems Security
Symposium, San Diego, CA, USA, 21–24 February 2016; p. 10.

19. Su, J.; Vargas, D.V.; Sakurai, K. One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841.
[CrossRef]

20. Kreuk, F.; Barak, A.; Aviv-Reuven, S.; Baruch, M.; Pinkas, B.; Keshet, J. Deceiving end-to-end deep learning malware detectors
using adversarial examples. arXiv 2018, arXiv:1802.04528.

21. Kolosnjaji, B.; Demontis, A.; Biggio, B.; Maiorca, D.; Giacinto, G.; Eckert, C.; Roli, F. Adversarial malware binaries: Evading deep
learning for malware detection in executables. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO),
Rome, Italy, 3–7 September 2018; pp. 533–537. [CrossRef]

22. Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; Armando, A. Explaining vulnerabilities of deep learning to adversarial malware
binaries. arXiv 2019, arXiv:1901.03583.

23. Hu, W.; Tan, Y. Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN. In DMBD 2022: Data Mining
and Big Data; Communications in Computer and Information Science; Springer: Singapore, 2023; Volume 1745. [CrossRef]

24. Rosenberg, I.; Shabtai, A.; Rokach, L.; Elovici, Y. Generic black-box end-to-end attack against state of the art API call based
malware classifiers. In Research in Attacks, Intrusions, and Defenses, Proceedings of the 21st International Symposium, RAID 2018,
Heraklion, Crete, Greece, 10–12 September 2018; Proceedings 21; Springer International Publishing: Berlin/Heidelberg, Germany,
2018; pp. 490–510. [CrossRef]

25. Castro, R.L.; Schmitt, C.; Dreo, G. AIMED: Evolving Malware with Genetic Programming to Evade Detection. In Proceedings
of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019;
pp. 240–247. [CrossRef]

26. Castro, R.L.; Schmitt, C.; Rodosek, G.D. ARMED: How Automatic Malware Modifications Can Evade Static Detection. In
Proceedings of the 5th International Conference on Information Management (ICIM), Cambridge, UK, 24–27 March 2019;
pp. 20–27. [CrossRef]

27. Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; Armando, A. Functionality-Preserving Black-Box Optimization of Adversarial
Windows Malware. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3469–3478. [CrossRef]

28. Anderson, H.S.; Kharkar, A.; Filar, B.; Evans, D.; Roth, P. Learning to evade static PE machine learning malware models via
reinforcement learning. arXiv 2018, arXiv:1801.08917.

29. Chen, J.; Jiang, J.; Li, R.; Dou, Y. Generating Adversarial Examples for Static PE Malware Detector Based on Deep Reinforcement
Learning. J. Phys. Conf. Ser. 2020, 1575, 012011. [CrossRef]

30. Song, W.; Li, X.; Afroz, S.; Garg, D.; Kuznetsov, D.; Yin, H. Mab-malware: A reinforcement learning framework for attacking static
malware classifiers. arXiv 2020, arXiv:2003.03100.

31. Li, X.; Li, Q. An IRL-based malware adversarial generation method to evade anti-malware engines. Comput. Secur. 2020,
104, 102118. [CrossRef]

https://doi.org/10.1145/3029806.3029824
https://doi.org/10.1007/s11416-011-0151-y
https://doi.org/10.1145/2487575.2488219
https://doi.org/10.1109/DSN.2019.00020
https://doi.org/10.1016/j.ins.2011.08.020
https://doi.org/10.1109/ICC.2018.8422083
https://doi.org/10.1007/978-3-642-22786-8_6
https://doi.org/10.1145/3128572.3140442
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.1007/978-981-19-8991-9_29
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00040
https://doi.org/10.1109/INFOMAN.2019.8714698
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1088/1742-6596/1575/1/012011
https://doi.org/10.1016/j.cose.2020.102118

Electronics 2023, 12, 2346 17 of 17

32. Anderson, H.S.; Kharkar, A.; Filar, B.; Roth, P. Evading machine learning malware detection. In Proceedings of the Black Hat,
Las Vegas, NV, USA, 22–27 July 2017.

33. Park, D.; Khan, H.; Yener, B. Generation and Evaluation of Adversarial Examples for Malware Obfuscation. In Proceedings of the
18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019;
pp. 1283–1290. [CrossRef]

34. Ebrahimi, M.; Zhang, N.; Hu, J.; Raza, M.T.; Chen, H. Binary black-box evasion attacks against deep learning-based static malware
detectors with adversarial byte-level language model. arXiv 2020, arXiv:2012.07994.

35. Chen, B.-C.; Ren, Z.-R.; Yu, C.; Hussain, I.; Liu, J.-T. Adversarial Examples for CNN-Based Malware Detectors. IEEE Access 2019,
7, 54360–54371. [CrossRef]

36. Takase, S.; Suzuki, J.; Nagata, M. Character n-Gram Embeddings to Improve RNN Language Models. Proc. Conf. AAAI Artif.
Intell. 2019, 33, 5074–5082. [CrossRef]

37. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep Learning for Classification of Malware System Call Sequences. In AI
2016: Advances in Artificial Intelligence; Kang, B., Bai, Q., Eds.; AI 2016. Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2016; Volume 9992. [CrossRef]

38. Rosenberg, I.; Shabtai, A.; Elovici, Y.; Rokach, L. Defense methods against adversarial examples for recurrent neural networks.
arXiv 2019, arXiv:1901.09963.

39. Harun Babu, R.; Vinayakumar, R.; Soman, K.P. RNNSecureNet: Recurrent neural networks for Cyber security use-cases. arXiv
2019, arXiv:1901.04281.

40. Zuo, F.; Li, X.; Young, P.; Luo, L. Neural machine translation inspired binary code similarity comparison beyond function pairs.
arXiv 2018, arXiv:1808.04706.

41. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

42. Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv 2014, arXiv:1412.3555.

43. Available online: https://virusshare.com/ (accessed on 26 March 2022).
44. Available online: https://pytorch.org/ (accessed on 20 March 2022).
45. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICMLA.2019.00210
https://doi.org/10.1109/ACCESS.2019.2913439
https://doi.org/10.1609/aaai.v33i01.33015074
https://doi.org/10.1007/978-3-319-50127-7_11
https://virusshare.com/
https://pytorch.org/

	Introduction
	Background and Related Work
	Malware Detection Method Based on Machine Learning
	Adversarial Attack
	Generative RNN Model

	Proposed Method
	Threat Model
	Benign Payload Extraction
	RNN Generation Model
	Adversarial Example Generation Method
	One-Time Generation Method
	Iterative Generation Method

	Experiments Evaluation
	Dataset
	Detection Model Evaluation
	Benign Payload Extraction and RNN Generation Model Training
	Evasion Performance Evaluation
	One-Time Generation Method
	Iterative Generation Method
	Comparison with Other Methods

	Conclusions and Future Work
	References

